Disability and Quality of Life among People Living With HIV/AIDS in Ibadan, Nigeria

O A. Olaleye, AA. Adetoye, T K. Hamzat

Department of Physiotherapy, College of Medicine, University of Ibadan, Nigeria

ABSTRACT

Background: Improvements in medical and pharmacologic management of HIV/AIDS has led to increased life expectancy for the afflicted individuals. Hence, the focus of management for People Living With HIV/AIDS (PLWHA) has shifted to issues relating to function and Quality of Life (QoL). Information is scarce on disability issues and quality of life among people living with HIIV/AIDS in Nigeria. This was the premise of this study that assessed the level of disability and how it related to quality of life among people living with HIV/AIDS in Ibadan, the largest city in Nigeria.

Methods: 360 PLWHA (274 females; 86 males)aged 37.79 \pm 9.37 years participated in this study. They were recruited from the anti-retroviral clinics of one secondary and one tertiary healthcare facilities in Ibadan, Nigeria. Disability and QoL were assessed using the 12-item WHO Disability Assessment Schedule (WHODAS 2.0) and the WHOQOL_HIV Bref respectively. Data were analysed using Chi square and Kruskal Wallis test at p=0.05.

Results: Almost a quarter (23.6%) reported being currently ill, with HIV/AIDS-related symptoms accounting for the highest perceived illness (42.5%).Majority of these participants (71.1%) had

Corresponding Author:

Dr. O. A. OLALEYE Department of Physiotherapy, College of Medicine (U.C.H.) University of Ibadan, P.M.B. 5017 G.P.O., Dugbe, Ibadan, Nigeria Tel.: 08052145873; 2410088 Ext. 3366 olubukolaolaleye@yahoo.com; oaolaleye@comui.edu.ng mild to extreme disabilities. There were no significant associations (p > 0.05) between disability and each of age, sex and employment status. Disability was however, significantly associated with level of education, alcohol use, CD4 count, history of tuberculosis and QoL (p < 0.01).

Conclusion: Disability was relatively high among people living with HIV/AIDS in Ibadan, Nigeria. Although mostly rated mild, disability was associated with poor QoL. This underscores the need for early identification of disability in people living with HIV/AIDS to minimise its impact on their QoL.

INTRODUCTION

Approximately 35.3 million people are living with HIV globally and more than two-thirds of this population reside in Sub-Saharan Africa.¹With the introduction of Highly Active Anti-Retroviral Therapy (HAART), there has been a growing increase in the life expectancy of people living with HIV/AIDS.²Consequently, HIV/AIDS has become a long-term or chronic illness in which infected individuals experience complex health-related challenges of the disease and its associated treatments.^{3, 4,}Many PLWHA find it challenging to attend to daily tasks of living, participate in moderate to vigorous physical activities, or have sufficient energy or vitality to engage in an active social life.⁵ This is because the illness predisposes them to multi-system dysfunctions that can cause functional limitations thereby compromising both their independence and their quality of life. According to Madden et al⁶ functioning and

Keywords: Disability, Quality of life, HIV/AIDS

disability are relevant outcomes of studies involving patients with chronic conditions.

Disability in People Living With HIV/AIDS (PLWHA) include fatigue, neuro-cognitive impairments, weakness, pain, difficulties with activities of daily living as well as challenges with social and/or community participation.^{7,8}It could be episodic in nature, whereby health challenges fluctuate on a daily basis or experienced over the entire course of living with HIV.⁹The impact of the disease on the immune system, the undesirable side effects of HAART, pulmonary complications (e.g TB and pneumonia), sensory impairments ^{10, 11}and the indirect effect of aging may promote the development of disability for PLWHA. In addition, a CD4 T-cell count less than 500 has been associated with physical limitations and disability.¹²

