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ABSTRACT

Structural Dynamics Modification work often requires the inclusion of rotational degrees of
freedom in the modal data. These are not usually directly measurable because suitable
transducers are not yet readily available. This work investigates the estimation of rotations from

computed or measured translational data using spline functions for curve and surface fitting.

The estimation accuracy is found to depend on a number of factors including the spatial
distribution of data points, the level of error in the original data and the degree of smoothing

applied.

Analysis on beam and plate structures shows that an interpolating spline gives the best results on
error-free data, but that some degree of smoothing is required when dealing with noisy data. It is
shown that structural boundary conditions provide a useful basis for judging the level of
smoothing required. For clamped structures, the approximation which minimises the slope at the
clamped boundary is found to be acceptable. For free boundaries, the approximation which

minimises the second derivative of the fit function there gives the best overall results.

The accuracy of the rotation estimates is found to depend on the general level of error in the
original data but is influenced to a much lesser extent by the distribution of error between data
points. The errors in the rotations from data with a maximum error of 1% of the largest modal
translation are shown to be generally below 10% provided there are at least two measurement

points between nodal lines for the highest mode of interest.

As a consequence of the errors in the rotations, the errors in the structural dynamics modification
predictions are found to be broadly less than 5% when rotational errors are of the order of 10%.
Further, it is shown that estimates of rotations which are within 20% of the correct value yield

frequency prediction errors which are under 10%.

Thus, it is concluded that the proposed method is a quick, simple, versatile and effective tool for
estimating rotations yielding comparable performance with existing methods on similar structures.
An additional benefit is that there is no requirement for performing finite element analyses of
the structure. - ,
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NOMENCLATURE

{P;}
{q)
{u}
{v}

{x}
{8}
[a,b]
[c]
(k]
[m]

1

coefficient of the spline approximation function

offset in y-direction

offset in z-direction

prescribed function value at point q

total number of knots in spline approximation function

degree of polynomial function

total number of measurement points

number of degrees of freedom

number of modes in the database

mode number of interest

spline approximation function

weighting applied to the measurement point q

measurement point q

normalised B-spline function in y-direction

total number of knots in spline function

normalised B-spline function in x-direction

number of knots in x-direction

number of knots in y-direction

non-negative smoothing factor

force at structural point i

vector of modal space coordinates in the modal space of the modified structure
vector of physical space coordinates of the modified structure
mass-normalised vector of the modal space coordinates in the modal space of
the modified structure

vector of physical space coordinates of the unmodified structure
displacement at structural point i

range upon which spline approximation function is defined
modal damping matrix

modal stiffness matrix

modal mass matrix

x)



[m] - modal mass matrix of the modified structure in the modal space of the

unmodified structure

[m,] - modal mass matrix of the modified structure in the modal space of the
modified structure

[Ac] - modal modification damping matrix

[Ak] - modal modification stiffness matrix

[Am] - modal modification mass matrix

I - unit matrix

ca - physical damping matrix

[K] - physical stiffness matrix

M] - physical mass matrix

[Ql - displacement transformation matrix

W] - force transformation matrix

[AC] - physical modification damping matrix

[AK] - physical modification stiffness matrix

[AM] - physical modification mass matrix

(o0 - matrix of modal vectors of the unmodified structure

(o] - matrix of modal vectors of the modified structure

v - matrix of eigenvectors of the modified structure in the modal space of the
unmodified structure

[B] - matrix of mass-normalised vectors of the modified structure in the modal space
of the modified structure

S, - discontinuity jump in the k™ order derivative at the interior knot, A,

A - knot in spline approximation function

Y - damping coefficient

0,e, - weighted sum of squared residuals

(0] - frequency of vibration

(x1)



CHAPTER 1

INTRODUCTION

1.1 Dynamic Analysis and Modal Analysis

Historically, dynamics problems have been tackled by using 'rule-of-thumb’ approaches in which
the complexities of dynamic analyses have been circumvented through over-design. Solutions
to vibration problems have therefore generally entailed 'beefing up' the structure [1]. In recent
years however, high energy costs and more stringent consumer demands for performance and
safety have necessitated the development of structural components that cost less, last longer, and
are less expensive to operate, but carry greater loads, vibrate less and run more quietly. In order
to be able to predict structural strength and reliability, today's dynamicist must anticipate,

determine and satisfactorily control dynamic deflections, loads and stresses.

The dynamic properties of a structure can be defined by specifying either its mass, damping and
stiffness distribution (Spatial Model) or its modes of vibration (Modal Model). Spatial Models
are time consuming and difficult to formulate and are virtually impossible to verify without
performing experimental tests [1]. In addition, the accuracy of the results is highly dependent
on the modelling skills of the analyst. The Modal Model, which is usually experimentally
derived, is on the other hand of particular importancé and attraction to the analyst because its
use does not require a knowledge of the physical mass, damping and stiffness distributions of
the structure. It also lends itself to easy experimental verification and derivation, allows
graphical presentation of the structural dynamic properties and easy comparison of the dynamic
properties of different structures. A further benefit is that the effects of structural modifications
can be easily investigated using the modal model. However, the modal model suffers from
incompleteness due to limitations in the number of modes, the frequency range and the mode
shape data which can be practically measured. The investigation which follows is an effort to

address the latter of these limitations.

The term 'Modal Analysis' comprises a relatively wide range of research areas and applications
but can be defined as the analytical (via the use of finite elements) or experimental analysis of

the structural dynamic characteristics of a mechanical system in terms of its modal parameters



[2]. In general usage however, the term is used to refer to the process of extracting modal
parameters from test data rather than analytically. The approach is dependent on the premise
that the resultant response of a structure is made up of contributions of several individual
responses, each contribution being dependent on the coupling between the natural modes of

vibration.

Except for diagnostic techniques, it is true to say that, in all cases, the ultimate purpose for
undertaking a modal analysis is to obtain a mathematical model of the structure [3,4]. However,
the modal properties, besides being directly related to the structure's physical parameters, are
useful in such a wide variety of applications that a classification will never be complete.
Nevertheless some general fields of application will include [1,3,5-8]:
1. identification and evaluation of unexplained phenomena (trouble-shooting
excessive vibrations),

2. verification, correlation and correction of analytical models,

w

structural integrity monitoring (as a non-destructive technique to assure structural
integrity or to detect hidden faults),

development of dynamic models for use in active control algorithms,
development and validation of analysis procedures,

determination and prediction of dynamic forces or responses, and

NS s

generation of modal models for use in predicting the effects of modifications to

the original structure.

The quality and quantity of the data taken from a modal test therefore depend on the subsequent
use of that data. Some applications are more demanding in terms of the accuracy and
completeness required than others. For comparison and correlation type applications, only
accurate estimates of natural frequencies and descriptions of the mode shapes with just sufficient
detail and accuracy to permit identification and correlation are required. Sub-structuring and
predictive type applications, on the other hand, require accurate modal parameters and have the
added constraints that the model should include all the coordinates of interest and should not
be confined to certain individual modes since out-of-range modes will influence the behaviour
of the structure in a given frequency range of interest [3,5,9]. The effect of error in the modal

data in predictive type applications is an integral part of this study.



Significant advances in the area of modal analysis have been made over the past fifty years.
The volume of this activity has increased over the last ten to twenty years in parallel with, and
as a direct result of, the increase in the numerical capability available to both analysis and test.
During this period, modal analysis has evolved from the role of verifying finite element models
to the role of providing the modal database for predicting the dynamic characteristics of
modified structures [10-12]. However, there are still significant problems which limit the use

and accuracy of modal analysis in this role [13].

One of the most important considerations in a modal test is the number and selection of
coordinates used. In the higher-level applications, the choice of the coordinates is dictated by
the configurations of any modifications or attached components and is not simply a matter of
including sufficient coordinates to generate a helpful display of the mode shape itself. In these
applications, all coordinates at the points where attachments or modifications will be made must
be included, and this means in the rotational as well as translational directions. Vibration is
transmitted by moments as well as by forces, and compatibility in angular displacements must
be maintained at junctions just as much as in translations. Not only are 50% of all coordinates
rotations, but 75% of all frequency response functions involve rotational coordinates [8]. While
the omission of such rotational information is not a restriction in the lower-level applications,
it is crucial in the higher-level applications where the effects due to moments and rotations need
to be included if the analysis is to be realistic [14]. Thus, the work contained in this thesis is

aimed at addressing this limitation in modal analysis.

Another problem which limits the use of modal analysis is the assumption that damping in a
system is proportional to mass and stiffness. However, it is known that some structures, such
as rotating machinery, exhibit non-proportional damping and this leads to error in making

predictions. This limitation is however not addressed in this work.

Although theoretically, a structure has an infinite number of modes, only a finite number of
modes can be experimentally obtained. Therefore any higher-level application must use a
truncated data base which will inevitably lead to some level of error. This problem has however
received the attention of a large number of researchers [15-23] and is still an active area of

investigation and is therefore not dealt with in this study.



1.2 The Present Study

1.2.1 Background to the Problem

The three basic assumptions that are made in order to perform an experimental modal analysis
are linearity, tirﬁe invariance and observability. While the linearity and time invariance
assumptions have historically received the most attention, it is only recently that there has been
increased activity in work related to observability. Observability means that the input-output
measurements contain enough information to generate an adequate behavioral model of the
structure [6]. This is particularly relevant since test data always describes an incomplete model
of the structure as evidenced in at least three different ways. First, the data is normally limited
to a minimum and maximum frequency as well as limited frequency and amplitude resolution.
Second, the placement of the exciters and sensors must be adequate to spatially define the mode
shapes independently from one another. Third, until very recently, no information has been

available relative to local rotations due to a lack of suitable transducers.

The estimation of rotations has attracted increasing attention over the past decade. Traditionally,
rotations had been estimated by measuring the translation of two closely spaced points [3]. The
procedures involved were quite demanding, not least because they required the acquisition and
subsequent processing of many different measurements made at different times and were
therefore prone to error. Over the years, more elaborate techniques have been articulated.
These have been dominated by two procedures namely, dynamic condensation and expansion
methods which depend on the development of large finite element models of the structures [24-
28] and therefore require large amounts of computation and are costly, and linear polynomial
interpolation of shape functions [24,29-31]. The latter does not require a finite element model
of the structure and also allows estimation of rotations (and translations) at any location on the
structure without the need for additional measurements and is therefore simple, quick and cost
effective. The use of this technique has however not realised its full potential due to the
inability of polynomials to produce acceptable estimates of rotations for modes with complex
mode shapes. In addition, there is no information available on the optimum spatial distribution
of points to yield the best results. Further, although most structures can be analyzed in straight

lines locally, there are some complex structures for which this simplification does not hold.

It must also be realized that work on transducers that permit the measurement of angular

displacements has continued [32,33] and at least two prototypes have been successfully used by

4



several researchers [34-38]. However, not only is the knowledge and expertise in the use of
these transducers in its infancy, they are also very expensive to acquire. In addition, if all
degrees-of-freedom are measured as a matter of routine, it doubles the size of the problem.
Although the task can be reduced if the locations at which the rotations are required are known

before hand, this information is usually not available.

1.2.2 The Problem
The work detailed in this thesis discusses the estimation of rotational degrees-of-freedom using

cubic B-spline curves and surfaces. The key questions which are addressed are:
1. How accurate are the estimates of the rotations from the spline functions? and

2. What are the effects of errors in the rotations on the accuracy of the predictions

of dynamic changes following structural modifications?

Particular attention is therefore paid to the parameters which affect the performance of the fitters
such as the selection of the coordinates, the optimum spatial distribution, the level of smoothing
required and the level of error in the initial data. The question of the level of smoothing
required is of particular importance since published work has concentrated on interpolation type

approximations for estimating rotations..

The acceptability of the estimates of rotations thus obtained is investigated by performing
structural dynamics modification predictions for a variety of case studies. In all cases, the effect
of any errors in the estimates of rotations on the modal predictions is gauged by comparing the
predictions based on the expanded databases with predictions based on exact or finite element
rotations. In this way, other sources of error in the predictions are excluded. From the results
of the analysis, guidelines on the optimal use of the proposed technique of estimating rotational

degrees of freedom are formulated.



1.3 Lay-out of the Thesis

The remainder of this thesis is presented in five chapters.

Chapter 2 surveys the literature in the area of estimating rotations. The principles and
techniques used hitherto are discussed in detail and their merits and demerits outlined. This not
only provides a historical perspective, it also gives the current-state-of-the-art in this area. Thus,

the place of the present work in the general body of knowledge in this area is established.

Chapter 3 deals with the theoretical development of B-splines and their application to the
problem at hand. Only the relevant detail for the application at hand is presented.

Subsequently, a discussion of the software which is developed is presented in the appendices.

Chapter 4 discusses the accuracy of the estimation of rotations and outlines the parameters
required for optimum performance of the estimation technique for both curves and surfaces.
Estimates of rotations obtained from error-free and noisy data are compared with corresponding

exact or finite element data for beam-type and plate structures.

Chapter 5 presents a detailed discussion of the effects of errors in the rotations on the accuracy
of the predictions of dynamic changes following structural modifications. Modifications used
include lumped masses, springs and rib stiffeners. A brief treatise of Modification Theory is

also presented.
Finally, Chapter 6 presents the guidelines for optimum performance of the proposed technique
and summarises the general conclusions of the study. In addition, the chapter highlights some

aspects which require further investigation.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Modal analysis began in the early days of the space program in the United States in the
1950's and grew out of the field of Mechanical Impedance Measurement based upon
analogue, narrow-band spectrum analysis [39]. During the last two or three decades, the
technique has become a popular and established tool for analysing structural dynamic
behaviour in various industries. Among these, the aerospace and automotive industries
have probably received the most attention followed by power generating facilities, offshore
structures and various technologies including computers, railroad, nuclear power plants,
and building for earthquake resistance. National and international research organisations
and academic institutions have, however, been the major driving force behind new
developments. The rapid growth and development of the subject has therefore generated
an enormous quantity of literature, software and equipment which is now available to
anyone wishing to use the technique. Even for those closely involved with the
developments themselves, it has been very difficult to digest all the information and new
ideas as they have emerged. For the relative beginner, the task of "keeping up" has been
formidable indeed! [8].

This chapter will therefore not endeavour to give a detailed review of the enormous
volume of information on all the many aspects of modal analysis which exists and is being
generated today, but will concentrate on a review of the relevant literature in the area of
estimating rotational degrees of freedom. The review will not only strive to provide a
historical perspective to the subject, it will also give the current state-of-the-art in this

area. Inadequacies which the present work is intended to fill will also be highlighted.

2.2 Methods of Estimating, or Obviating the Need for, Rotations
For years, experimental modal analysis (EMA) has had a number of deficiencies which
make it difficult to compare its results with those of the analytical modal analysis. Not

only has this made the utilisation of EMA results difficult, it has also made justification of



EMA impossible in all but the most important problems [39]. One of the most important of
these limitations has been the absence of rotational degree of freedom information in
experimentally derived data bases which has, in the first instance, severely limited the
incorporation of more sophisticated elements, such as beams and plates, in structural dynamics
modification (SDM) efforts. In the second instance, the lack of a means of adding the
deficient angular degrees of freedom to the modal vectors has meant that finite element

analysis (FEA) and EMA data bases are inconsistent.

When applying structural dynamics modifications which can be represented as point masses,
or as linear, pin-jointed spring or damper elements, only a knowledge of the translational
degrees of freedom is required and data from a conventional modal survey will suffice.
However, structural modification procedures which use beam or plate elements require the
inclusion of rotational degrees of freedom (RDOF) at structural attachment points to effect

moment coupling.

Until recently, experimentally based modal models had been restricted to contain only
translational degrees of freedom (TDOF) due to lack of appropriate sensors. While several
commercial SDM systems contained provisions to utilise RDOF, few researchers and analysts
used these facilities since it had not been possible to transduce the required measurements.
Because rotations can be measured or calculated, a number of techniques have been developed

to overcome the problem of the missing RDOF.

2.2.1 Analytical Techniques

Rotations have for a long time been estimated by measuring the translation of two closely
spaced points [3]. The difference between these measurements divided by the distance
between the points gives an estimate of the required rotation. The procedures involved are
quite demanding, not least because they require the acquisition and subsequent processing of
many different measurements made at different times and are therefore prone to experimental
error. Furthermore, if the sites for the proposed modification are not known when the modal
survey is performed, an additional translation needs to be measured for each RDOF with a

consequent significant increase in the test time.



Special rib elements which span three points but couple only the translational freedoms have
been derived [40]. This avoids the need for rotations and can provide acceptable accuracy
(typically, less than 10% error in the frequency predictions) for trouble shooting purposes.
However, it has been shown that more accurate predictions require the inclusion of the

rotational freedoms in the modal data base.