With increased longevity in PLWHA, Quality of Life(QoL) has become an important focus for researchers and healthcare providers.¹³PLWHA struggles with numerous social problems such as stigmatization, poverty, depression, substance abuse and cultural beliefs, which can affect their OoL from both the physical health aspect and the mental and social health points of view.^{14,} ¹⁵Thenegative impact of HIV/AIDS on the QoL of the individual progresses as the HIV infection progresses. ¹⁶Assessing Health-Related Quality of Life (HRQoL) is useful for documenting patients' perceived burden of chronic disease, tracking changes in health over time, assessing the effects of treatment and quantifying return on health care investment.¹⁷

Early diagnosis and/or recognition of disability are important to minimise its negative impact on the infected individuals, their family and the society at large. For a long time, most studies on disability in the context of people living with HIV/AIDS were from high income countries.^{9,18,19} Data from lowincome countries are still evolving. Whilst HIV/AIDS has been broadly studied in Nigeria in terms of population prevalence, incidence, quality of life, clinical manifestations and prevalence of depression and depressive symptoms,^{20, 21, 22} its impact in terms of other disabilities has not received proper attention. In addition, studies evaluating disability among PLWHA in Nigeria are based on retrospective review of cases. Information on this subject is important to identify individuals at risk of developing disability and for the development and implementation of strategies to promote functional independence among PLWHA in Nigeria.

Methods

The study was approved by the University of Ibadan/University College Hospital Health Research Ethics Committee. PLWHA who were at least 18 years old and have been on HAART for upward of 6 months prior to this study were invited to participate in this study. Exclusion criteria were presence of an acute infection or opportunistic AIDS-defining illnesses. Participants were recruited from the anti-retroviral clinics of a tertiary and a secondary healthcare facility in Ibadan, Nigeria. Informed consent was obtained after the purpose and procedure for the research have been explained to prospective participants. Information on sociodemographic and clinical characteristics was selfreported by the participants. The 12-item World Health Organization Disability Assessment Schedule (WHODAS 2.0) was used to measure disability among the participants. The WHODAS 2.0 provides a profile of functioning and disability that is reliable and applicable across cultures in all adult populations.⁵It has been internationally validated for assessing disability levels in the general population and in specific group. It is scored on a 5-point likert scale and obtainable range of scores is from 12 representing no disability (best functional ability) to 60 indicating extreme or maximum disability (poorest functional ability).

The WHOQOL_HIV Bref, a disease-specific measure of quality of life, was used to assess the quality of life of the participants. It comprises 31 items distributed into six domains measuring Physical Health, Psychological Well-being, Level of Independence, Social Relationships, Environment and Spiritual/religion. The instrument has been

validated across cultures. Each item is scored on a 5point likert scale where 1 indicates low perceived QoL and 5 indicates high perceived QoL. Scores for items in each domain are summed up and divided by the number of items in the domain and then multiplied by 4. Obtainable scores range from 4 to 20. Scores are scaled in a positive direction with higher scores denoting higher QoL.

Data Analyses

Data entry and analysis were performed using SPSS version 20.0. Descriptive statistics of mean and percentages were used to summarize the sociodemographic and clinical characteristics of the participants. Chi square test was used to test the association among disability, socio-demographic characteristics and clinical characteristics in the participants. The relationship between disability and QoL was examined using Kruskal Wallis test. The level of significance was set at 0.05.

RESULTS

Three hundred and sixty People Living With HIV/AIDS (PLWHA) comprising 274(76.1%) females and 86(23.9%) males participated in this

Table 1: Socio-demographic Characteristics ofthe Respondents

Variable	Frequency (n)	Percentage (%)
Age		
20-30	92	25.6
31-40	153	42.5
41-50	79	21.9
51-60	26	7.2
61 and above	10	2.8
Mean age (yrs): 37.	$.79 \pm 9.370$	
Gender		
Male	86	23.9
Female	274	76.1
Level of Education		
None at all	28	7.8
Primary	96	26.7
Secondary	157	43.6
Tertiary	79	21.9
Employment status		
Self-employed	175	48.6
Employed	76	21.1
Unemployed	109	30.3

study. Their mean age was 37.79 ± 9.370 years and majority (42.5%) was within the age range of 31-40(Table 1). More than three-quarters (77.8%) of the participants reported their health status as either good or very good while only 2.5% reported very poor state of health. Majority of the participants (76.4%) claimed they had no current illness. HIV/AIDS related symptoms accounted for the highest perceived illness (42.5%) in those who considered themselves as being currently ill. Only 251(69.7%) participants knew their CD4 counts (Table 2) and the mean CD4 count among such participants was 281.9 ± 130.5 . Majority of the respondents (85.6%) were on Lamivudine and about four-fifths (81.1%) were drug compliant.

Table 2: Clinical characteristics of therespondents

~~					
Variables	Frequency	Percentage			
	(n)	(%)			
Currently Ill					
Yes	85	23.6			
No	275	76.4			
History of Tuberculosis	5				
Yes	44	12.2			
No	316	87.8			
History of Pneumonia					
Yes	10	2.8			
No	350	97.2			
CD4 Count					
< 200	55	15.3			
200 - 500	178	49.4			
> 500	18	5.0			
Missing values	109	30.3			
Adherence to Drug					
Yes	292	81.1			
No	68	18.9			
Presence of Disability					
Yes	256	71.1			
No	104	28.9			

The mean disability score of the respondents on the WHODAS 2.0 was 16.55 ± 5.962 . 256 (71.1%) respondents reported disabilities ranging from mild to extreme (Table 3). Disability was mostly in the items of the participation domain and least in the self-care domain (Table 3). Females reported more disability than males. There was no significant association (p>0.05) between disability and age, sex

and employment status (Table 4). A significant association was found between disability and level of education (p=0.01). There was a significant association between disability and alcohol use (p=0.02). Similarly, disability was significantly associated with past medical history of tuberculosis as well as with CD4 count (p = 0.01). Type of HIV

medication and adherence to medication were not significantly associated with disability (p>0.05).

The mean Quality of Life (QoL) score was 3.41 ± 0.813 . About four-fifth (80.8%) of the participants reported high QoL. Mean scores for the psychological health, social relationships and the

Table 3: Prevalence o	f disability.	by item and domain of the 12-item W	/HODAS 2.0 (N=360)
	1 wisestilly	by normality and a contain of the 12 normality	

WHODAS 2.0	WHODAS 2.0 Domains	No Dischility	Disability						
Items	Domains	Disability n (%)	Mild n %	Moderate n %	Severe n %	Extreme n %	Total n %		
1. How much difficulty did you have in standing for long periods such as 30minutes	Getting around	243 (67.5)	83 (23.0)	29 (8.1)	3 (0.8)	2 (0.6)	117(32.5)		
2. How much difficulty did you have in taking care of your household responsibilities	Life activities	256 (71.1)	80 (22.2)	18 (5.0)	5 (1.4)	1 (0.3)) 104(28.9)		
3. How much difficulty did you h ave in learning a new task, for example, learning how to get to a new place?	Understanding & communication	262 (72.8)	88 (24.4)	7 (2.0)	3 (0.8)	0 (0.0)	98(27.2)		
4. How much of a problem did you have joining in community activities	Participation in society	233 (64.7)	100 (27.8)	20 (5.5)	5 (1.4)	2 (0.6)	127(35.3)		
5. How much have you been affected by your health problem	Participation in society	219 (60.8)	88 (24.4)	36 (10.0)	15 (4.2)	2 (0.6)	141(39.2)		
6. How much difficulty did you have in concentrating on doing something for ten minutes?	Understanding & Communication	244 (67.8)	97 (26.9)	14 (3.9)	5 (1.4)	0 (0.0)	116(32.2)		
7. How much difficulty did you have in walking a long distance such as a kilometer (or equivalent)	Getting around	248 (68.9)	79 (22.0)	21 (5.8)	9 (2.5)	3 (0.8)	112(31.1)		
8. How much difficulty did you have in washing your whole body?	Self-care	296 (82.2)	57 (15.9)	3 (0.8)	1 (0.3)	3 (0.8)	64 (17.8)		
9. How much difficulty did you h ave in getting dressed?	Self-care	295 (81.9)	56 (15.6)	5 (1.4)	1 (0.3)	3 (0.8)	65 (18.1)		
10. How much difficulty did you have in dealing with people you do not know?	Getting along with people	267 (74.2)	79 (22.0)	10 (2.7)	4 (1.1)	0 (0.0)	93 (25.8)		
11. How much difficulty did you have in maintaining a friendship?	Getting along with people	249 (69.2)	90 (25.0)	13 (3.6)	8 (2.2)	0 (0.0)	111(30.8)		
12. How much difficulty did you have in your day-to-day work?	Life activities	249 (69.2)	87 (24.2)	13 (3.6)	8 (2.2)	3 (0.8)	111(30.8)		