In 1984, Yasuda et al [13] reported on a mass additive technique for the estimation of RDOF
in which a rigid mass was added to the structure at the point of interest. The rigid body
motion of the added mass was measured using six or more independent translational
transducers. A least-squares procedure was then used to compute the rigid body motions from
which the rotational and translational degrees of freedom were estimated at the attachment.
Results from two applications yielded large errors (in excess of 100%) in the estimation of
the rotational freedoms. These errors were attributed to modal truncation and mode coupling

(or repeated roots).

An approach proposed by Martinez et al [41], involves predicting the RDOF using a finite
difference approximation with synthesized frequency response functions at the proximate data
points. Although the approach minimises the inaccuracies due to noisy data, the errors due
to transducer size remain appreciably large. Thus, attempts to include RDOF from
translational data by interpolation or beam additions can be successful only if extreme care

is taken to minimise the effect of transducer size and weight [42].

The task of expanding measured mode shapes using analytically-derived properties has been
the subject of a number of previous investigations and three different routes can be identified.
The first approach (route 1) for mode shape expansion uses the mass and stiffness matrices
of the analytical model to compute the missing degrees of freedom in the measured mode
shape. This approach is equivalent to an inverse Guyan reduction where the slave coordinates
are recovered in terms of the masters. The second route relies on the assumption that the
measured mode shapes can be expressed as linear combinations of the predicted ones. The
third alternative (route 3) involves the interpolation or extrapolation of the measured degrees

of freedom to those of the full model.



O'Callahan, Lieu and Chou [24] have articulated several procedures for estimating rotational
degrees from translational data of a model obtained from either an experimental modal test
or an analytical finite element model. The procedures are grouped into two categories,
namely; dynamic condensation/expansion methods (route 1 above) and polynomial
interpolating shape functions (route 3 above). They argue that it is good practice to develop
a finite element model of the structural system and that since such a model contains a much
greater number of degrees of freedom than the number obtaining in a test, the system of
equations can be condensed to a reduced set of degrees of freedom at which measurements
will be made. For such a finite element method (FEM) model, the same condensation matrix

can be used as an expansion matrix to generate RDOF at any specific node on the structure.

If a FEM model is not available, then a polynomial interpolating shape function can be used
to estimate the desired RDOF. The discourse by O'Callahan et al [24] includes the following
procedures:
.The dynamic condensation/expansion procedure in which the active degrees of
freedom and the non-existent (desired) degrees of freedom are related by a
transformation matrix which is dependent on frequency in a condensation process
similar to the standard Guyan condensation procedure. The technique tends to work
well in representing the mode shapes for a condensed system giving a maximum error

level of less than 2.5% in RDOF estimation.

.The static condensation/expansion procedure. Here the condensation procedure is
based only on the stiffness matrix and therefore the matrix transformation process is
based on the elastic strain energy of the system. The resulting transformation matrix
develops Guyan mass and stiffness matrices which represent a reduced/condensed
model of the original system and can be used to expand all modal vectors to include
the deleted (desired) degrees of freedom. The errors in the RDOF estimates are

typically less than 4%.

.The substructuring model procedure. The procedure involves developing a sub-

model of the region -where the RDOF are to be determined using the FEM
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substructuring element technique. Similar equations to those for the
condensation/expansion process can be developed for the assembly of elements
constituting the substructure (the super-element) for which condensation is performed
on the internal degrees of freedom. The difference in this case is that the deleted
degrees of freedom are related to a limited set of active degrees of freedom as well
as a set of degrees of freedom at the boundaries of the element. This method is
theoretically expected to produce similar RDOF estimates to those produced by the

static condensation/expansion procedure above.

.Interpolating polynomial procedure. This procedure uses functions similar to the
shape functions defined in finite element formulations of the mass and stiffness
matrices that are used in the condensation/expansion estimation procedure. The
approximation of RDOF thus produced is local, that is the approach becomes similar
to the substructuring element approach but using only a line shape function which is
differentiated. The procedure does not need a FE model of the structure and a RDOF
estimate can be made at any location on the structure without the need for additional

measurements.

From experimental investigations involving beam and plate structures, the authors conclude
that the dynamic condensation/expansion procedure produces the best results when the FEM
and experimental models are “fairly well tuned" to each other. Similar conclusions are made
for the static condensation/expansion technique as the rotational inertia effects are very small,
especially in a "very crude mesh" model. Both methods however require FEM models and
large amounts of computation. Although the substructuring/shape function technique does not
produce as good results as the first two methods (errors rise up to about 5% for the higher
frequency modes), it requires a smaller amount of computational effort to compute the local
RDOF. This is its best asset. The shape function technique is found to be adequate (up to
about 18% error in RDOF estimates) and relatively efficient for the estimation of RDOF
especially for the lower modes. It is however generally concluded that all the methods tend

to produce poorer results as the frequency or mode number increases.
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In 1986, O'Callahan et al [25,26] suggested another technique which involved developing a
finite element model of the structure which was then combined with measured translational
data to approximate a combined modal database of rotational and translational degrees of
freedom. The method uses the modal matrix from the FE model and the experimental model
to form an expansion matrix for the estimation of all system degrees of freedom relying on
the assumption that the measured mode shapes can be expressed as linear combinations of the
predicted ones (route 2). Measured translational data is used to generate rotational along with
additional unmeasured translational degrees of freedom. The technique is fundamentally an
expansion process from an equivalently reduced eigen-system obtained only from the active
degrees of freedom of the experimental system to all system degrees of freedom.
Experimental validation of the procedure revealed that the process produced “"extremely good"
results (up to 12% error in the rotation estimates) in estimating unmeasured TDOF and RDOF
in the SDM procedure using a generalised beam (up to 2% error in the SDM predictions).

The associated time and cost may not, however, be justified for many applications.

Lieven and Ewins [27] have evaluated three techniques of expanding experimental data to the
full coordinate system of the analytical model; namely 'modeshape’, 'MAC' and Kidder's
technique. Their work has shown that the ‘modeshape’ expansion technique as proposed by
O'Callahan et al above [25,26] can result in inaccurate expansion (based on a Modal
Assurance Criterion (MAC) [43] comparison of the expanded and original (complete) data)
given poor initial correlation between the analytical and experimental modeshapes. The
'MAC' expansion technique involves calculating the MAC between the measured and the
analytical modes, adjusting the phase of each analytical mode to match its experimental
counterpart, scaling the analytical eigenvectors to the same magnitude as the experimental
ones, and applying the transpose of the MAC matrix to the phase adjusted, scaled analytical
degrees of freedom to generate the unmeasured freedoms. The results have shown that it can
be used to expand lower order modes and rotations accurately (MAC values were at least
0.950). However, further rationalisation is required to improve the expansion of the higher
order modes. Kidder's technique (route 1), a physical expansion method which is effectively
derived from an inverse Guyan reduction, has been shown to give the most consistent results
for expansion (i.e., unit MAC values) although its accuracy depends on the validity of the

original model and the ratio of master to slave degrees of freedom. However when either the
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'modeshape’ or 'MAC' technique is implemented, the user can choose to use either smoothed
or ‘raw' data in the master coordinates - an option which is not available when using Kidder's

method.

A subsequent study [28] of the two techniques based on finite element data (Modeshape and
Kidder's), which attempted to define their validity boundaries, revealed that while the quality
of the expanded mode shapes seemed to be case-dependent, the modeshape technique had
several advantages over the physical expansion method: there was no need to store global
mass and stiffness matrices and the CPU power and storage requirements were several orders
of magnitude smaller. In addition, the modeshape method was shown to work best for one
dimensional structures with well-separated modes. However, although random errors did not
seem to affect the quality of expanded mode shapes adversely, the complexity of a mode

shape was a significant adverse factor for the quality of expansion.

It will be noted that the methods of estimating rotational degrees of freedom cited in
references [24-28] stem from the area of model updating or tuning. The methods are thus
seen to be indirect techniques since the object of model updating is to modify FE models in
order to improve their correlation with test data. Thus, although there is a plethora of model
updating techniques, the quality of the estimates of rotations which derive from them is
generally only implied since the comparison indicators which are used (such as the MAC,
orthogonality checks or FRF comparisons) do not explicitly indicate the accuracy of the

estimates from point to point.

Mitchell-Dignan and Pardoen [29] further investigated the estimation of RDOF by using FE
shape functions or interpolating polynomials according to FE methodology in conjunction
with the modal parameters of the unmodified structure (route 3). One and two dimensional
shape functions were used to estimate the translational and rotational degrees of freedom at
any given location on a structure. Three types of elements were presented; namely a colinear
element which utilises five colinear reference nodes, and two plate elements which use four
and eight reference nodes respectively. Experimental tests showed that a refined nodal mesh
is required for "RDOF estimates within realistic limits". The results indicated that the four

node element produced the largest errors (typically up to 70% about the x-axis and 100%
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about the y-axis) whereas the §-node plate element (up to 32% about the x-axis and 60%
about the y-axis) and the colinear element (up to 22% about the x-axis and 37% about the y-
axis) produced much lower error levels. The errors in the predictions of the effects of rigidly
attaching a rib to the plate were, in the main, less than 10% for all three types of elements
thereby indicating that the predictions were not very sensitive to the errors in the rotations.
It was also noted that an under-estimation of the RDOF resulted in a corresponding under-

prediction of the modified frequencies.

Based on the third expansion alternative, a spatial curve fitting technique has been developed
at Nottingham University [30]. In the technique, measured translational modal vectors are
fitted with cubic and quadratic polynomials to provide local approximations to the mode
shape function. The polynomial functions are then differentiated to give the required
rotations. The method has been applied to structures made up of flat surfaces in which
translational mode shape data had been measured on a rectangular grid. The fitting is carried
out to groups of four adjacent points and the rotations are averaged at points where several
fits provide individual estimates. In the three-dimensional case where the surface in question
may not be aligned to the global axes, it is suggested that local axes can be defined which
allow the two dimensional analysis to be employed. A simple coordinate transformation
would then yield the required global rotations. The method has similar advantages to the
interpolating polynomial procedure and it is also simple, quick and cost effective. Results
from tests show that the accuracy of the RDOF estimate depends on the density of the
original displacement measurements and also that the estimate improves with an increase in
the number of measurement points between nodes. The tests suggest that an error of about
15% will be incurred if there are two dimensional points in between nodes, but that this drops
to less than 5% if the density is increased to three measurement points between nodes. It is
also shown that frequency predictions following a modification are relatively insensitive to
errors in calculated rotations (at least for the cantilever and plate structures used in the tests).
Although there are relatively few examples of this technique being applied to structural
dynamics because of the problems associated with complex spatial descriptions and sudden
changes of geometry, the main limitation is that polynomial fits are unable to produce
acceptable rotations, and therefore acceptable modification predictions, for the more complex

higher frequency mode shapes.

14



In 1986, Haisty and Springer [31] presented a method of estimating rotations which uses
third-order spline curves to approximate the deflected shape of a vibrating structure. In the
method, the classical boundary conditions for beam elements (i.e., fixed, pinned and free)
were incorporated into the equation set and the rotational contributions to the deflection curve
were obtained by differentiating the resulting spline curve equation. Although the method is
both easy to apply and accurate, the paper reported the performance of the method for the
first mode only. The performance of the technique for the more complex higher frequency
modes is therefore not known and neither is the acceptability of the resulting rotations for the

prediction of structural dynamics modification efforts.

In a more recent study, Waters and Lieven [44] have applied a modified surface spline to
smooth out noise from measured data prior to expansion. Expansion was performed in
conjunction with correlating analytical modes (from an FE model) on the basis of the mode
shape disparity (indicated by the Modal Scale Factor) between the measured and analytical
modes. The technique was developed for application to sparsely defined databases for which
the results indicated that the modified surface spline was an "effective means" of expanding
and smoothing experimental modeshapes. It is thus clear that surface splines were not used

as a stand-alone technique for estimating rotations in this technique.

Other researchers [45] have suggested the use of a "rigid body mode enhancement method"
in which RDOF are obtained by treating the part of the structure where the RDOF are
required as a rigid body. In this way dependent degrees of freedom (which may be
impossible to measure or may be required after performing the modal test) can be generated
using constraint equations and a least squares solution technique as a post-processing
technique which obviates the need for a FE model. The estimates of the RDOF gave a root
mean square (RMS) error of 4.52%. This level of error was accompanied by a significant
reduction (up to 80%) in the off-diagonal terms of the MAC matrix after processing by the
proposed technique. The authors have therefore concluded that "good estimates” of rotations

are obtained.
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2.2.2 Experimental Techniques

Although translational measurements of dynamic response had dominated experimental modal
analysis, a transducer that permitted the measurement of angular acceleration with similar ease
was recently developed [32]. The transducer reported in this work was a product of the
piezoelectric beam technology and is called the Translational-Angular Piezobeam (TAP)
accelerometer. Evaluation of the functionality of the transducer revealed that it performed
well and produced data which is qualitatively comparable to that obtained from translational
transducers. The tests also revealed that alignment of the transducer in the correct
measurement orientation was critical and had to be very precise to ensure consistency and

precision.

In a separate effort to demonstrate the utility and limitations of the new transducer, Lang [34]
concluded that although the new equipment is "very good", there was still a lot to be learnt
in order to fully exploit it. Its utilisation was, in the opinion of this researcher, also seriously
affected by the upper frequency limit of 2000 Hz. Results also showed that including
rotational degrees of freedom during an initial modal search improves the odds of identifying

all of the modes characterising a given bandwidth.

Other researchers [35,36] have since used the new equipment for model improvement and
verification of the theoretically estimated rotational entries of mode shapes. The results have

once again confirmed the potential of the new equipment.

In a more recent effort, Cafeo et al [33] have reported the development of a novel non-
contacting measurement approach capable of simultaneously sensing one dynamic translation
and two dynamic angular rotations. The system, based on the positional measurement of two
collimated light beams reflected from a planar target, has been called the three-degree of
freedom laser vibrometer. An evaluation of the transducer's dynamic performance in a modal
test environment demonstrated the system's ability to produce high quality time and spectral

data.

Subsequent work on the measurement and application of experimental rotational degrees of

freedom for mode shape refinement using the data from the laser vibrometer has been
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reported [37]. In the work, the authors have investigated several methods for combining the
estimated translation and rotation data to refine the description of the mode shapes based on
an integration method which used polynomial curve fitting methods incorporating both
translational and rotational residues at each measurement point to define the mode shapes.
The work reports the results of analysis performed on a cantilever beam. With regard to the
accuracy of the estimates of the rotations from 5th order polynomial global curve fitting, their
results showed that significant errors (rotation RMS errors of 0.479 for mode 1 and 0.369 for
mode 2, where the RMS error is an average type of error indicator) may arise when trying
to estimate rotational degrees of freedom from polynomial mode shapes developed from
experimental translations. The results qualitatively implied that small amounts of noise in the
translation were seen to produce large errors in the derived rotations. They therefore
concluded that estimating rotations from noisy translational data may be "suspect unless the
residue values are highly accurate and virtually noise free". On the other hand, including
rotational data with the translational data in the fits yielded significant improvements in the
estimates of rotations, namely 86% for mode 1 and 72% for mode 2, compared with simply
using translations. Estimates of rotations from cubic spline interpolation gave a 9%
improvement in mode 1 and a 13% degradation in the estimates when compared with
estimates from Sth order polynomial global curve fitting thereby suggesting that the fit
functions were picking up a lot of the noise from the initial data. Third order polynomial
curve fitting with the rotational data included in the fits was seen to yield poorer results (52%
and 67% degradation for modes 1 and 2 respectively when compared with the results from
5th order polynomial curve fitting) than those obtained from cubic spline interpolation.
However, this effort did not consider the benefits of estimating rotations from noisy
translations using a smoothing approximation. The sensitivity of modification predictions to
such an approximant is therefore still not understood. The application of measured rotations
to the prediction of structural modifications with beam elements however demonstrated that
the data provided by the three-degree of freedom laser vibrometer was sufficiently accurate
for the structural dynamics modification method to work well [38]. Notwithstanding the
potential of the transducer, the capital outlay required for its acquisition may not be justified

for some applications and establishments.
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2.3 Key Points from the Literature Review
This chapter has discussed several techniques of estimating, or obviating the need for,

rotations. The key points can be summarised as follows:

1. Although special elements which circumvent the need for rotations have been derived,
more accurate SDM predictions require the inclusion of the rotations in the modal data

base.

2. Recent developments in experimental techniques of including the rotations yield data
which is sufficiently accurate to give acceptable SDM predictions. However, there are

two main limitations:

(a) In the case of the Translational-Angular Piezobeam transducer, the upper
frequency limit is only 2000 Hz.

(b) In the case of the laser vibrometer, the capital outlay required for its
acquisition may not be justified for the majority of applications and

establishments.

3. Three different routes, for each of which several techniques have been developed, can,

in the main, be identified for analytically expanding measured mode shapes:
Route 1. This method uses mass and stiffness matrices of the analytical model
to compute the missing degrees of freedom and is equivalent to an

inverse Guyan reduction.

Route 2. This route relies on the assumption that the measured mode shapes can

be expressed as linear combinations of the predicted ones.

Route 3. This involves the interpolation or extrapolation of the measured degrees

of freedom to those of the full model.
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(@) Evidence from literature suggests that while all three routes generally give
acceptable data, route 2 gives the best results, followed by route 1 and finally
route 3. However, the time and cost requirements for route 2 techniques may
not be justified for many applications.

(b)  The main limitation for route 1 is the requirement for large amounts of storage
and computation due to the need to store global mass and stiffness matrices.

(c) Route 3 does not require FE models and is relatively efficient for the
estimation of RDOF especially for the lower modes. It therefore holds the best
chance for the development of a relatively simple but quick and cost effective
technique.

(d)  All analytical methods tend to produce poorer results as the frequency or mode
number increases.

(e) Techniques based on route 3 have not considered the estimation of rotations
using smoothing approximations. In addition, and as far as this researcher is

aware, only interpolants have been investigated.

24 Contribution to Knowledge of the Present Study

From the foregoing discussion, it is clear that although the advent of a transducer capable of
measuring rotational freedoms may change the conventional experimental modal analysis
technique, there still is a need for a simple and quick post measurement technique that can
be used to generate the missing data as, when and where required. One technique which has
shown such potential is the curve fitting approach. This work is therefore an effort to extend
the capabilities of estimating rotations and any missing translations from translational modal
data using curve or surface fitting. The ability to estimate rotations using surface fitting is
of particular interest since except for one or two references, the majority of the work available
in the literature reports analysis on beam-type structures while claiming that the methods can
also be used for plate-type structures. The investigation will concentrate on spline functions
and will endeavour to establish the validity boundaries with regard to the estimation of

rotations and their acceptability in predicting structural dynamics modification efforts.

00o
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CHAPTER 3

CURVE AND SURFACE FITTING

3.1 Introduction

Curve fitting is concerned with the mathematical representation of smooth continuous
relationships between one physical variable (the dependent variable) and another or others
(independent variable(s)). Curve fitting is itself a term used to refer collectively to
interpolation and approximation [46]. The problem of interpolation is finding a
mathematical curve or surface that passes exactly through a set of prescribed points,
whereas the problem of approximation is finding a curve or surface that passes near a set
of points (or is representative of some underlying relationship). In a mathematical sense,
interpolation problems are probably easier to solve, but in a practical sense approximation

is generally more important.

Curve fitting problems occur in many scientific and engineering applications which may
be theoretical or experimental. There is however no general rule for assigning a specific
function to a data set. The data must therefore be studied critically, and here the standard
texts give little guidance beyond stern warnings to be cautious. It is not caution that is
missing however, boldness in conjecture and persistence in follow-up are much more

important [47].

Generally, many functions could represent a data set, but the user must often decide the

most suitable function in accordance with some criteria [48]:

.Well-known functionality. In some cases the mathematical relationship between
variables is well-known.
.Graphical representations. In the case of correlation functions of one (or two)

independent variables, it is very useful to plot y vs x on cartesian, semilogarithmic or
logarithmic coordinates. The curve shapes are then compared with elementary

standard functions and often the most suitable function is selected.
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-Statistical criteria. When a fitting function is chosen and the correlation is

performed, statistical parameters allow consideration of the validity of the fit.

Parameters such as deviations, correlation coefficient, significance tests, can be used.

In a typical curve fitting exercise, there exists an array of data that is to be represented
mathematically by some analytical function. It is generally expected that fitting will provide
information both about the equation constants estimated and about the limitations on future

use of the equation with these constants.

This chapter deals with requirements and criteria for curve and surface fitting and the choice
of functions for the problem at hand. The theoretical background of spline functions, on
which the work reported in this thesis is based, is also discussed. An overview of the
implementation of splines to the problem of estimating rotational degrees of freedom, which

is the major thrust of the work, and the subsequent software development is also given.

3.2 Ciriteria for Curve and Surface Fitting

Certain considerations must be made before the choice of an appropriate curve fitting
technique for a particular problem is made. There are no universal answers here but the
technique chosen should depend on the nature of the data, the nature of the phenomenon
modelled (as far as it is known), and the characteristics of the technique considered by the
user to be the most important [48]. Some of the general characteristics include:

1. Differentiability. of the fitted curve. This is a measure of the smoothness of
the fitted curve. A curve is 'very smooth' if it has 'many successive derivatives
at every point'.

2. Confidence in the data. If the user has sufficient confidence in his data to
demand that the fitted curve must contain (or interpolate) every data point,
then he must focus on interpolation schemes for his fits. If on the other hand,
there is a sizeable experimental error that enters in a random way which if
possible should be smoothed out of the fitted curve, then judgement is to be
exercised in assessing the degree of smoothing to be applied and the choice of
smoothing procedure. This aspect is dealt with in more detail in later parts of

this work.
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Global versus local techniques. If the data at a given point influences the
nature of the fitted curve at distant points then the fitting technique will have
to be global rather than local. This depends on the user's knowledge of the
physical phenomenon being modelled and on the density of data points.
Computational effort. This is easily understood and its significance will
depend on the magnitude of the computation involved. Generally, it is clear
that, for either spline or polynomial techniques, the computational effort
increases rapidly with the degree of the fitted curve. Ih addition, fitting
techniques that are local in nature will generally offer significant computational
advantages over global techniques.

Convergence. This is a consideration that is much more for the
mathematician than anybody else. However, the study of convergence does
give valuable insights into curve fitting problems and can provide some further
information on the choice of procedure. While convergence is of greater
importance in approximation work than it is in interpolation, there is generally
a trade-off to be considered between the rate of convergence and the volume
of computation.

Visual criteria. In some applications, such as the one treated in this work, a
major difficulty in designing curve and surface fitting techniques is the
formulation of clear criteria for acceptability. In such cases, a graphic display
of a fitted curve can be utilized to apply visual criteria after which the curve

can then be modified accordingly.

3.3 Fitting Functions

In any study of curve and/or surface fitting there is one class of functions that play a

supremely important role. Polynomials are used for approximation because they can be

evaluated, differentiated, and integrated easily and in finitely many steps using just the basic

arithmetic operations of addition, subtraction and multiplication {49,50]. Polynomials are

ideal for representing relatively uncomplicated relationships, and (at least for polynomials of

low or moderate degree) yield compact representations of the data. However, if the function

to be approximated is badly behaved anywhere in the interval of approximation, such as

sudden changes in curvature, then the approximation is poor everywhere [50]! This is one
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of the essential limitations of polynomial approximation. Also, for more complicated
relationships one is usually tempted to increase the degree of the polynomial in order to
improve the fit. 'Higher degree' does not, however, necessarily mean or equate to 'good’ as
values of the higher degree polynomials exhibit oscillatory behaviour and large swings [49].
In addition, there may not be sufficient data to determine all the coefficients properly, and
thus the effort of calculating the polynomial is increased and the tendencies towards
unboundedness are exacerbated. In their work on curve fitting with polynomials, Cox and
Hayes [51] have, as a very rough general rule, indicated that the degree of the polynomial to
be fitted should not be taken above a value equal to half the number of data points.
Therefore polynomials are really quite inappropriate for general use as approximating

functions [52].

Lancaster and Salkauskas [49] have indicated that one way of avoiding high-degree
polynomials is to join adjacent pairs of data points (or knots) with polynomials of some
degree, different from point to point, perhaps, and to make sure that where these join, a
certain amount of smoothness (the function and many of its derivatives are continuous across
these knots) is achieved. These piecewise polynomials or splines offer greater hope for
success. Among the many advantages of spline approximation is local control of the curve
which allows modification of a data point with only a small region of the curve affected.
Another important consideration is that such representations are more numerically stable and
are usually computationally efficient since they require a lower degree polynomial for the
same fit performance. For these reasons therefore, this work uses splines as the fitting

functions.

The precision of spline approximations depends mainly on the choice of the number of knots
and their locations. It might be expected that one can approximate the true (but unknown)
response function as closely as possible by adding more knots. For measurement data,
however, this is not necessarily true. As the number of knots increases, deviations between
spline estimates and measurements will decrease accordingly. However, as the dimension of
the spline approaches the number of data points, the accuracy of the function approximation
decreases since the function will tend to reflect the errors associated with the measurement.

Thus the number of knots used in approximations must be limited to avoid the problem of
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overfitting [53]. In addition, for a specified number of knots, the accuracy of spline

approximation is also influenced by the distribution of knots [50] as is shown later.

3.4 Theoretical Development of Splines

Polynomial spline functions (or simply polynomial splines or splines) have diverse
application. They have been used to provide solutions to mathematical problems in
interpolation, data and function approximation, ordinary and partial differential equations, and
integral equations in many scientific and engineering applications including instrumental
calibration, sonar signal analysis, highway visualisation, terrain following, computer aided
design and plant growth analysis [54]. A more recent application has been in the extraction
of rotational degree of freedom information from modal test data [31,55]. As a result of
recent improvements in measurement techniques using laser velocimetry [32,33], spline
surfaces have found application in smoothing the measured data in order to improve the
quality of the data. The data thus processed is subsequently used for model updating in
modal analysis [56] (thus ensuring better FE modelling) and in mechanical intensity (power

flow) computations in which the velocity fields are represented as spline surfaces [57].

In the 1970's, the use of splines transformed approximation techniques and theory because of
their suitability and convenience for computer calculations. In more recent years the
availability of computationally efficient routines has greatly contributed to their popularity.
One of their most desirable properties is that they provide optimal theoretical solutions to the
estimation of functions from limited data and give good balance between smoothness and
flexibility. Moreover, it has been shown that splines occur naturally in the analysis of many

approximation methods [52].

3.4.1 Representation of Spline Functions: B-Splines

While a polynomial spline of degree k is generally understood to be a kind of piecewise
polynomial function of degree k on some (finite or infinite) interval with k- continuous
derivatives there [50], the question of representation, especially in computational dealings, is
of primary importance [54]. Splines can be represented in terms of a basis (i.e., as a linear
combination of certain basis splines, just as polynomials can be expressed as linear

combinations of certain basis polynomials such as Chebyshev or Legendre polynomials).
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Such a representation is used in preference to the redundant one consisting of a set of

polynomial pieces together with continuity conditions at the joints.

Only three kinds of bases for spline spaces have actually been given serious attention; those
consisting of truncated power functions, of cardinal splines and of B-splines. Truncated
power bases are known to be open to severe ill-conditioning [54], while cardinal splines are
difficult to calculate [49,52]. By contrast, bases consisting of B-splines (which are linear
combinations of the truncated power functions) are well-conditioned at least for up to the
twentieth order [54]. Such bases are also local (compact) in the sense that at every point only
a fixed number (equal to the order) of B-splines is non-zero. B-splines are also quite easily
evaluated using their definition as a divided difference of the truncated power function [58].
B-splines were first introduced by Schoenberg [59] and a comprehensive compendium of

many of their algebraic properties can be found in [54] and [60].

Because splines have for a long time been widely used to approximate response functions
from measured data, their theoretical development and evaluation is well-documented [59-64].
The implementation of splines which is used in this work is heavily dependent on algorithms
developed by Dierckx [58,65,66]. The following sections give only a summary of the detail

contained therein.

3.4.2 Curve Fitting

Given a strictly increasing sequence of real numbers

a=Ay< A;<..< A, < Ay, = b aspline function s(x) of degree k withknots 4,,i=1.2,...,.8;
is a function defined on the range [a,b] having the following two properties:

1 In each interval [4, A}, i = 0,1,....g; s(x) is given by some polynomial of degree k

or less (3.1)
(i) s(x) and its k-1 derivatives of orders 1,2,...,k-I are continuous everywhere in the range
[a,b] (3.2)

Consequently, a smoothing spline approximation s(x) to the set of function values f, at the

points x,, g=1,2,..m, x, < X, in the B-spline representation is given as
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g
s(x) = Z ¢i N k(%) 3.3)

where N;,,, denotes the normalised B-spline and c; are the coefficients of the spline function.
Such an approximation attempts to find a compromise between the following conflicting
objectives:

6] the prescribed values f, should be fitted closely enough (closeness of fit).

(i)  the approximating spline should be smooth enough, in the sense that the

discontinuities in its kth derivative are as small as possible (smoothness).

Formulation of this criterion mathematically requires some measure of smoothness and some
measure of closeness of fit. For the latter, the sum of squared residuals, 0, is used while for
the former, the sum of the squares of the discontinuity jumps, §,, in the kth order derivative
of s(x) at the interior knot, 4,, is used. The approximation criterion is therefore formulated

mathematically as follows:
: & g2
minimise =) 8; (3.4)
i =1

subject to the constraint

6 <S @3.5)

where § is a given, non-negative constant which controls the extent of smoothing and

therefore is called the smoothing factor.

3.4.2.1 The Choice of Knots

In the placement of knots in the fit functions, the knots are located inside the intervals
[A, A.,] with the largest sum of squared residuals. In addition, the knots are added only in
those intervals which have at least one interior data point and allowance is made for more
than one knot to be located in the interval [4, 4,,,]. The object of the strategy is simply to

add knots at that part of the approximation interval where the fit is particularly poor.
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Therefore, because the knots are only added and not relocated, the sum of squared residuals

decreases with each knot addition.

If §=0, the requisite number of knots is known in advance, i.e., g=m-k-1. In that case the
necessary knots are located immediately, at the data points if the degree k is odd and midway

between the data points if it is even.

3.4.3 Surface Fitting
In the surface fitting problem, a closed rectangular domain D=[a, b] x [c, d] is given.

Consider the strictly increasing sequence of real numbers

a = h<MA<..<A<A,=b (3.6)

and

)
|

= ll’O<lJ’1< .o <“’h <:u’/1+1 =d B.7)

then the function s(x,y) is called a spline k in x and { in y, with knots 4,, i=1,2,...,g in the x-

direction and y;, j=1,2,...,h in the y-direction, if the following conditions are satisfied:

(@) On any subrectangle D;=[4, 4;,,] x [y, p;,,), i=0,1,...,8; j=0,1,...,h; s(x,y) is given by
a polynomial of degree & in x and [ in y. (3.8)

(i)  All derivatives 9" s(x,y)/dx @'y for O<i<k-1 and 0<j<I-I are continuous in D. (3.9)

Such a spline can be expressed in terms of the normalised B-splines as

s(x,y) = E Zcqr M, a ()N 4(y) 3.10)

q=-k r=-1

where M, ,,,(x) and N, ., (y) are the normalised B-splines, respectively defined on the knots

At Alq+1’ e o o 9 Alq+k+1 (A‘_k:. o o =At_1:a; Atg+2:0 o e g+k+1 b)
and
Bps Bop 15+« o5 By o (,UJ-z S s TR FCS Moo= o Ty +1=d)
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A similar approach to the curve fitting case is used for the iterative solution of the constrained
minimisation problem for the approximation s(x,y) to a set of data points (x,, y,, f,) for
g=1,2,...m. However, while knots are added at that part of the approximation domain where
the fit is particularly poor (i.e., where the residuals are largest) as before, only one knot is
added during each successive iteration because here the dimension of the spline grows much
faster. Indeed, if a single knot is placed in the x-direction, the number of B-spline
coefficients increases by (h+/+1) ((g+k+1) if a knot is added in the y-direction). The
consequences are:

(1) on the one hand, that the sum of squared residuals, possibly decreases rapidly, but
(ii) on the other hand, that the time for solving the least-squares problem may go up very

fast.

3.5 Weighting of Data Points

An important question to be considered before starting the curve fitting is whether the data
points are of the same or different accuracy, and whether they should be assigned different
'weights' in the fitting process. Very often the data points will all be of equal, or nearly
equal, accuracy, or can be so regarded. The weights will then all be taken equal to unity, and

the question then becomes trivial, as is the case in the work reported in this thesis.

However, if the data values f, (g=1,2,...,m) of the dependent variable are of substantially
differing (absolute) accuracies, then appropriate weights must be applied during the curve
fitting so that those values known to be more accurate have a greater influence on the fit than
others. These weights should be calculated from estimates of the absolute accuracies of the
f,-values, expressed as standard deviations, probable errors or by some other measure which
has the same dimensions as f,. Specifically, for each f, the corresponding weight, w,, should
be inversely proportional to the accuracy estimate of f,. For example, if the percentage
accuracy is the same for all f,, then the absolute accuracy of f, is proportional to f, (assuming
f, to be positive, as it usually is in such cases but not in the application in this work) and so
w,=KIf,, for g=1,2,...,m, for an arbitrary positive constant K. (This definition of weight is

stressed because often weight is defined as the square of that used here.)
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Finally it may be remarked that weights need usually be determined only quite roughly and
it is often sufficient simply to estimate values from a general knowledge of the physical

situation from which the data arise.