environment domains were low relative to the maximum obtainable scores. There was a significant

association between disability and QoL($\chi 2 = 77.26$; p=0.01) among respondents.

Table 4: Association	among Disa	ability, Socio-dem	ographic and	Clinical	characteristics	of
respondents						

Variables												
	N	one	Mild Modera			Severe Extreme			10	p-value		
Disability	n	%	n	%	n	%	n	%	Ν	%		
Gender												
Male	32	37.2	45	52.3	6	7.0	1	1.2	2	2.3	7.08	0.13
Female	72	26.3	182	66.4	17	6.2	1	0.4	2	0.7		
Total	104	28.9	227	63.1	23	6.4	2	0.6	4	1.1		
Age												
20-30	33	35.9	56	60.9	2	2.2	1	1.1	0	0.0	15.84	0.46
31-40	40	26.1	100	65.4	11	7.2	0	0.0	2	1.3		
41-50	24	30.4	47	59.5	5	6.3	1	1.3	2	2.5		
51-60	6	23.1	17	65.4	3	11.5	0	0.0	0	0.0		
61 and above	1	10.0	7	70.0	2	20.0	0	0.0	0	0.0		
Total	104	28.9	227	63.1	23	6.4	2	0.6	4	1.1		
Level of Education												
None	7	25.0	19	67.9	2	7.1	0	0.0	0	0.0	28.73	0.01*
Primary	18	18.8	64	66.7	11	11.5	1	1.0	2	2.1		
Secondary	40	25.5	108	68.8	7	4.5	1	0.6	1	0.6		
Tertiary	39	49.4	36	45.6	3	3.8	0	0.0	1	1.3		
Total	104	28.9	227	63.1	23	6.4	2	0.6	4	1.1		
Employment Status												
Self-employed	57	32.6	104	59.4	11	6.3	2	1.1	1	0.6	9.08	0.34
Employed	23	30.3	48	63.2	3	3.9	0	0.0	2	2.6		
Unemployed	24	22.0	75	68.8	9	8.3	0	0.0	1	0.9		
Total	104	28.9	227	63.1	23	6.4	2	0.6	4	1.1		
History of TB												
Yes	9	20.5	24	54.5	9	20.5	0	0.0	2	4.5	22.93	0.01*
No	95	30.1	203	64.2	14	4.4	2	0.6	2	0.6		
Total	104	28.9	227	63.0	23	6.4	2	0.6	4	1.1		
Alcohol use												
Yes	10	45.5	9	40.9	2	9.1	1	4.5	0	0.0	11.29	0.02*
No	94	27.8	218	64.5	21	6.2	1	0.3	4	1.2		
Total	104	28.9	227	63.0	23	6.4	2	0.6	4	1.1		
CD4 Count												
< 200	8	14.5	30	54.5	11	20.0	2	3.6	4	7.3	45.77	0.01*
20 . 10	75	42.1	95	53.4	8	4.5	0	0.0	0	0.0		
> 500	6	33.3	12	66.7	0	0.0	0	0.0	0	0.0		
Missing value	15	13.8	90	82.5	4	3.7	0	0.0	0	0.0		
Total	104	28.9	227	63.0	23	6.4	2	0.6	4	1.1		
*Significant p < 0.05												