With the inclusion of the weights, w,, the least-squares spline approximation s(x) or s(x,y) to
the set of data points (x,, f,) or (x,, ¥,, f,) has the property that it minimises the weighted sum

of squared residuals, £, for g=1.2,...,m, where for curve fitting

£, = z;wq[fq—s (x,)] 2 (3.11)
&=

and for surface fitting

€q = Z;Wq[fq‘s(xq, yol? (3.12)
£

3.6 Choice of the Degree of the Spline Functions

Although any continuous function can be approximated by a spline function of degree k,
provided that the spacing between the knots is sufficiently small, approximation by splines
of degree greater than three is rare. One of the main reasons is that increasing the degree of
the spline normally makes the localisation properties poor, because the tails of the cardinal
(basis) functions decay at a slower exponential rate. Another reason is that there are many
reliable algorithms that are available for approximating by cubic splines. In addition, even
though large values of k provide more smoothness and higher accuracy, they reduce the

amount of flexibility [52] and increase the cost of computation.

The history of the past fifteen to twenty years shows that cubic splines are the most widely
used. Amongst the many advantages that cubic splines have is the property that they provide
a suitable balance between flexibility and accuracy. They also offer a good compromise
between efficiency (computation time, memory requirements) and quality of fit. This work

therefore employs only cubic spline curves and surfaces for curve and surface fitting.
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The smooth cubic spline approximation s(x) to the set of data points (x,f,), with weights w,,

for g=1,2,..m in the B-spline representation is therefore given as

N-1
s(x) =Y ¢;N(x) (3.13)
i =1

where N; denotes the normalised B-spline defined upon the knots AuAigyes Aig and N is the
total number of knots. The knots As,.., Ay, are the interior knots, which divide the
approximation interval (x,..x,,) into N-7 intervals. The coefficients c,;, C,,...,Cy4 are then

determined as the solution of the following constrained minimisation problem:
N-4 )
minimise n =Y 8; (3.14)
1=5
subject to the constraint
“ 2
0 = 21 €; =S (3.15)
q =

where §; stands for the discontinuity jump in the 3rd order derivative of s(x) at the interior
knot 4, €, denotes the weighted residual w,(f,-s(x,)), and S is the non-negative smoothing

factor.

The corresponding expression for the bivariate spline function is given as

N4 N4
s(x’y)':Z; Zl CUM(X)M(_))) (3.16)
1= j-=

3.7 Implementation in the Numerical Algorithms Group Library

The methods described in the preceding sections have been implemented in the Numerical
Algorithms Group (NAG) [67] suite of subroutines and are available as subroutines EO2BEF
and EO2DDF for curve and surface fitting respectively. In both cases, apart from the set of

data points (x,, f,) (or (x,, y,, f,) for surface fitting) with the corresponding weights w,, the
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user merely has to provide the smoothing factor S, to control the trade-off between closeness

of fit and smoothness of fit, as measured by the sum of squares of residuals, 6. For curve

fitting, provision is made for fitting in more than one direction, but for surface fitting, only

a single out-of-plane translation is allowed.

If the weights have been correctly chosen as discussed in section 3.5 gbove, the standard

deviation of w, f, would be the same for all ¢, equal to o, say. In this case, choosing the

smoothing factor S in e Tange ol 2m) (where m is the nuraber of data points), as

suggested by Reinsch {62}, is likely to give a good start in the search for a satisfactory value.
If nothing is known about the statistical error in f,, each w, can be set equal to one and S
determined by an iterative search. In this connection, it is useful to note that if S 1s too small,
the spline approximation is too wiggly and picks up too much noise (overfit); if S 1s too large
the spline will be too smooth and signal will be lost (underfit) [65,66]. In the extreme cases
the algorithms return the least-squares polynomial if § is very large and an interpolating spline

if S is equal to zero.

In the iterative search for a solution, for each positive value of S, a suitable knot set is built
up (starting with no interior knots) and the corresponding spline is fitted to the data by least-
squares with the weighted sum of the squares of the residuals, 0, computed. If 6>S, new
knots are added to the knot set to reduce 0 at the next stage. The new knots are located in
intervals where the fit is particularly poor. Eventually 6<S and at that point the knot set is

accepted. This acceptable solution has 8=S within a relative tolerance of 0.001 [67].

3.8 Implementation of NAG Spline Subroutines for the Estimation of Rotational
Degrees of Freedom

In Chapter 2, it was indicated that the rotational degrees-of freedom and any other
unmeasured data can be estimated by approximating the mode shapes of a structure using a
mathematical function such as a cubic spline curve or a cubic spline surface. The resulting
function is then differentiated to give the required data. In this work, NAG routines E02BEF
and EO2DDF have been incorporated into a procedure (AUGFITTER) in which the spline
functions obtained from curve (or surface) fitting are differentiated and' evaluated using NAG
subroutines E02BCF for curves and E02DEF for surfaces, to give the required rotations and
any other missing data. Full details of the program AUGFITTER and the associated
flowchart are given in Appendix 1.
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CHAPTER 4

ACCURACY OF THE ESTIMATES OF ROTATIONS

4.1 Introduction

In the last twenty years, experimental modal analysis has evolved from the role of
verifying the results of finite element analysis (FEA) to a new, more demanding role of
providing the modal data for the analysis of the dynamic effects of structural changes.
The prediction of the effects of structural changes to the dynamic properties of a structure,
more commonly known as Structural Dynamics Modification (SDM), has received the
attention of a large number of researchers over the past decade. This concentrated effort
has culminated in the availability of several sophisticated techniques which, in turn, has
given rise to increased popularity of the use of SDM as an inexpensive and quick tool in
solving structural vibration problems. However, it is known [68,69,70] that the accuracy

of the SDM predictions depends on the accuracy of the original modal data.

Until very recently, experimentally based modal models have been restricted to contain
only translational displacements. These translational displacements represent only three of
the six degrees of freedom (DOF) present at each point on the structure. The other three,
the rotations, have not historically been included in modal tests for a number of reasons.
Firstly, they are not normally needed to display modeshape data. Secondly, rotational
transducers have not been commonly available and thirdly, with the available methods,
routine measurement of rotations has doubled the problem size in terms of time and
storage space. While a knowledge only of the translational displacements is adequate for
structural dynamics modifications in the form of lumped masses, or pin-jointed spring or
damper elements, modifications which require moment coupling at points of attachment
such as beams and plates, require the inclusion of rotational degrees of freedom in the

modal data.

In recent years, several investigators have studied various techniques for estimating
rotations using both experimental and analytical procedures as shown in Chapter 2.

Amongst the analytical techniques, the alternative of curve and surface fitting has some
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attractive advantages in that it is quick and cheap, does not require prior knowledge of the
modification sites, unmeasured displacements can also be estimated from the fit functions and

random errors in the measured displacements can be smoothed by the fit function.

In Chapter 3, the general requirements and criteria for curve and surface fitting were
presented along with a brief theoretical background of splines. This chapter discusses the
accuracy of the estimates of rotations from spline curves and surfaces. Integral to the treatise
is a discussion of the parameters which control the performance of the estimation technique
and their effects on the performance. Quantitative comparisons of the estimates of rotations
from analytical and simulated experimental databases with corresponding analytical or finite
element data for beam and plate structures are included. The chapter also discusses the
problem of optimising the estimation method for the best rotations; best being understood in
the context of the best predictions following a modification. In this regard, optimisation of

the estimation process is discussed further in Chapter 5.

4.2 Parameters Controlling the Accuracy of the Estimates of the Rotations
In Chapter 3, it was indicated that the precision of spline approximations depends mainly on
the choice of the number of knots and their locations. It was also intimated that appropriate
weights must be applied during the curve fitting so that those data values known to be more
accurate have a greater influence on the fit than others. If nothing is known about the
statistical error in the data values, the optimum value of the smoothing factor, S, is
determined by an iterative search. The value of S resulting from such a search fixes the
number of knots in the fit. The value of S is itself dependent on the number of measurement
points and their location on the structure and the level of error in the data values. The
parameters which control the accuracy of the estimates of the rotations can therefore be
itemised as:

(a) the smoothing factor, S, which, in turn, controls the number of knots in the fit

function,
(b) the number of measurements points and their location on the structure,
©) the level of error in the data, and

) the weighting of the data points.
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In the sections which follow and with the exception of the weighting of the data points,
discussion of the effects of the rest of the parameters on the accuracy of the estimates of

rotations is presented by way of several case studies.

4.3 Curve Fitting Performance - Cantilever Beam

In this investigation, the estimation of rotations was explored using a mild steel cantilever
beam, S00mm long, 25.4mm wide and 12.7mm deep. The cantilever beam was chosen
because it provides different but most commonly used boundary conditions. Thus, it allows
the investigation of the performance of the estimating method for different end conditions.
The discussion initially considers the performance of the proposed technique on error-free
data. The insights gained here are used in the subsequent analysis on noisy data to establish

the bounds of application.

4.3.1 Fit Performance On Error-free Data
4.3.1.1 Effect of the Smoothing Factor or Number of Knots on the Estimation of
Rotations

The cantilever beam was initially modelled using ten two-noded beam finite elements and
translational and rotational modal data for the first nine flexural modes was obtained from
finite element (FE) computation. Estimates of rotations were also obtained by curve fitting
the 'error-free' finite element translational data with the spline function as described in Chapter
3 with all data points carrying the same weight. For the purposes of this study, this data was
taken to be sufficiently accurate since the errors in the translations when compared with exact
values were less than 0.1%. In order to study the effect of the number of knots on the
estimates of the rotations, computations were performed for several internal knot conditions,
namely; 0, 1, 3, 6 and 7 internal knots, the former being the least-squares polynomial fit and

the latter the interpolating spline.

Figure 4.1 shows, for the fifth mode, the improvement in the estimates of the rotations as the
fit was tightened. The trends for the other modes were similar. It will be seen that the best
estimator of rotations was the interpolant. In addition, it was evident that the accuracy of the
estimates of rotations depended on the spatial description of the mode shapes provided by the

initial data. This was shown by the deterioration in the performance of the estimator with
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increase in the mode number for the same fit. While the approximation technique was able
to provide acceptable estimates of rotations away from the boundaries once the underlying
modeshape function had been picked up (with 6 knots here), it was unable to truly represent
the modeshape functions at and near the boundaries. This led to large errors in the estimated

rotations.

Figure 4.2 shows the error between the calculated and exact rotations (normalised with respect
to the largest FE rotation) for the fifth flexural mode of the cantilever using the six-internal
knot fit results. For measurement points 3 to 9, the errors in the rotations were found to be
of the order of 5%. The figure also clearly shows the relationship between the error values
and the mode shape. Generally, errors in the calculated rotations were largest at or near the
points of inflection of the mode shape; a result repeated for all the other modes. The errors
for the two points nearest the ends were, however, found to be higher. This was attributed
to the inability of the relatively loose fit functions to truly represent the mode shape functions
at the ends. This result was consistent with results obtained using conventional polynomials
[30].

The average errors for points 3 to 9 for the first nine modes of the cantilever for the six-
internal knot fit are shown in Figure 4.3. As the mode number increases, the spatial
description of the mode shape from the translational data deteriorates and the error in the
computed rotations increases as might be expected. Alternatively, this means that in order
to obtain better accuracy for the higher modes, a tighter fit must be used as the mode number

is increased. In other words, no single fit is suitable for all the modes in a given data set.

Yet another way of viewing the error data in Figure 4.3 is to plot it against the number of
points between nodes, as shown in Figure 4.4. The smoothness of the curve suggests that
such data might be used as a guide to identify the number of measurement points required
for a given level of accuracy. For example, if the measurement density provides two points
between nodes, then an error of the order of 6% on the normalised scale for this level of
smoothing (six internal knots) might be expected in the calculated rotations. Obviously the
level of accuracy would be expected to improve with reduced smoothing (e.g., using the

interpolant) for this ‘error-free' data.
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4.3.1.2 Effect of the Measurement Point Density and Distribution on the
Estimates of Rotations
As a preamble to this section, it must be stated that in the implementation of spline curve and
surface fitting in the NAG library, there are no recommendations on the number and location
of data points to be used. Only the lower limits of 4 and 16 data points for curve and surface
fitting, respectively, are given. It is also apparent from the preceding section that the
accuracy of the estimates of rotations especially at and near the boundaries, is heavily
dependent on the number and location of points in the database. The number and location
of data points, in tandem with the value of the smoothing factor supplied, in turn, control the

number and location of the knots in the resulting fit function.

Evidence from literature asserts that the accuracy of an approximation depends on the number
and location of the knots in the fit and on the behaviour of the function underlying the data
[66]. Powell [52] has shown that while any continuous function can be approximated by a
spline provided that the spacing between the knots (and hence between points) is sufficiently
small, increasing the number of knots, generally improves the accuracy of the approximation,
the limiting case being the approximation which picks up too much of the noise in the
translations. His work has also indicated that although changes in knot spacing can give large
gains in efficiency, error control is more difficult when there are frequent changes in knot
(and hence data point) spacing. He concludes that a successful compromise is to keep each
knot spacing for several consecutive intervals (distance between knots), and to allow only

halving and doubling where the knot spacing changes.

Published work [58,61] and this author's own experience on the use of the NAG spline and
curve fitting subroutines confirm that not all data points in a database are used as knot
locations. Even when interpolating, the results showed that the two points adjacent to the
ends are never used as knot locations. However, the presence of these points on one hand,
improves the representation (modelling) of the structure there while exaggerating the presence
of any error in the data on the other hand. The results also indicate that the addition of knots
always begins at mid-span and subsequent knots are then added away from mid-span towards
the ends as the smoothing factor is reduced. Dierckx [58] has also shown that the fit

produced by spline approximation becomes unreliable in regions, especially near the
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boundaries, where there are no data points. This situation is accentuated if the smoothing

factor becomes very small.

Empirical insights into the effect of varying point density and location were gained by
studying the performance of the estimation technique on different size databases. An
interpolation was performed on exact data from the Euler-Bernoulli solution of the equations
governing cantilever vibrations for databases with point densities varying from 4 to 20. In

all cases, the data points were equi-spaced along the cantilever.

The variation of the modulus of the error in the computed rotations at the ends of the beam
(normalised to the largest rotation for each mode) for the first five flexural modes of the
cantilever is shown in Figures 4.5 and 4.6. The dips in Figure 4.6 reflect a sign change in
the error values due to the use of a logarithmic scale on the y-axis. Since at least four points
are required to specify the cubic spline used to approximate the translational mode shape, no
results exist for databases with less than four points. It is important to note that generally and
for each mode, the largest error in the calculated rotation occurred at the points where the
rotation was close to zero i.e., near the fixed end and at or near the nodal points. By contrast,
at points where the rotation was not close to zero, the normalised error was typically at least
an order of magnitude less than the maximum error. This fact should permit reasonable
estimates of rotations to be obtained without requiring the utilisation of a large number of

base points.

As would be expected, the largest errors occurred in the highest mode and this determined
the choice of the number of points. It was shown in the previous section that if there are at
least two measurement points between nodes, a maximum error of less than 10% would be
expected in the calculated rotations. In this case, this spacing was satisfied with 16 points

for mode 5 and resulted in a maximum error of less than 3% in the calculated rotations.

The use of equi-spaced data gave discrepancies in the computed rotations at the ends of the
beam, even with an interpolating spline (Figure 4.1). Figure 4.7 shows the improvement with
the addition to the original 11-point database of a mid-point value in each end interval (a).

However, while the fixed end was satisfactorily modelled, there was still notable discrepancy
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(3.4% error) in the tip rotation. By adding a further two points near each end, thereby
expanding the database to 17 points (v in Figure 4.7), the error in the tip rotation was reduced
to 0.027%. Thus, it is seen that once the spacing which satisfies the requirement for at least
two measurement points between nodal lines is met, the ends need to be treated differently

by adding extra points to improve the representation there.

4.3.2 Fit Performance on Simulated Experimental Data
In order to provide the background and justification for the method used in simulating
experimental modal data from analytical data, it is necessary to understand the main sources

of error in measurement and their effects on experimental modal data.

4.3.2.1 Sources of Error in Frequency Response Function Measurements
It has already been stated that the accuracy of Structural Dynamics Modification predictions
depends on the accuracy of the original modal data. Experimental modal data is derived from
frequency response function (FRF) measurements which are susceptible to numerous sources
of error such as inexact equipment calibration, excessive signal noise, misinterpretation of
data, incorrect transducer location, inappropriate treatment of structural non-linearities and the
use of inappropriate modal identification algorithms [71]. These sources of error manifest
themselves as one or more of the following errors [72] in the resulting modal data:
(@) global calibration errors; due to improper scaling,
(b) localised calibration errors; due to improper use or calibration of transducers
or the signal conditioning system,
(c) modal scaling errors; due to different amplitude scaling between modes in the
database,
@ geometry truncation errors; due to misinterpretation of the mode shapes of the
structure as a result of spatial aliasing, and

(e) modal truncation errors; due to the exclusion of significant modes of vibration.

These experimental errors are more commonly categorized as either random or systematic
(bias) errors and several researchers have directed their efforts at attempts to reduce the levels
of these errors in order to extract accurate modal parameters from tests. Random error is

defined as error in the estimation process which produces variations about the true value.
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This variance is reduced as the number of samples increases. Bias error, on the other hand,
is defined as any error that precludes the estimation of the true FRF even with an infinite

number of samples.

In their work on FRF estimates, Bendat and Piersol [73] have shown that the estimation of
an FRF using estimates of the power spectral and the cross-spectral density functions, which
is the most common scheme, will generally involve bias errors from a number of sources,
namely:

(1) bias inherent in the estimation procedure which is usually negligible compared
to other bias and random errors,

(i)  bias resulting from violations of the basic assumption that the system is a
constant parameter system. Even when the constant parameter assumption is
valid, the linearity assumption is often violated and this results in bias error,

(iii)  bias in the power and cross-spectral density estimates used in the estimation
of the FRF. Although this bias can be significant at frequencies where spectral
peaks occur, it can be suppressed by making the resolution bandwidth
sufficiently narrow to accurately define peaks in the spectra,

(iv)  bias due to extraneous measurement noise in the measured input which does
not actually pass through the system, and

v) bias due to the contributions of other unmeasured inputs to the measured
output. These unmeasured inputs will be correlated with the measured input
since unmeasured inputs which are not correlated with the measured input do
not cause bias error since they appear as uncorrelated extraneous noise at the
output. They do, however, contribute to the random error in the FRF

estimates.

Transducer noise which is not correlated with the input gives rise to localised random errors
which can be eliminated (or at least controlled) by sufficient averaging. However, all real

world measurements contain some noise.

Mitchell and Wicks [74] have shown that bias error is often significantly greater than the

random error since it is more difficult to control. Mitchell et al [75] have also indicated that
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bias error in FRF measurements will yield residue values which are biased in the direction
of the bias error, i.e., positive bias gives larger residue estimates (and hence larger vector
components) than the actual values and vice versa. Contributions from Allemang et al [76]
on this subject have shown that modes with small peaks in the FRF measurement suffer most
in the presence of bias error and that this is a local rather than a global effect. Their work
also shows that bias due to non-linearity is localised to the excitation location due to

overestimation of the compliance at that point.

4.3.2.2 Simulation of Experimental Modal Data from Analytical Data

From the foregoing discussion, it is clear that any simulation of experimental modal data must
be dominated by bias since in practice, random error is small in comparison to bias error.
However, since random error can only be minimised and not completely removed, the
simulation must also allow a random distribution of the error. The object is to produce
simulated modal data which is representative of real experimental modal data. Most
simulations that have been reported in literature have merely added random noise to analytical
data without taking account of the bias element. The justification for this has usually been
that the experimentalist is expected to control most sources of bias error in a modal test. In
this work however, the presence of bias error in real experimental modal data is deemed

important enough to be reflected in any simulation.

Therefore, in this work, simulation of experimental data was achieved by adding to each
translational displacement value in the database a random value between 0% and 1% of the
largest translational component in the mode. The decision to use a maximum of 1% of the
largest modeshape component was based on the level of error which was introduced to the
modeshape components relative to the local value. Higher proportions of the largest
modeshape component were found to yield large errors relative to the local value especially
for small modeshape vector values. While larger errors are possible, the 1% level of error
was therefore taken to be representative of the error level in real experimental data. Although
1% was the maximum error relative to the largest modeshape component of a mode, it must
be understood that it was not the maximum percentage error relative to the local value of the

modeshape component.
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The addition of noise was done in a biased manner such that negative displacements had
negative errors added to them and vice versa. In this way the simulated experimental modal
vectors were sensitive to noise as they would be in a real measurement situation; the largest
components of the mode shape, which have the largest dynamic range would suffer the least
from the effects of noise whereas the components of the mode shape which have the least

dynamic range would suffer the most from the effects of the noise.

4.3.2.3 Representative Error Level

Simulated experimental data was generated as described above for the cantilever beam
described earlier using the 17-point model described in section 4.3.1.2. Representative plots
of the original analytical modal vectors and the simulated experimental modal vectors are
shown in Figure 4.8a and 4.8b for the second and fifth modes of the cantilever. It will be
seen that, generally, the differences in the data are small. Since the experimental modal data
set had known error, the performance of the fit function in terms of the estimates of rotations
could be easily studied and related to the level and pattern of the errors in the experimental

modal data.

Estimates of rotations were computed from this data by curve fitting with all the data points
equally weighted. Translational and rotational modal data for the first ten flexural modes was
also obtained from the Euler-Bernoulli solution of the analytical expression for the cantilever.
Exact translational data was used to allow comparison of the performance of the estimating
technique on noisy and error-free data. The exact rotational data was used as the basis for

comparison.

In order to provide an understanding of the performance of the fit function, several
computations, starting with the least-squares fit through to the interpolant, were performed on
both exact and seeded data. It was envisaged that the conclusions from this investigation
would facilitate the automation of the optimisation process for the best rotations from the
estimation technique. This has to be understood in the context that the fitting routines, as
they are available in the NAG Library, are formulated purely to handle translational data and

not for the accurate estimation of derivatives.

41



While the full approximating criteria as specified in the NAG library [67] were met quite
early in the search (relatively large values of S) with satisfactory fits to the translational data,
the fits from which the estimates of the rotations were acceptable were, in all cases, obtained
with much smaller values of the smoothing factor. There was however no obvious empirical
relationship between the value of S for which the translations were acceptable and that which
yielded the best rotations. This necessitated the establishment of some acceptability criteria
for the computed rotations. Boundary conditions of the structure were seen as the prime
criteria in this regard. This was due to the fact that it was more difficult to obtain good
results at the ends of the fitting range than in the middle. It was also envisaged that the use
of boundary conditions would provide a means of judging the acceptability of the estimates

of the rotations for structures for which analytical solutions were not available.

Another important consideration in optimising the search for the best fit was whether the
optimum fit had to be the absolute mathematically accurate fit (i.e., little (under 0.5% error)
or no discrepancy with the analytical solution) or whether in fact only a 'ball park' estimate
(within 20% of the exact value) would be adequate for SDM calculations. This aspect could
however only be clarified by considering the sensitivity of the errors in the structural
dynamics modification predictions to the errors in the rotations and is dealt with in the next

chapter.

The main objectives for performing this analysis were therefore:

@) to compare the performance of the estimation process on simulated
experimental data with the performance of the same fits (same control
parameters) on analytical error-free data,

(i)  to investigate the effect of varying the smoothing factor, S, on the estimates
of the rotations for a fixed number of knots in the fit function especially at the
ends of the cantilever beam when compared with exact rotations, and

(i)  to study, for the fit function, the behaviour of the first derivative (the rotation)
at the fixed end and the second derivative at the free end of the cantilever with
change in the smoothing factor. These derivatives are the governing boundary

conditions for a cantilever beam.
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Preliminary examination of the results revealed that while the curve fitting routine was
capable of yielding acceptable estimates of rotations up to the mode before which the
requirement of at least two measurement points between nodal lines was violated (mode 6 in
this case), it was immediately clear that the main challenge would be automation of the
optimisation process in accordance with the main controlling parameters. This summary
examination also revealed that for the same number of knots, there was considerable change
in the rotation estimates with change in the smoothing factor and that this variation was, as
expected, largely at the ends of the structure, particularly at the fixed end. This observation
was evident for both analytical and seeded data. It will also be noted that for the fundamental
mode, the best approximation was the fit with the least number of internal knots (i.e., zero)
since any addition of knots to the fit function for this mode picked up a lot of the noise in
the translations. This is illustrated in Figure 4.8c and is consistent with the fact that the
number of knots required to adequately represent the mode shape function increased with rise

in mode number.

(a) Comparison of the Fit Performance on Seeded Data Against Performance on
Exact Data

When comparing the performance of an approximating technique on different data sets, it is

important to realise that for the comparison to be valid, parameters which are not the focus

of the investigation must be maintained constant. This was found to be especially critical in

this work since for the same number of knots, a different value of the smoothing factor was

in fact a unique solution which satisfied the full fitting criteria as specified in the library

routine [67] and therefore resulted in a unique set of rotations.

Figure 4.9 shows representative sets of rotations derived from interpolating the seeded data
for modes 2 and 5. In order to aid comparisons, the exact values are also plotted in the
figures. It is immediately apparent that the interpolant was an inappropriate estimator of
rotations from seeded data since this fit function tended to pick up a lot of the noise from the
initial data particularly at the ends of the cantilever. This gave rise to another important
consideration: that although a dense distribution of data points everywhere on the structure

was desirable for analytical data, the same was not particularly desirable for experimental
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data. The determination of an optimum fit would therefore have to take account of an

optimum distribution of points on the structure especially near the boundaries.

Figure 4.10 shows the comparison of the estimates of rotations from exact and noisy data for
a fixed number of knots as the value of S was altered. The approximation based on error-free
data was used as the basis for comparison. It will be seen that the performance of the
estimation method on both data sets was very similar (a welcome observation) as highlighted
by the small values of the discrepancies, the largest discrepancy being at the fixed end of the
cantilever. The much larger discrepancy seen at mid-span for mode 2 was attributed to the
proximity of an internal knot there the effect of which lead to a sign change in the rotation

estimate at that point.

A more detailed view of the variation in the discrepancy in the computed rotation at the ends
of the beam is presented in Figure 4.11. It is apparent that the discrepancy in the computed
rotations was greater at the root than at the tip. In addition, the results indicated that, as
would be expected, for the same controlling parameters, the errors in the estimates from noisy
data were some-what greater than the errors in those from exact data. This is generally
indicated by the positive signs of the discrepancy values. The plummeting trend of the
discrepancy at the fixed end was attributed to the greater rate of change in the computed

rotations from noisy data there as the smoothing factor was reduced.

The key conclusion which can be drawn from this comparative analysis is that, for the same
controlling parameters, the performance of the estimation technique on both data sets is very
similar although discrepancies become more pronounced as the mode number is increased.
It is however expected that this may not be the case for data with a much higher level of

noise.

(b) Effect of Varying the Smoothing Factor on the Computed Rotations

The variation of the error in the computed rotations (compared with exact rotations and
normalised to the largest rotation) for varying S while keeping the number of knots fixed is
shown in Figure 4.12 for modes 2 and 5. It is seen that the largest errors are at the ends of

the beam such that satisfying a given error tolerance at the ends will invariably result in equal
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or better accuracy elsewhere. With the exception of the interpolating spline (S=0.0), the
general trend is for the errors to reduce as S is reduced. The fact that the interpolating spline
is an unsuitable estimator of rotations from noisy data can be seen, for example for mode 5,
at the tip, where the error using this fit (v) is greater than when using $=0.003 (¢). Itis
therefore apparent that there must be an optimum combination of S and number of knots

which minimises the largest error in the computed rotations.

Figure 4.12b highlights a feature which was not seen from the computations for mode 2
(Figure 4.12a) which were based on a looser fit (only one internal knot). For mode 2, the
computed rotations follow the expected trend, i.e., the largest rotation is computed at the free
end of the beam, while in the case of mode 5, which is a tighter fit (9 internal knots), the
rotations are seen to follow the expected trend until a certain value of the smoothing factor
is reached. Beyond this value, the largest rotation is computed one or two points before the
tip. This feature was observed to have some relationship with the optimisation of the
estimation method. The characteristic was also evident in computations on simulated data for

other modes where a relatively tight fit was used.

Examples of the variation in the normalised error in the rotations at the ends as the smoothing
factor is varied are shown in Figure 4.13. For mode 5 (Figure 4.13b), the error in the tip
rotation is zero for S=0.003 while the error in the root rotation is lowest for S=0.0. The
minimax optimum condition is at $=0.0006. In situations where rotations would be required
at many locations on the structure, this approximation would minimise the largest error in the
range since it has already been shown that at this level of smoothing, the errors in the
rotations away from the boundaries are already lower than those at the boundaries (see Figure
4.12b). While the data for mode 2 does not provide for a similar analysis, it is apparent that
the trend is similar and that similar conclusions would not be far-fetched. It will also be
noted that once the approximation is in the 'ball park’ of the optimum fit (§=0.002 for mode
2 and S=0.003 for mode 5 in this case), the error in the computed rotations is below 10% on

the normalised scale.
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(c) Fit Performance vis-a-vis Cantilever Boundary Conditions

It was intimated earlier that the structural boundary conditions were considered to be
potentially useful criteria for optimising the estimation method. Figure 4.13 provides valid
evidence for the premise that a good estimator of the rotations would be one which gave the
least error in the computed rotation at the root of the cantilever. Although the plots indicate
that the best rotations are obtained from relatively tight fit functions in as far as the zero first-
derivative requirement at the root is concerned, they do not provide any information about
the zero second-derivative requirement at the free end which is the governing boundary

condition at that end.

Figure 4.14 shows two possible scenarios of the behaviour of the second derivative at the free
end which were observed. When these plots are viewed in the light of Figure 4.13, it is quite
clear that the value of S at which the boundary condition at the tip was met was much larger
than the value for which the boundary condition at the root was met. The results in Figure
4.13 also suggested that the estimates of the rotations could be improved if the smoothing
factor was further reduced from the value which satisfied the tip boundary condition. These
observations lead to the conclusion that the value of S for which the approximation minimises
the errors in the computed rotations everywhere on the beam must lie between the values at

which the boundary conditions are satisfied.

An interesting characteristic which accompanied the fulfilment of the tip boundary condition
was that computations based on values of the smoothing factor smaller than the value at
which the tip boundary condition was met invariably produced rotations whose maximum was
predicted one or two points away from the free end, i.e., there was a change in the orientation
of the rotations. This was considered a useful additional criterion for identifying the optimum

fit.

4.3.2.4 Worst Case Scenario Analysis

In order to optimise the performance of the estimation method, it became necessary to
simulate the worst case scenario which could arise from measurement. The optimum fit
arising from such a database would clearly satisfy databases with less severe patterns of error

in the translations.
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The previous section used data with a random set of bias errors. The worst case of such a
contamination would consist of the full (1% in this case) error being utilised. Thus, worst
case scenario simulated experimental data was generated for the beam previously described
using the seventeen-point model by adding 1% of the maximum modal vector component in
the exact database to every other point on the structure. This method of seeding gave rise
to two patterns of seeding which would be the limiting cases for the error levels, namely: one
for which the error was added to the tip and then to every other point on the beam except the
fixed end, and the other for which the tip carried no error. These seedings are hereafter
referred to as the 1-0-1-0- and the 0-1-0-1- worst case scenarios and are shown in Figure 4.15

for the first mode of the cantilever.

An attempt was made to establish how far removed the representative error level simulation
described earlier was from either of the worst case limit cases. In order to do this an
interpolation was performed on the limit cases, the representative error level and exact
analytical data with equal weighting for all the data values. The results, shown in Figure 4.16
for modes 1, 2 and 3, indicate that the representative error level leaned toward the error-free
condition. However, it must be pointed out that this is true only for the distribution of errors
used here and may not hold for all random distributions. The results also confirm the very
low sensitivity of the computed rotations to the errors in the translations away from the
boundaries. This is seen in the very similar estimates of the rotations from the three
databases. The behaviour of the second derivative was also examined for these databases and
the details are given in Table 4.1 for the first two modes. The results reveal the high
sensitivity of the second derivative at the free end to the errors in the translations for the
worst case seedings. This is highlighted by the multiple sign changes in the second derivative
from the worst case databases evident even for the first mode. In addition, the sign changes,

for mode 1 at least, show some relationship with the pattern of the seeding of the translations.

In an attempt to optimise the performance of the estimation technique on the worst case
databases, rotations were computed from these for the first five flexural modes of the
cantilever. A cursory examination of the fit results revealed that even for these worst cases,
the estimator was capable of returning acceptable estimates of the rotations (typically less than

10% error) although this was usually after diligent searching. The results also indicated that,
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as in the case of the representative error level, a good fit was characterised by a change in
the orientation of the rotations at the free end. That is, the largest rotation was estimated at
the point adjacent to the tip. Also, as in the case of the representative error level, the best

approximation for the fundamental mode was the fit without any internal knots.

Figure 4.17 shows a selection of fits to mode 5 of the beam using the 0-1-0-1- data. As in
the case of the error-free data, once the under-lying trend for the modeshape function was
picked up by the fit (here, when using more than 16 knots), the addition of more knots (and
consequent further reductions in the value of S) had little effect on the computed rotations

away from the boundaries.

(a) Optimisation Based on the Boundary Conditions

It was shown in the previous section that the errors in the rotational estimates are not
minimised everywhere at once and an optimum approximation which minimised the overall
errors in the rotations for the representative error level data set was found. In the case when
the exact solution is unknown, it is reasonable to use zero rotation at a clamped boundary as
the target value for the approximation. At a free (or simply-supported) boundary, the

appropriate target would be zero second derivative of the displacements.