*Significant p < 0.05

DISCUSSION

Measuring disability in the context of HIV is important for determining the prevalence and impact of HIV-associated disability and the effectiveness of interventions to reduce the presence and severity of disability.²³This study estimated the prevalence of disability in PLWHA in Ibadan, Nigeria and investigated the association between disability and quality of life. The mean age of participants in this study was 37.79 ± 9.37 years. This is comparable to the mean age of 38.1 ± 9.0 and 35.4 ± 7.0 years reported in the studies of Folasire et al²¹ and Tran²⁴ respectively. Most of the PLWHA in the current study were females. This is similar to the findings of Folasireet al²¹who had reported a male: female ratio of 1:2. This is however, in contrast to findings of more males than females among PLWHA from some other studies.^{25,24}The variation in the findings may be because the studies by Tran²⁴ and Tramarin et al ²⁵were from developed countries. According to the UNAIDS report¹, women compose nearly 60% of cases of HIV/AIDS in Sub-Saharan Africa in contrast to other regions. Almost all studies involving PLWHA recruited more females than males. In a review by Hanass-Hancock et al, ²⁶more than 70.0% of the sample was made up of females in 61.0% (25 articles) of the articles reviewed. The finding of significantly more females than malesaligns with reports with earlier findings. It may also be because one of the venues of the study is a maternity teaching hospital. Though, the antiretroviral clinic in the hospital caters for both males and females, women constitutes a higher percentage of the clientele, as the focus of the hospital was largely women health.

The mean CD4 count among the participants was 281.9±130.5. This value is low relative to the normal values in literature, but Tran ²⁴had similarly reported a low CD4 count among PLWHA in Vietnam. There had been reported variations in CD4 counts which were partially explained by factors such as age, race/ethnicity, BMI and underlying diseases,^{27, 28}Low level of CD4cells have been reported in HIV-negative Africans compared to Caucasians,²⁹Factors

such as BMI and smoking hadalso been associated with low CD4 count in HIV-negative Africans.³⁰ These variations may contribute to the low level of CD4 count reported in our study compared to CD4 counts of PLWHA in other regions.

There was a low incidence of tuberculosis and pneumonia among the study sample. This is an interesting finding, considering that pulmonary infections are common opportunistic infection in PLWHA.^{31, 32}HIV/AIDS is the most powerful known risk factor for TB infection³³ and TB is the leading cause of death among PLWHA.³⁴Our finding of low incidence of pulmonary TB among the participants may bebecause participants in this study were already on HAART for a minimum of six months prior to inclusion in the study. This could have conferred on them some measure of immunity against pulmonary infections. It could also be related to the predominance of females in our study population. It has been posited that males were more likely to have active TB infections than females.^{35,36}

More than two-thirds of the participants had one form of disability or the other, although majority reported mild level of disability. Previous studies have reported some level of disability in PLWHA.^{19,37m} Prevalence of disability was highest in participation domain. High level of participation restriction especially in sexual roles, student/employee roles and financial roles had previously been reported among PLWHA.¹⁸ This may not be unrelated to the stigmatisation, poverty and depression often faced by PLWHA.^{14, 15}There was no significant association between disability and socio-demographic variables of age, gender, and employment status. This is contrary to most reports in literature. Study has reported an association between age and disability in PLWHA.³⁸ Higher prevalence of various disabilities had also been reported in females than males. ³⁹ The difference in our findings and that of Ávila-Funes and colleagues³⁸ may be because of their sample. Their study was conducted among elderly people living with HIV/AIDS whereas our own sample comprised mostly young and middle-aged adults. Level of education was significantly associated with disability. This suggests that individual with low level of education had a higher prevalence of disability than those with higher level of education. Similar findings had been reported in literature.^{38, 40, 41}It is probable that individuals with high level of education had access to better healthcare based on their employability and earning power. It could also be that highly educated individuals tend to make healthy choices in the light of their health status and are proactive on symptoms that could precipitate disability.