In order to test the generality of the method, rotations were computed for the first five modes
of the cantilever using fits based on a range of numbers of knots, each spanning a range of
values of the smoothing factor, S, seeking combinations which satisfied the boundary

conditions at the ends of the beam.

Figure 4.18 shows the first derivative at the root and the second derivative at the tip for
modes 2 (9-knot fit) and 5 (17-knot fit). The similarity in the corresponding values for the
two databases shows that the criteria are not very sensitive to the pattern of bias error
seeding; a very desirable feature for applications in practice when the actual errors are

unknown.

Figure 4.18 also shows that, as was the case previously (Figure 4.13), the free end boundary

condition was satisfied with a larger value of S than that required for the root boundary
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condition. This was true for the other modes in the database and also for both databases. In
addition and perhaps surprisingly, it was found that for mode 5, the approximations based on
minimising the second derivative at the free end (5=0.013 or S$=0.020) do not correspond to
zero error in the tip rotation (S=0.001 from Figure 4.13). Indeed the approximation based on

zero rotation at the fixed end was more accurate than either.

Table 4.2 shows the comparison of the calculated rotations at the ends of the beam in the
region bounded by the approximations which satisfied the boundary conditions for 0-1-0-1-
data. In the table, the value of S decreases as one goes from (e) to (a), (¢) being the value
of S which satisfies the tip boundary condition and (a) that which satisfies the root boundary
condition. It will be found that the optimum value of S is, for all modes, closer to the value
satisfying the root boundary condition; confirming the result of Figure 4.13. Graphical
evidence for this is presented in Figure 4.19 in the form of error plots using data from three
approximations, namely; the approximations at which the boundary conditions were met and

another approximation in mid-range.

From the foregoing, it will be realised that identification of the optimum requires a significant
amount of computation, something which would not be justified in practice. It is concluded
therefore that combinations which satisfy the root condition are sufficiently close to the true

optimum for practical purposes.

(b) Optimisation Based on the Sum of the Squares of the Data Values and the
Smoothing Factor
One of the main objectives in the search for an optimum estimator of the rotations was an
attempt to relate the smoothing factor for the approximation at which the fitting criteria were
met with regard to the translations and the smoothing factor from which the best estimates
of rotations were derived. Although the NAG routines, as available in the NAG Library, are
not automated for acceptance of an approximation (it is the responsibility of the user to
establish his criteria for acceptance based on his knowledge of the underlying function), it was
envisaged that establishment of some empirical relationship between the two approximation
conditions would eliminate some of the effort expended in the search of the optimum

approximant of the rotations.
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An attempt was made, using 0-1-0-1- data, to establish an empirical relationship between the
sum of the squares of the data values, the value of the weighted sum of squared residuals
from the least-squares polynomial fit and the value of S at which the minimum second
derivative at the tip (which is in the 'ball-park' of the optimum) occurred. This was done by
determining the factors by which the sum of the squares of the data values would need to be
divided to provide the least-squares polynomial fit and the minimum tip second derivative
approximation. The analysis was performed on three databases, namely; the 17 point model
previously described (Model 1), a 17 point model with the points near the boundaries
equidistant from each other (Model 2) and a 15 point model again with the points near the
boundaries equidistant from each other (Model 3). Although the difference in the point
density is small, addition of even a single point to a model has a significant effect on the
performance of the technique as was shown earlier. It was envisaged that these databases
would provide some insight into the effect of varying point locations and densities on the

magnitudes of the factors relating the three approximation conditions.

The results from this analysis, shown in Table 4.3, indicate that the factor by which the sum
of the squares of the data values would need to be divided in order to provide the value of
S for the least-squares fit significantly dropped, with increase in mode number. The
magnitudes of the factors were seen to be lower for the smaller database. The factors which
related the sum of the squares of the data values to the value of S at which the second
derivative condition at the tip was satisfied did not however, follow any ordered pattern. This
was attributed to differences in the parameters which control the approximations at which the
second derivative condition for each mode was met, particularly the number of knots in the
fit function. The number of knots for the least-squares polynomial fit was, on the other hand,
the same for all modes (i.e., eight external knots, no internal knots). Despite the lack of a
definite trend in the factors, the results still provide a useful threshold divisor of 160, from
model 2, from which the search for the optimum approximant could be initiated. This value
however only applies to the particular structure and level of error used in this case and may

not apply for a different structure.
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(c) Optimisation Based on First Order Difference Computations

In this approach, it was presumed that the results from a first order difference (FOD)
computation before any fitting was performed could give an indication of the level of
smoothing which would be required for the given level of error in the translational data. This
was based on the understanding that the FOD calculation removes the mean effect and
highlights the point-to point variation of the estimate of the rotation. Thus, it was envisaged
that FOD estimates of rotations could give a feel of the orders of magnitudes of the rotations
i.e., if the FOD estimates differed wildly from an initial approximation using curve fitting,
this would give an indication of how far this initial approximation from fitting was from the
optimum. It must also be understood here that in order to provide reasonably accurate
estimates, FOD computations would require at least two data points between nodal points.

This is consistent with the conclusion drawn earlier in this work.

Typical results of the FOD analysis on four different beam models, for modes 1 and 5, are
given in Tables 4.4 to 4.7 using the exact, 0-1-0-1- and 1-0-1-0- databases. The exact
analytical rotations are also included as a comparison base. The results indicate that a high
level of smoothing would be required for the first mode for the 15 and 17 point models when
worst case databases are used. This was shown by the multiple sign changes in the FOD
calculation of the rotations and buttresses the earlier observation that the best approximation
for the fundamental mode was the least-squares polynomial fit. No spurious sign changes
were however seen for the other modes although there were irregularities in the magnitudes
of the computed rotations especially near the boundaries and at or near the points of inflection
of the mode shapes. Although this is not specifically dealt with in this work, it is envisaged
that the level of the magnitudes of these irregularities could also be used as an indicator of

the level of smoothing required.

(d) Effect of the density and spacing (location) of data points on the structure on the
estimates of rotations

The data from the computations on the 17, 15 and 13 point worst case databases used in the

optimisation analysis described in the previous section was also used in this investigation.

The analysis revealed that for a small database, a tighter fit (smaller value of S) was required

to produce comparable performance with an approximation from a larger database. The
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results also indicated that for the same fit (same controlling parameters), the calculated
translations and rotations deriving from the larger database were better. This was not

unexpected since a larger database allows for better modelling of the structure.

The fluctuation in the calculated rotations near the boundaries is shown in Figure 4.20 and
4.21 for modes 1 and 5 respectively. It will be noted that for mode 1, the accuracy of the
rotations deteriorates as the value of S is reduced. This provides further confirmation that the
least-squares fit is the best estimator of rotations for the fundamental mode. On the other
hand, it is evident from Figure 4.21 that, for the higher frequency modes, as the value of the
smoothing factor was reduced, the models with the higher density of points near the ends of
the cantilever yielded less fluctuation in the estimated rotations there than the 13-point

database.

Comparison of the performance on the two 17-point databases revealed that the approximation
from the database with evenly spaced points near the boundaries gave better estimates of
rotations (in both form and magnitude) than the same approximation on the database with
unevenly spaced base points near the boundaries. This observation was also confirmed by

the estimates of the rotations from first order difference computations.

The sensitivity of the estimation technique to a much closer spacing of the data points was
investigated by modelling the cantilever beam with 41 equidistant points. This reduced the
spacing of the data points by a factor of four. The results confirmed that, from the optimum
fit, there were no spurious fluctuations of the rotations anywhere on the structure. This
outcome is explained by the fact that the knots of the fit function were not placed at
consecutive data points (i.e., the fitting routine had more data points to choose from when
locating the knots and thus the knots were located at the points at which the fit was
particularly poor). In the case where the value of the smoothing factor was small enough to
pick up the noise in the translational data, there were no fluctuations in the computed

rotations in the mid-section of the beam as seen from previous analyses.

It can therefore be concluded that equidistant spacing of the data points on the structure in

modelling is desirable. However, locating points close together in the database demands a
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higher level of smoothing which in turn leads to higher levels. of error in the estimated
rotations. Assuming that there are already two points between nodal lines, a halving of the
spacing near the boundaries provides a good compromise between good representation of the
structure and good estimation of the rotations there. Finally, in order to avoid having to use
very tight fits which may lead to unreliable results especially near the boundaries, the
database should be made as large as possible. These conclusions must always be viewed in

the light that there must be at least two measurement points between nodal lines.

4.3.3 Fit Performance on Real Experimental Data

The results presented so far on curve fitting noisy data have considered simulated
experimental data. The real test however, is its applicability to real experimental data.
Appendix 3 demonstrates the performance of the proposed technique on real experimental
data. The discussion which is presented in Appendix 3 is based on a cantilever beam
database which does not follow the criteria developed in the preceding sections on optimising
the performance of the proposed method. Thus, the results presented merely demonstrate the
performance of the technique on real experimental data albeit on a database which is less than

ideal and do not provide any new insights.

In the appendix, it is shown that the errors in the estimates of the rotations from the
approximation which minimises the errors in the rotation at the fixed end are, in the main,
less than 10%. This very welcome observation is consistent with the observations made in
the preceding discussions on error-free and simulated experimental data and thus confirms the
capability of the proposed technique for smoothing noisy data. The appendix proceeds to
demonstrate the acceptability of the estimates of rotations for structural dynamics modification

work.

4.4 Surface Fitting Performance

Although most structures can be analyzed in straight lines locally, there are some complex
structures for which the straight-line simplification does not hold. Part of the effort in this
work was therefore directed at investigating the performance of bicubic spline surface fitting
to the problem of estimating rotations from translational modal data. In addition, and so far

as this researcher is aware, there has not been any published work on the use of surface fitting
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for estimating rotations from translational data. It was therefore envisaged that this endeavour
would provide new insights in this regard. To this end, different plate-like structures were
investigated, namely; a free-free plate and a cantilever plate. In each case, translational and
rotational modal data was obtained using finite element analysis. Rotations at every point on
the structures were also obtained using the bicubic-surface fitting estimation technique
described in. Chapter 3. It must be noted that since only one out-of-plane direction can be

used, only the rotations about in-plane axes were calculated.

It must be understood from the outset that extensional vibrations in which motion is only in
the plane of the plate can also occur in plate structures. However, as this type of vibration
is associated with high frequencies and has less practical significance than transverse

vibrations, it is not considered in this work.

Tests on the performance of the surface fitting method indicated that, in general, the
calculated translations and rotations from a curve fit were more accurate than those from a
surface fit. This was due to the greater smoothing effect in a surface fit arising from the
requirement to include the weights (effects) of the points adjacent to each measurement point
since each point is inherently dependent on not only two but four adjacent points. In
addition, due to the failure of the fitter to adequately model the boundaries as seen in the
curve fitting case, the estimates of the rotations were better away from the boundaries of the
structure than at the boundaries. The results also revealed that, generally and as a result of
smoothing, large errors in the calculated translations were not necessarily associated with
large errors in the computed rotations at those locations where the large errors in the
translations occurred. As in the case of curve fitting, the best estimator of the rotations from

error-free translational data was the interpolant.

Comparison of the relative accuracy of the computed in-plane rotations showed that the
relative accuracy of the estimates of the rotations about the in-plane axes was heavily
dependent on the relative dimensions of the structure. This was attributed to the way the
fitting algorithm added knots to the fit function. In the algorithm used, the knots are always
added in the x-direction to start with. That is, in the search for the fit which satisfies the

fiting criteria, knots are added alternatively in the x and y directions of the plane starting
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with the x-direction. The approximation is therefore able to pick up the trend in the
underlying function in the x-direction before this is done for the y-direction. However, in the
case where the number of knots in the fit function is the same in both directions, the under-
lying function is picked up better in the direction of the shorter dimension. Thus, the relative
dimensions of the structure in the x-y plane are an important consideration here as they have
a bearing on the measurement point density (and hence knot location) in each direction, i.e.,
a short dimension is modelled better than a longer dimension when the same number of
measurement points in each direction is used. It may finally be remarked that, as would be
expected, the accuracy of the computed rotations improved with increase in the number of

measurement points on the structure.

44.1 Fit Performance on Error-free Data

44.1.1 Free-Free Plate

For this enquiry, a free-free mild steel plate, 152mm long, 300mm wide and 5.5mm deep, was
modelled using a 5 x 5 grid of measurement points thereby producing 16 four-noded thin
plate elements. Translational and rotational modal data for the first 20 modes (including the
rigid body modes) was obtained from FE analysis. Figure 4.22 shows the FE translational
mode shapes for the first four flexural modes. Estimates of the rotations were also obtained
by surface fitting the finite element translational data with all data points carrying the same
weight from three approximations namely; the least-squares fit (no internal knots), one knot
in either of the in-plane directions and one knot in each of the in-plane directions. A
representative set of results for the first four modes is shown in Figures 4.23 to 4.26 in the

form of rotational modeshapes (the results for the other modes were similar).

It is apparent from the figures that the accuracy of the estimates of the rotations improved
with a tighter fit albeit with some departure from this trend for mode 2. While the
improvement in the performance was not unexpected, the accuracy of the estimates was also
seen to be dependent on the complexity of the mode shapes. The average error in the
estimated rotations at all points was observed to be very small (less than 2%) for the rigid
body modes. The errors in the estimates of the rotations for the flexural modes were however
much higher, rising beyond 100% for the higher frequency modes. The errors were seen to

rise not simply with an increase in mode number but rather, with increase in the complexity
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of the deformed shape. It is also particularly important to note that here, unlike in the case
of curve fitting, approximations using relatively large values of the smoothing factor (i.c.,
high level of smoothing) are capable of returning reasonable estimates of rotations. In
addition, it is seen that in a surface fit, the under-lying trend of the mode shape function is
picked up with relatively fewer points in the model than in the case of curve fitting and thus

the spacing requirement determined there is less critical here.

Figure 4.27 presents the performance of the interpolating spline. It will be seen that, as in
the case of curve fitting, the interpolant returns the best approximation from error-free data.
In this case, the maximum error in the estimates of rotation was around 70% for the higher
frequency modes. It is also particularly interesting to note that the estimates of rotations
about the y-axis are superior to those about the x-axis. This is due to the fact that although
the number of knots in both directions is the same during interpolation (9 in this case), the
x-direction is modelled better than the y-direction because it is the shorter of the two

dimensions.

In the analysis on curve fitting, it was shown that addition of a mid-point near the boundaries
had a dramatic effect on the estimates of rotations there since addition of the extra point
improved the representation of the structure (Figure 4.7). Figure 4.27 also presents the
comparison of the performance of the interpolant on the 25-point model with a model in
which a mid-point was added near the ends (thereby expanding the database to 49 points).
The data is presented in the form of rotational mode shapes. Once again the results exhibit
the dramatic improvement in the quality of the estimates of rotations, the maximum error

being around 20% for the higher frequency modes.

4.4.1.2 Cantilever Plate

A mild steel cantilever plate of dimensions 500mm long, 150mm wide and 5mm deep was
used here. The finite element model, from which translational and rotational modal data for
the first 10 modes was derived, consisted of 140 thin-plate elements (36 x 5 grid of
measurement points) thus yielding 900 degrees of freedom (thin-plate elements do not have
a rotational DOF about the out-of-plane axis) of which 25 were grounded. This idealisation

is shown in Figure 4.28. In addition to providing further insights into the performance of the
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surface approximant on different boundary conditions, this type of structure was specifically
chosen in order to provide a basis for comparing curve and surface fitting. The mode shapes

for modes 3, 4, 7 and 8 are shown in Figure 4.29.

In this case, three approximations were used namely; fit with at least one internal knot in both
directions, fit with at least two internal knots in both directions and the interpolant. Initial
examination of the results revealed features not unlike those which had been seen in the curve
fitting case. The comparison of the estimates of the rotations from the first two
approximations with FE rotations is shown in Figures 4.30 and 4.31 in the form of rotational
mode shapes. The results show the expected improvement in the estimates of the rotations
with reduction in the smoothing factor. In addition, the results indicate the poor performance
of the estimator in the regions adjacent to the boundaries as was seen in the case of curve
fitting. This is shown in detail in Figure 4.32 in which the errors in the rotations (normalised
to the largest rotation for each mode) are presented in the form of modeshapes and error plots.
Although it was clear from the data that the approximation using at least two internal knots
in both directions still produced appreciable discrepancies, the magnitudes of the errors in the
rotations were generally less than 20%. In the proximity of the boundaries however, the
errors were higher. A particularly noteworthy characteristic which is apparent is the inferior
quality of the estimation of the rotations about the y-axis to that of those about the x-axis.
However, this is not surprising since the rotations about the y-axis were higher than those

about the x-axis.