Our results revealed a significant association between disability and history of tuberculosis, alcohol use and CD4 count. These factors had been reportedly associated with the presence of disability in PLWHA. For instance, Spano et al ³¹found higher level of disability in PLWHA with history of tuberculosis infection compared with those without tuberculosis. The detrimental effect of alcohol consumption on the development of neuropathies, HIV disease progression and disability had also been reported.⁴²Low CD4 count has also been associated with a higher level of disability in PLWHA.^{19,41}Disability was significantly associated with quality of life among participants in this study such that the more severe the disability, the worse the quality of life. Earlier studies have also demonstrated that QoL is lowered by an increased level of disability in PLWHA.⁴³ The negative impact of HIV/AIDS on the QoL of the individual progresses as the HIV infection progresses.^{16,} ⁴⁴HIV/AIDS has been associated with greater unemployment, depression and dependency in Activities of Daily Living (ADL) even in the face of HAART.⁴⁵ These may contribute to the negative impact of HIV on OoL.

The strength of this study lies in the fact that it is one of the first studies to comprehensively assess disability in PLWHA in Ibadan, Nigeria. There are however, inherent limitations in studies based on self-reports from participants. Participants may be biased in reporting the presence/severity of disability as they may feel this could lead to further stigmatisation and its attendant problems. Another possible limitation of this study is that data were based on a single evaluation. The severity and prevalence of disabilities could be greater and/or different if participants were longitudinally assessed.

CONCLUSION

Majority of PLWHA in Ibadan, Nigeria had mild to moderate disability. Disability was highest in the participation domain and was associated with low level of education, alcohol use, history of tuberculosis and low CD4 count. Increased disability was associated with poor quality of life. To reduce the burden associated with HIV/AIDS, preventive measures targeting factors associated with disability should be adopted. Timely and effective intervention to prevent chronic health states such as disablement should be provided for atrisk individuals.

REFERENCES

- UNAIDS. "UNAIDS World AIDS Day Report 2011. How to Get to Zero: Faster. Smarter. Better," UNAIDS, Geneva, 2011.
- 2. Sterne JA, Hernan MA, Ledergerber B, et al. Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort study. *Lancet* 2005; 366:378-384.
- 3. Weiss JJ, Osorio G, Ryan E, Marcus SM, Fishbein DA. Prevalence and patient awareness of medical comorbidities in an urban AIDS clinic. *AIDS Patient Care STDS*2010; 24:39–48.
- Willard S, Holzemer WL, Wantland DJ, et al. Does "asymptomatic" mean without symptoms for those living with HIV infection>*AIDS Care* 2009; 21:322–328.
- 5. Üstün TB, Chatterji S, Kostanjsek N, et al. Developing the World Health Organization Disability Assessment Schedule 2.0 *Bull World Health Organ.* 2010; 88: 815-823.

- Madden RH, Dune T, Lukersmith S, et al. The relevance of the international classification of functioning, disability and health (ICF) in monitoring and evaluating community-based rehabilitation (CBR). *DisabilRehabil*. 2014; 36:826-827.
- Dray-Spira R, Persoz A, Boufassa F, et al. Employment loss following HIV infection in the era of highly active antiretroviral therapies. *Eur J Public Health* 2006; 16:89–95.
- Myezwa H, Stewart A, Musenge E, Nesara P. Assessment of HIV-positive in-patients using the International Classification of Functioning, Disability and Health (ICF) at Chris Hani Baragwanath Hospital, Johannesburg. *Afr J AIDS Res.* 2009; 8:93–105.
- O'Brien K, Davis A, Strike C, Young N, Bayoumi A. Putting episodic disability into context: a qualitative study exploring factors that influence disability experienced by adults living with HIV/AIDS.*J Int AIDS Soc.* 2009; 12(30):1–11.
- Swanson ME, Grosse SD, Kulkarni, R. Disability among individuals with sickle cell disease: literature review from a public health perspective. Am J Prev Med. 2011; 41(6S4):S390–S397.
- 11. Hanass-Hancock J, Nixon SA. The fields of HIV and disability: past, present and future. *J Int AIDS Soc.* 2009; 12:3.
- Schmitz MF, Crystal S. Social relations, coping, and psychological distress among persons with HIV/AIDS. J ApplSoc Psychol. 2000; 30:665–683.
- 13. Clayson DJ, Wild DJ, Quarterman P, Duprat-Lomon I, Kubin M, Coons SJ. A comparative review of health related quality of life measures for use in HIV/AIDS clinical trials. *Pharmacoeconomics*. 2006; 24:751–765.
- 14. Clifford DB, Evans S, Yang Y, et al. Impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals. *Ann Intern Med.* 2005; 143:714-721.