The results from the interpolating approximation which are shown in Figure 4.33, indicate the
significant improvement of the estimates of the rotations over the approximations with a
higher level of smoothing. The error in the rotations is also seen to be much lower in the
region near the boundaries. In fact, the magnitude of the errors in the rotations was less than
5% for rotations about the x-axis and less than 1.5% for rotations about y-axis. Thus, it is
seen that the approximation returns better estimates of rotations about the y-axis than about
the x-axis as was the case for the free-free plate when interpolation was used. This is
however explained by the fact that during interpolation in this case, the number of knots in
the x-direction is much higher than that in the y-direction since this is dependent on the

number of measurement points in each direction, which in this case, is higher in the x-
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direction. Therefore, the location of knots in the x-direction is better optimised than in the
y-direction. Thus, the under-lying modeshape function is better represented by the fit function
in this direction thereby leading to superior estimates of rotations about the y-axis. When this
observation is viewed in the light of the results seen for smoothing in the case of the free-free
plate, it may be concluded that in any exercise in which surface fitting is used to estimate the
rotations, the choice of the orientation of the structural global axes will be determined by the

end-use of the data.

4.4.2 Fit Performance on Real Experimental Data

The discussions presented so far have considered the performance of the surface approximant
on error-free data. The real test, however, is its performance on real experimental data. The
modal data for a plate-like structure which was used in this case was not consistent with the
findings about optimising the performance of the estimation method. Thus, the discussion of
the performance of surface approximation on real experimental data is included in Appendix
3. The presentation also provides insights into the treatment of a multi-surface structure,
especially at the joint lines, where the user must decide which rotational entries to retain since

the approximation necessarily produces more than one set of rotations at the joint line.

It is shown in the appendix that the estimates which must be retained at the joint line are
those from the approximation on the larger of the planes which constitute the structure. The

appendix also considers the accuracy of SDM predictions based on the expanded data.

4.5 Curve Fitting Versus Surface Fitting

In order to compare the relative performance of curve fitting approximation against surface
fitting approximation, two cases were considered comprising of a cantilever beam, 500 x 25.4
x 12.7mm, and a cantilever plate, 500 x 150 x Smm. In each case, the longest dimension was
modelled with 36 equidistant measurement points and translation and rotational modal data
was obtained from the analytical solution, in the case of the beam, and from finite element
analysis, in the case of the plate. The complete plate model consisted of 180 measurement
points on a 36 x 5 grid. Estimates of the rotations were also obtained by curve and surface

fitting the appropriate data-set using the interpolating approximation. The comparison of the
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performance of the two approximants is summarised in Figure 4.34 for the first two bending
modes of the structures in the form of error plots. The relative performance of the surface

approximation at the free edge and at mid-section is also highlighted.

The results show the superior overall performance of the curve fitter over the surface fitter.
The errors in the rotations from the curve fitter were at least several orders of magnitude
better than those from surface fitting. What is less apparent for surface fitting is the expected
observation that the estimates of rotations away from the boundaries are superior to those at
the boundaries. This was however amply illustrated in Figures 4.32 and 4.33. The
comparison of the performance of curve fitting with surface fitting provides useful guidance
to the user of the technique about the choice of the fitting method to be used depending on

the end-use of the expanded data.

4.6 Real vis-a-vis Complex Modal Data

Although all the analyses in the investigations reported in this work were based on real modal
data, this researcher acknowledges the existence of complex spatial descriptions of structural
mode shapes. This is especially the case in the analyses involving rotating machinery or
proportionally-damped structures. While most commercially available modal analysis systems
are capable of handling the resulting complex modeshape descriptions, post-processing
analysis usually either assumes that the mode shapes are 'almost' real valued and therefore
disregards the imaginary parts or ignores any phase angles which are not 0 or 180 degrees.
This is in part based on the assumption that most real physical world structures exhibit
classical or light damping and therefore have damping forces which are insignificant when

compared to the inertial and restoring forces.

In their investigation into modeshape expansion techniques, Imregun and Ewins [28] have
however shown that it is unlikely that acceptable results can be obtained from an expansion
of markedly complex modeshape vectors to those of the full model. Their results have not
only indicated that complex mode shapes cannot be expanded accurately using assumed real
mode shapes, they have also shown that the use of complex modal data deteriorates the
quality of the expansion. In as far as the estimation of unmeasured data (both rotations and

translations) from measured translations using curve and surface fitting is concerned, it can
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therefore be inferred that the user of this technique must exercise great caution in instances
where the mode shapes are markedly complex as the resulting expansion may be grossly
erroneous. Although this aspect is not dealt with in this work, it is reasonable to surmise that
both curve and surface fitting may be used with complex modes. This could be done by
separately treating real and imaginary parts of the displacements and then combining the

resulting rotations to provide the complex rotations.

4.7 Closing Discussion

One of the tests for ascertaining the performance of a new technique is to compare its
performance against other techniques. To this end, the performance of other techniques of
estimating rotations must be known. In Chapter 2, the discussion of each estimating
technique included, where possible, the performance levels. It was shown there that the most
accurate techniques were those which required the development of finite element models
[24,25,26,28] and the 'rigid body enhancement method' [45] which did not require an FE
model. While the performance of these techniques was very good (up to 5% error in the
rotations), the associated time, storage requirements and cost could not be justified for many

applications.

The spline curve and surface fitting method proposed in this work is a cheaper, simpler and
quicker technique which has been shown to yield errors of less than 10% from noisy data
provided there are at least two measurement points between nodal lines. While errors may
not be directly comparable due. to differences in the structures and database sizes (and the
absence of database size information and/or structural dimensions in some cases), the
proposed method generally offers better performance than previous 'modeshape’ techniques
which yielded errors of between 15% and 100% on error-free data [13,24,29,30]. In addition,
this level of performance is comparable with at least one of the FE based methods [25,26]
which yielded errors of up to 12% in the estimated rotations. In this instance, comparisons
are valid since at least four of the published sets of results [13,24,25,30] all considered a
cantilever beam using error-free data, albeit with different dimensions and database sizes.
The plate study [29] considered a cantilever plate also using error-free data with a similar
database size as that used on the free-free plate in this work although the dimensions of the

plate used were not cited. Thus, the comparisons given here should not be taken to be
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absolute but should be treated as loose indicators of the performance of the proposed

technique.

This chapter has also shown that the proposed method is versatile and offers the freedom to
either smooth or interpolate the data. In the circumstances where interpolation is desirable,
the analysis has shown that the method offers errors of less than 5% provided the spatial
description of the structure allows for adequate representation of the structure, especially near
and at the boundaries. In addition, the choice between curve and surface fitting offers further
flexibility in the application of the method provided it is remembered that curve fitting offers

superior performance.

4.8 General Concluding Remarks

The analyses reported in this chapter lead to the following conclusions:

The best estimator of rotations from error-free translational data is the interpolant.

2. The accuracy of the estimates of the rotations depends on the spatial description of the
mode shapes provided by the measured translations. Typically, errors in the rotations
are generally below 10% provided there are at least two measurement points between
nodal lines.

3. Generally, fit functions are unable to truly represent the modeshape functions at the
boundaries. This leads to large errors in the estimates of the rotation at and near the
boundaries. In order to compensate for this, a dense distribution of measurement
points near the boundary is desirable when dealing with error-free data.

4. For plate structures, the accuracy of the estimates of rotations is dependent on the
orientation of the structural global axes and the modelling of the structure with regard
to the density of measurement points in each planar direction. However, the accuracy
of the estimates ultimately depends on the level of smoothing used in the
approximation. The required level of smoothing depends on the particular problem
and the values of the smoothing given in section 4.3.2.4 for beams make a good
starting point in the search.

5. Generally, estimates of the rotations from a curve fit approximation are more accurate

than those from a similar (i.e., same controlling parameters) surface fit approximation.
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The complexity of a mode shape is a significant adverse factor for the quality of

expansion. The quality of augmentation deteriorates rapidly as mode shapes become

more complex (i.e., as mode number increases), particularly as the condition for
spatial aliasing is reached.

The accuracy of rotational estimates depends on the level of error in the initial

translational data. The higher the level of error in the initial data, the higher the level

of smoothing required. In the absence of smoothing, the approximation will carry
high errors while too much smoothing will lose the under-lying modeshape function.

Thus, an optimum must be found which minimises the error in the estimates of

rotations.

When dealing with noisy data,

(a) the optimum estimator of the rotations is the approximation which satisfies the
structural boundary conditions. This occurs at a value of the smoothing factor
which is much smaller than that at which the full approximating criteria for the
translations are met.

(b) equidistant spacing of the data points is desirable. However, a dense location
of points, especially near the boundaries, leads to high errors in the estimation
of the rotations. Having satisfied the requirement of two measurement points
between nodal lines, a halving of the spacing near the boundaries provides a
good compromise between good representation of the structure and the risk of
picking up the noise in the initial data.

©) in order to avoid using very small values of the smoothing factor (i.e., very
tight fits) which may lead to unreliable results, especially near the boundaries,
the database should be made as large as possible with regard to the number of
measurement points.

(d) the first order difference computation is a good indicator of the level of
smoothing required for a given level of error in the translations and a given
distribution of points on the structure. This information is provided by the
number of sign changes between nodal lines and the irregularities in the
magnitudes of the computed rotations resulting from the calculation. This
gives guidance to the user of the proposed technique about where the search

for an optimum may be initiated.
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(e) the accuracy of the estimates of the rotations is not very sensitive to the
pattern of error in the initial data.

® large errors in the calculated translations are not necessarily associated with
large errors in the computed rotations at those locations due to the effect of
smoothing.

Although this work has not considered the treatment of complex data, caution must

be exercised in the application of the proposed technique in instances where the modal

data is markedly complex as the resulting expansion may be grossly erroneous. Thus,

this aspect calls for further investigation.
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Figure 4.24: Comparison of Rotational Modeshape Plots from
Several Approximations with FE Modeshapes
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Figure 4.25: Comparison of Rotational Modeshape Plots from
Several Approximations with FE Modeshapes
for the Third Mode of the Free-free Plate
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One internal knot in both directions

Figure 4.26: Comparison of Rotational Modeshape Plots from
Several Approximations with FE Modeshapes
for the Fourth Mode of the Free-free Plate
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Figure 4.27a: Effect of introducing a mid-point near the
boundaries on the performance of the surface

fit using the interpolant (rotation about the x-axis)
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Figure 4.27b: Effect of introducing a mid-point near the
boundaries on the performance of the surface
fit using the interpolant (rotation about the y-axis)
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Figure 4.28: Idealisation of the Cantilever Plate
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Figure 4.30: Comparison of Calculated Rotational Modeshapes
(Rotations about the x-axis) with FE Modeshapes
for the Cantilever Plate

96



One internal knot in both directions Two internal knots in both directions

mode 3

v .

X2 ,
FE . mode 4
. 1<\r
4 K
;’l ‘ ’ e

mode 7

mode 8

Figure 4.31: Comparison of Calculated Rotational Modeshapes
(Rotations about the y-axis) with FE Modeshapes
for the Cantilever Plate

97



clamped end

normalised error in rotation (%)

rotation about x-axis rotation about y-axis

error ’'modeshapes’

30

20

)
[
i

a thetax 4 thetay

'30 T I T T T T T T T L T T
0 20 40 60 80 100 120 140 160 180

point number

Figure 4.32a: Comparison of the Surface Fit Performance
about the in-plane axes for the Third Mode
of the Cantilever Plate using a fit with two
internal knots in each direction

98



clamped end

rotation about x-axis rotation about y-axis

error "'modeshapes’

normalised error in rotation (%)

-80 w] thetax < thetay
-90
- 1 00 ﬁ T T T T T 1 1 T T T T T I I L] T T
0 20 40 60 80 100 120 140 160 180
point number

Figure 4.32b: Comparison of the Surface Fit Performance
about the in-plane axes for the Fourth Mode
of the Cantilever Plate using a fit with two
internal knots in each direction
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Figure 4.32¢: Comparison of the Surface Fit Performance

about the in-plane axes for the Seventh Mode
of the Cantilever Plate using a fit with two

internal knots in each direction
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Figure 4.32d: Comparison of the Surface Fit Performance

about the in-plane axes for the Eighth Mode
of the Cantilever Plate using a fit with two
internal knots in each direction
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Figure 4.33: Comparison of Rotational Modeshapes from an
Interpolating Spline Surface with FE Modeshapes

for the Cantilever Plate
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Figure 4.34: Comparison of the Rotational Estimates from Curve
Fitting against those from Surface Fitting using an
interpolating spline for the First Two Bending Modes
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Table 4.1:  Behaviour of the 2nd Derivative of the Interpolant on Simulated and
Exact Data.

mode 1 mode 2

point M @ 3) @ m ) 3) C))
1 25.078 -966.02 -3654.7 2198.8 157.2 -1050.2 -3522.6 23309
2 24.733 -447.46 -1401.8 738.0 149.6 -369.2 -1276.8 862.9
3 24.387 71.39 851.2 -722.8 142.1 3119 968.9 -605.1
4 23.007 98.14 -350.0 -375.3 112.2 721 -260.9 464.5
5 21.626 -28.96 152.1 -105.6 820 66.3 2125 45.1
6 18.189 26.23 -48.1 83.6 10.1 259 -56.1 75.5
7 14.808 24.86 639 -34.1 -514 -65.0 2.5 -100.1
8 11.547 -1.90 -33.1 56.1 -94.6 -83.9 -138.2 -505
9 8.489 2458 52.2 -35.2 -114.2 -120.7 -74.5 -156.2
10 5.731 -1047 -389 |. 503 -109.1 -99.0 -138.9 -709
11 3.381 19.96 525 -45.7 -83.7 -98.9 -89.8 -109.1
12 1.544 -27.65 -64.7 67.8 -47.0 -52.9 75 -69.1
13 0.374 69.42 130.8 -130.1 -13.6 38.0 -139.7 1004
14 0.153 -220.82 © 3729 -3729 -5.5 -99.2 366.4 -374.0
15 0.004 48891 826.8 826.8 -0.3 98.1 -826.6 824.7
16 0.005 -530.95 -1426.5 -1426.5 -0.2 -326.1 1426.3 -1426.7
17 0.006 -1550.82 -3679.8 3679.8 -0.1 -750.2 3679.2 -3678.1

Key:
(1) Interpolant on Exact Data

(2) Interpolant on representative error level
(3) Interpolant on 0-1-0-1-
(4) Interpolant on 1-0-1-0-
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Table 4.2:  Comparison of the Computed Rotations from Various Approximations in

the Region Bounded by the Limiting Conditions Using 0-1-0-1- Data for
the Steel Cantilever Beam

(a) (b) © (d) (e)

mode 1) ) 63 @) 8y ) 1) ) 8y, 2
2 2.099 -0.020 2.459 0.042 2.459 0.042 2.459 0.042 2.459 0.042
3 1.979 -0.013 2957 0.012 4935 0.068 5.155 0.079 5.155 0.079
4 1.660 -0.046 2.4%4 -0.029 4.908 0.020 9.302 0.111 9.302 0.111
5 2.055 -0.047 2910 -0.038 4997 -0.010 9.772 0.064 9.929 0.067

Key:

Data for the first mode is omitted since the best fit for this mode was
the least-squares polynomial

(a) 0.0<root rotation<2.1

(b) 2.1<root rotation<3.0

(c) 2.4<root rotation<5.0

(d) 2.4<root rotation<9.9

(e) approximation based on minimum second derivative at the free end

(1) Mass-normalised rotation at the fixed end of the cantilever

(2) % error in the rotation at the free end

Table 4.3 Relation Between the sum of the Squares of the Data Values and
the value of S for the Least-Squares fit and the Fit which
Minimises the Second Derivative at the free end of the Cantilever

model 1 model 2 model 3
mode ¢)) | 2 ¢)) ¢)] 1 @
2 89.6 3002 84.5 2936 80.7 5913
3 179 803 14.7 662 14.3 821
4 1.7 221 1.5 160 14 4805
5 1.7 770 1.5 624 14 1297

Key:

(D Sum of the squares of the data values divided by the weighted sum of
squared-residuals for the least-squares fit.