- Aranda-Naranjo B. Quality of life in HIVpositive patient. J Assoc Nurses AIDS Care. 2004; 15:20–27.
- Semba RD, Martin BK, Kempen JH, Thorne JE, Wu AW, Ocular Complications of AIDS Research Group. The impact of anemia on energy and physical functioning in individuals with AIDS.*Arch Intern Med.* 2005; 65: 2229–2236.
- Hays RD, Cunningham WE, Sherbourne CD, et al. Health-related quality of life in patients with human immunodeficiency virus infection in the United States: results from the HIV Cost and Services Utilization Study. *Am J Med.* 2000; 108:714–722.
- Rusch M, Nixon S, Schilder A, Braitstein P, Chan K, Hogg RS. Impairments, activity limitations and participation restrictions: prevalence and associations among persons living with HIV/AIDS in British Columbia. *Health Qual Life Outcomes* 2004; 2:46.
- \19.O'Brien KK, Bayoumi AM, Strike C, Young NL, Davis AM. Exploring disability from the perspective of adults living with HIV/AIDS: Development of a conceptual framework. *Health Qual Life Outcomes*. 2008; 6:76.
- 20. Fatiregun AA, Mofolorunsho KC, Osagbemi KG. Quality of life of people living with HIV/AIDS in Kogi State, Nigeria. *Benin Journal of Postgraduate Medicine*. 2009; 11(1).
- 21. Folasire OF, Irabor AE, Folasire AM. Quality of life of People living with HIV and AIDS attending the Antiretroviral Clinic, University College Hospital, Nigeria. *Africa Journal of Primary Health Care and Family Medicine* 2012; 4(1): 294.
- 22. Shittu RO, Issa BA, Olanrewaju GT, et al. Prevalence and Correlates of Depressive Disorders among People Living with HIV/AIDS, in North Central Nigeria. *J AIDS Clin Res* 2013; 4:251. DOI: 10.4172/2155-6113.1000251.
- 23. O'Brien KK, Solomon P, Bergin C, O'Dea S, Stratford P, Iku N, Bayoumi AM. Reliability and

validity of a new HIV-specific questionnaire with adults living with HIV in Canada and Ireland: the HIV Disability Questionnaire (HDQ). *Health Qual Life Outcomes* 2015;13:124.

- Tran BX. Quality of Life Outcomes of Antiretroviral Treatment for HIV/AIDS Patients in Vietnam. <u>PLoS One</u>. 2014; 7(7): e41062.
- 25. Tramarin A, Parise N, Campostrini S, et al. Association between diarrhea and quality of life in HIV-infected patients receiving highly active antiretroviral therapy. *Qual Life Res* 2004; 13: 243.
- 26. Hanass-Hancock J, Regondi I, van Egeraat L, Nixon S. HIV-Related Disability in HIV Hyper-Endemic Countries: A Scoping Review.World Journal of AIDS. 2013; 3:257-279
- 27. Aldrich J, Gross R, Adler M, King K, MacGregor RR, Gluckman SJ. The effect of acute severe illness on CD4+ lymphocyte counts in nonimmunocompromised patients. *Arch Intern Med*.2000; 160:715–716.
- 28. Abuye C, Tsegaye A, West CE, et al. Determinants of CD4 counts among HIVnegative Ethiopians: role of body mass index, gender, cigarette smoking, khat (*Catha edulis*) chewing, and possibly altitude> J *ClinImmunol*.2005; 25:127–133.
- 29. Clerici M, Butto S, Lukwiya M, et al. Immuneactivation in africa is environmentallydriven and is associated with upregulation of CCR5. Italian-UgandanAIDSProject. *AIDS*2000; 29;14(14):2083-2092.
- 30. Mair C, Hawes SE, Agne HD, et al. Factors associated with CD4 lymphocyte counts in HIV-negative Senegalese individuals. *ClinExpImmunol*2008; 151(3): 432–440.
- Spano JB, Massiani MA, Bentata M, et al. Lung cancer in patient with HIV infection and review of the literature. *Med oncol.* 2004; 21(2):109-115
- 32. Sitbon O, Lascoux-Combe C, Delfraissy JF, et al. Prevalence of HIV-related pulmonary arterial hypertension in the current

antiretroviral therapy era. *Am J RespirCrit Care Med.* 2008; 177(1):108-113.

- Kwan CK, Ernst JD. HIV and Tuberculosis: a Deadly Human Syndemic. *ClinMicrobiol Rev.* 2011; 24(2): 351–376.
- 34. Godfrey-Faussett P, Maher D, Mukadi Y, Nunn P, Perriëns J, Raviglione M. How Human Immunodeficiency Virus voluntary testing can contribute to tuberculosis control. *Bull World Health Organ.* 2002; 80(12):939-945.
- 35. Taha M, Deribew A, Tessema F, Assegid S, Duchateau L, Colebunders R. Risk Factors of Active Tuberculosis in People Living with HIV/AIDS in Southwest Ethiopia: A Case Control Study. *Ethiop J Health Sci*2011; 21(2): 131–139.
- 36. Lienhardt C, Fielding K, Sillah JS, et al. Investigation of the risk factors for tuberculosis: a case-control study in three countries in West Africa. *Int J Epidemiol*. 2005; 34(4):914–923.
- 37. Tran BX, Ohinmaa A, Duong AT, et al. Changes in drug use are associated with health-related quality of life improvement among methadone maintenance patients with HIV/AIDS.*Qual Life Res.* 2012; 21: 613–623.
- Ávila-Funes JA, Belaunzarán-Zamudio PF, Tamez-Rivera O, et al. Correlates of Prevalent Disability Among HIV-Infected Elderly Patients. *AIDS Res Hum Retroviruses*. 2016; 32(2):155-162.
- 39. CruzGECP, Ramos LR. Functional limitation and disabilities of older people with acquired immunodeficiency syndrome. *Acta paul. enferm* 2015; 28(5): 1.
- 40. Mannheimer SB, Matts J, Tel ZE, Chesney M, Wu AW. Quality of life in HIV-infected individuals relieving antiretroviral therapy related to adherence. *AIDS Care*. 2005; 17: 10-22.
- 41. Ruiz P, Rodriguez BJ, Lopez RMA, et al. Healthrelated quality of life of patient with HIV: Impact of sociodemographic, clinical and psychosocial factors. *Qual Life Res.* 2005; 14:1301-1310.
- 42. Ghebremicheal M, Pamistiu E, Lckovics JR, et al. Longitudinal association of alcohol use and

HIV disease progression of women living with AIDS. *AIDS care*. 2009; 21(7):837-841.

- 43. Kowal J, Overduin L.Y, Balfour L, Tasca G.A, Corace K. The role of psychological and behavioral variables in quality of life and the experience of bodily pain among persons living with HIV. *J Pain Symptom Manage*. 2008; 36: 247–258.
- 44. Breitbart W, McDonald MV, Rosenfeld B, Monkman ND, Passik S. Fatigue in ambulatory AIDS patients. *J Pain Symptom Managet*1998; 15:159–167.
- 45. Breitbart W, McDonald MV, Rosenfeld B, Monkman ND, Passik S. Fatigue in ambulatory AIDS patients. *J Pain Symptom Managet*1998; 15:159–167.