2) Sum of the squares of the data values divided by the value of S for the
fit at which the second derivative at the free end is minimised.
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Key for Tables 4.4 to 4.7.
(1) First-Order Difference (FOD) Calculation on Analytical Data
(2) FOD on 0-1-0-1- data base
(3) FOD on 1-0-1-0- data base
(4) Exact Analytical data

Table 4.4:  Comparisons of the Computed Rotations from First-Order Difference
Calculations for the 13 point Model

Distance mode 1 mode S

along

Beam

(m) m ) 3 4 M ¢) (3) @
0.025 0.306 1.020 0.306 0.605 13.631 14.345 13.631 23.107
0.050 0.890 0.177 1.603 1.168 24.688 23974 25.401 22.710
0.100 1.680 2.036 1.323 2.163 4.364 4721 4.008 -17.676
0.150 2.590 2.233 2.946 2.988 -31.059 -31.415 -31.415 -34.266
0.200 3331 3.688 2974 3.647 -17.305 -17.662 -16.949 5.494
0.250 3910 3553 4.267 4.148 24871 25.227 25.227 . 35.650
0.300 4337 4.694 3.980 4.503 24942 25.299 24.586 5.660
0.350 4.627 4270 4984 4731 -16.923 -17.279 -16.566 -33.543
0.400 4.800 5.157 4.444 4.854 -29.463 -29.820 -29.820 -14.694
0.450 4.883 4.526 5.240 4902 10.928 11.285 10.572 34973
0.475 4906 5.619 4.192 4908 42.515 43.228 43.228 47972
0.500 4909 4.195 5.622 4,909 49.779 49.066 50.492 50.416

106



Table 4.5: Comparisons of the Computed Rotations from First-Order Difference
Calculations for the 15 point Model

Distance mode 1 mode 5

Along

Beam 2 4 1 2 3 4
(m) ¢)) @) 3) &) 0)) (@)} 3 4
0.017 0.206 1.276 0.206 0.408 10.015 11.085 10.015 18.169

0.033 0.605 -0.465 1.674 0.798 22.664 21594 23.734 25.388

0.050 0.984 2.054 -0.086 1.168 24.800 25.869 23.730 22.710

0.100 1.680 1.323 2.036 2.163 4364 4.008 4.721 -17.676

0.150 2.590 2946 2.233 2.988 -31.059 -31415 -31.415 -34.266

0.200 3.331 2974 3.688 3.647 -17.305 -16.949 -17.662 5.494

0.250 3910 4.267 3.553 4.148 24.871 25.227 25.227 35.650

0.300 4337 3.980 4.694 4503 24.942 24.586 25.299 5.660

0.350 4.627 4984 4270 4.731 -16.923 -16.566 -17.279 -33.543

0.400 4.800 4444 5.157 4.854 -29.463 -29.820 -29.820 -14.694

0.450 4.883 5.240 4526 4902 10.928 10.572 11.285 34.973

0.467 4.905 3.835 5975 4.907 40.465 41.535 41.535 45.033

0.483 4908 5978 |. 3.838 4.909 47.760 48.830 46.690 49.641

0.500 4909 3.839 5979 4.909 50.217 49.147 51.287 50416
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Table 4.6: Comparisons of the Computed Rotations from First-Order Difference
Calculations for the 17 point Model - Non Equidistant Points near the

Boundaries
Distance mode 1 mode 5

along

Beam

(m) M 2 3) 4) M @ €)) )
0.005 0.155 1.581 0.062 0.125 3.396 6.962 3.396 6.624
0.010 0.458 -0.969 3.752 0.247 9516 5.950 13.082 12.240
0.030 0.750 2.176 -0.405 0.721 19.818 20.709 18.926 24.786
0.050 1.031 -0.396 1.838 1.168 24.853 23.962 25.745 22.710
0.100 1.680 2.036 1.323 2.163 4.364 4721 4,008 -17.676
0.150 2.590 2.233 2.946 2.988 -31.059 -31.415 -31.415 -34.266
0.200 3.331 3.688 2974 3.647 -17.305 -17.662 -16.949 5.494
0.250 3910 3.553 4.267 4.148 24.871 25.227 25.227 35.650
0.300 4.337 4.694 3.980 4.503 24942 25.299 24.586 5.660
0.350 4.627 4.270 4984 4.731 -16.923 -17.279 -16.566 -33.543
0.400 4.300 5.157 4.444 4.854 -29.463 -29.820 -29.820 -14.694
0.450 4.883 4.526 5.240 4.902 10.928 11.285 10.572 34973
0.470 4.904 5797 | 4.013 4907 41.341 42232 42232 46.373
0.490 4907 4.017 5.800 4.909 48.841 47.950 49.733 50.240
0.495 4.909 8.475 1.343 4.909 50.332 53.899 46.766 50.393
0.500 4.909 1.343 8.475 4.909 50411 46.844 53977 50.416
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Table 4.7:  Comparisons of the Computed Rotations from First-Order Difference
Calculations for the 17 point Model - Equidistant Points near the

Boundaries
Distance mode 1 mode 5

Along

B(;m)n ey 03] 3 C)) ey V) 3) @
0.012 0.155 1.581 0.155 0.308 7.860 9.287 7.860 14.672
0.025 0.458 -0.969 1.884 0.605 19.403 17.976 20.829 23.107
0.038 0.750 2.176 -0.677 0.892 24.821 26.247 23.394 25.580
0.050 1.031 -0.396 2457 1.168 24554 23.128 25.981 22,710
0.100 1.680 2.036 1.323 2.163 4.364 4721 4.008 -17.676
0.150 2.590 2.233 2.946 2.988 -31.059 -31.415 -31.415 -34.266
0.200 3331 3.688 2974 3.647 -17.305 -17.662 -16.949 5.494
0.250 3910 3553 4.267 4.148 24.871 25.227 25.227 35.650

0.300 4337 4.694 3.980 4.503 24942 25.299 24.586 5.660

0.350 4.627 4.270 4.984 4731 -16.923 -17.279 -16.566 -33.543
0.400 4.800 5.157 4.444 4.854 -29.463 -29.820 -29.820 -14.694
0.450 4.883 4.526 5.240 4.902 10.928 11.285 10.572 34973
0.462 4904 6331 |. 3478 4.906 39.264 37.837 40.690 43.042
0475 4.907 3.481 6.334 4908 45.767 47.193 47.193 47972
0.488 4.909 6.335 3.482 4.909 49.228 50.656 47.802 50.078
0.500 4.909 3.482 6.335 4.909 50.330 48.904 51.757 50416
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CHAPTER 5

EFFECTS OF THE ERRORS IN THE ROTATIONS
ON THE ACCURACY OF THE STRUCTURAL DYNAMICS
MODIFICATION PREDICTIONS

5.1 Introduction

The problem of determining the dynamic properties of a structure following a modification
has received the attention of a large number of investigators in the last 15 to 20 years. In
this regard, several structural modification and reanalysis techniques have been developed.
In the majority of these techniques, the known parameters of the original unmodified
structure are used to compute the new eigenvalues and eigenvectors of the modified
design. In addition, the modified problem is usually solved with a much smaller number
of degrees of freedom than the original system. Published work has however shown that
the accuracy of the predictions of the dynamic behaviour of the modified structure
depends on the accuracy of the original mode shape and frequency data [29,70]. Accuracy
here is taken to mean the presence of error in the original modal data and/or the truncation
error that is introduced by the inability to be able to describe the dynamics of a complex
structure in simple terms over a limited frequency range. It is the effect of the former

type of error on the predictions which this chapter will address.

Experimental errors in the measured mode shape vectors arise from broadly two sources,
namely; calibration errors which may manifest themselves as incorrect magnitudes of the
resulting modal vectors or errors due to geometry deficiency which give rise to spatial
aliasing or the absence of some degrees of freedom at the measurement points. While it is
known that the presence of error in the modeshape coefficients at modification attachment
points will introduce errors in the predicted dynamic behaviour [68,69,70,77], most of the
published work has only investigated the effect of missing rotational freedoms, of errors in
the translational vector components and of errors in the frequencies of the unmodified
structure. Although the literature is not entirely silent on the subject of the effect of errors

in the rotations on the predictions, most references on this phenomenon merely point out the
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presence of error in the predictions based on computed rotations but fail to relate the

magnitude of the error in the predictions to the magnitude of the error in the rotations.

Although methods for expanding modal data to include all the freedoms at all the
measurement points abound, the acceptability of a given level of error in the rotations and the
suitability of the technique generally should be judged by its ability to predict the dynamic
effects of structural modifications. Obviously, the better the approximating method of the
rotations is, the better the SDM predictions. This chapter therefore considers the accuracy
of the predictions of dynamic changes following structural modifications based upon modal
databases expanded using spline curve and surface fitting as discussed in the preceding
chapter. A brief exposition of modification theory precedes the discussion of the errors in
the predictions due to modifications involving lumped masses, a rotational spring and rib
stiffeners on beam and plate-like structures. To this end, the chapter endeavours to establish
how the type, location and severity of the modification affect the accuracy of the predictions.
A discussion of the sensitivity of the predictions to changes in the rotations is also included.
This attempts to establish how large an error in the estimated rotations is "acceptable”. In
addition, an attempt is made to relate the magnitude of the errors in the rotations to the

magnitude of the errors in the predictions using lumped-mass modification as a case study.

5.2 Structural Dynamics Modification Methods

Structural dynamics modification computations can be performed using either modal or
physical coordinates. One advanpage of the modal space approach over the physical space
approach is that only the eigenvalues and eigenvectors of the unmodified structure are needed.
In addition, all the matrices are normally considerably reduced in size thus greatly reducing
computational time and memory requirements. On the other hand, use of the physical
approach requires the stiffness, mass and damping matrices of the unmodified structure. In
studying the accuracy of the predictions from the two approaches, several researchers [68,69]
have shown that, in general, modal truncation was a significant limitation to the method. The
results showed that the errors in the predictions did not seem to be related to the severity of
the modification but rather to the absence of certain key descriptor modes in the databases.
That is, the prediction was hampered by modal truncation and not modification severity. In

addition, O'Callahan and Chou [78] demonstrated that truncation errors could be very severe
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if the structure was severely modified, such as changing to a clamped end boundary condition
from a free end boundary condition or adding a large stiffness, unless a near complete modal

database is used in the analysis.

The foundation of all the structural dynamics modification methods is that the eigenvectors
of the unmodified structure form a complete vector basis from which the motion of any
modified structure can be described. Depending on the form of the modification, SDM
methods can be classified into three main categories, as follows:

@ techniques based on small modifications

@ techniques based on localised modifications

@ techniques based on global modifications

Techniques based on small modifications borrow heavily from Rayleigh's Method [79] and
are founded on the premise that for small modifications, the mode shapes do not significantly
change. Variants of the approach lead to sensitivity-type formulations of the problem.
Techniques based on localised modifications are essentially available as the Local Eigenvalue
Modification Procedure [10] in which the eigenvalues of the modified structure are functions
of the modified mode shapes and the unmodified natural frequencies. In their investigations
on global structural modifications, Luk and Mitchell [12] considered a variety of methods,
namely; modifications performed in physical coordinates, modifications performed in both
physical and modal coordinates and modifications performed in modal coordinates. Their
work showed that the last method, which they called the Dual Modal Space Method (DMSM),
was the most efficient. For this reason, this method was used to predict the dynamic

behaviour of the modified structures in the case studies investigated in this work.

5.2.1 The Dual Modal Space Method

In the method, any number of mass, stiffness and damping modifications can be presented
simultaneously as a global change to the modal mass, stiffness and damping matrices of the
unmodified structure defined in the modal space of the unmodified structure (so-called modal
space 1). The dynamics of the unmodified structure can be described in physical space by

a set of homogeneous second-order differential equations in the form
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[M]x) + [Clx} +[K]ix} = (0) G.1
These equations are transformed into modal space 1 using the relationship
{x} = {q&l]{q} (5.2

where [¢,] is the matrix of eigenvectors of the unmodified structure scaled to give unit modal

mass and yield

[(m]ig) + [c]ig} + [k]ig} = {0} (5.3)

If the mode shapes are scaled to give unit modal mass and classical damping is assumed, the

modal space matrices become,

[¢1]T[M]{d’1]: I
CANGSIEAR 2Yw (5.4)

SR
This gives

I {gh+] 2vyo |igt+] > |lg} =1{0} (5.5)

When modifications of mass, stiffness and damping are applied to the structure, equation (5.1)

can be rewritten in the form
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[M+AM](%} + [C+ACIx) + [K+AK]x) = {0} (5.6)

Transforming this into modal space 1 gives

(1] + [Am]lig} + ) 2vew |+ [Ac]}{g)

+ w? |+ [Ak]|{g} = {0} 6.7

where [Am], [Ac] and [Ak] are the modification matrices transformed into modal space 1.
The solution of (5.7) gives the eigenvalues and eigenvectors {q,} of the modified structure
defined in modal space 1. These vectors can be readily transformed back into physical space

coordinates using

ul = [¢,] g} (5.8)

The eigenvectors of the modified structure initially have unknown scaling. These initial
solution vectors can be assembled into a modal matrix [y,] which can be used to transform
the modal mass of the modified structure, [m,], from modal space 1 into modal space 2,

which is the modal space of the modified structure as follows

[m,] = [, [m,] [¥,] (5.9)

[m,] will be a diagonal matrix, but its elements, m,,, will not, in general, be equal to unity.
These elements can however be used to scale the initial modal space 1 vectors, {q,}, to give

unit modal mass:

q,}, (5.10)

1y
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When the scaled {v, }r vectors are assembled into a new modal matrix, [@,], the final modal
matrix, [¢,], containing the modal vectors of the modified structure scaled to unit modal mass

can be generated:
(¢,] = [4,] [0,] (5.11)

For a structure with n degrees of freedom and a data set with p modes, [¢,] and [¢,] will be

(n x p) matrices and [y,] and [©,] will be (p x p) matrices.

It should be noted from equation (5.11) that the mode shapes of the modified structure are
formed as linear combinations of the unmodified mode shapes weighted by the modal space
solution vectors. Therefore, the initial model must include not only a sufficient number of
modes, but must also contain the correct modes [9] for the type and location of the
modification(s) to be made. The accuracy of the results can be expected to depend on the
type, magnitude and location of the modification and the accuracy of the initial modal data

as will be shown in later parts of this chapter.

In order to use the Dual Modal Space Method, two procedures, namely; MODS and EIGEN
were written. The procedure MODS served two purposes. Firstly, it was used to process and
format geometry, display and modal data for the fitting procedure, AUGFITTER. Secondly,
MODS was used to generate the modification mass, damping and stiffness matrices according
to the type and location of the modification. These matrices would then, along with the
augmented modal data following expansion, be submitted to the procedure EIGEN for the
formulation and solution of the new eigenvalue problem in modal space. Full details of each
procedure along with an overview of the entire system of procedures, and the associated file

manipulation are given in Appendix 1.

5.3 Modifications On the Cantilever Beam

The modifications used in these investigations were restricted to a lumped mass (with and
without rotational inertia), a rotational spring and a rib stiffener. The choice of these types
of modifications was governed by the fact that they provided different scenarios when relating

the errors in the predictions to the errors in the rotations. While lumped mass and spring
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modifications depend only upon the rotation and translation at the location where the
modification is made, a rib modification links the translations and rotations at several points

on the structure.

5.3.1 Mass Maodifications
The base structure used in this study was a steel cantilever beam, S00mm long, 25.4mm wide

and 12.7mm wide.

For the discussions which follow in the next two sections, the beam was modelled with ten
two-noded beam finite elements for which modal data (frequencies and mode shapes) was
obtained from finite element analysis for the first nine flexural modes. For the purposes of
this study, this data was taken to be sufficiently accurate since the errors in the rotations were
very small (less than 0.5% when compared with exact values). Much more importantly, the
effect of these discrepancies on the predictions is removed since, in the analysis, the
comparison base is the modal prediction based on the unseeded data. In order to understand
how a given level of error in the rotations affected the predictions, errors in the predicted
frequencies were investigated for a range of lumped mass modifications at the free end of the
cantilever in which the mass was kept constant at 0.2 kg (representing approximately '/, of

the mass of the beam) while the rotational inertia associated with it was varied.

In the interpretation of the results which follow, the approach adopted was similar to that used
by Tayeb [70]. A non-dimensional indicator of the severity of modification, the Inertia
Modification Ratio (IMR), was defmcd as the ratio of the added moment of inertia to the total
inertia of the beam (about an axis perpendicular to the beam and passing through one of its
ends). The effect of the modification on the resulting frequencies was expressed in terms of
the percentage error in the modal prediction of frequencies from modal data with the given
error in the rotation when compared to the modal prediction based on unseeded FE data.
Therefore, a negative percentage error indicated an under-prediction whereas positive
percentage errors indicated over-prediction. In this way, the effect of a given error in the

rotations was directly related to the magnitude of the error in the modal prediction.
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5.3.1.1 Understanding the Modification

From the outset and in order to properly interpret the results, the nature of the lumped mass
modification with increase in the value of the rotational inertia must be understood. Figure
5.1 shows the behaviour of the predicted frequencies from error-free data with increase in the
value of IMR. It is seen from the figure that the effect of the mass modification with
increasing IMR is to drop the frequencies of vibration. The higher frequency modes settle
down at their constant levels at lower values of the IMR than the lower frequency modes.
The results indicate that, generally, further increase in IMR beyond 10 has no appreciable
effect on the frequency for each mode. However, it will be seen that the fundamental
frequency was still dropping even for the largest IMR value used which was equivalent to an
inertia value of 3.0 kgm? (roughly 100 times greater than the inertia of the beam itself).
When this is viewed in the light of the movement of frequencies from those of the clamped-
free condition to the clamped-clamped condition, the continuing drop in the fundamental
frequency is then understood to be in keeping with the expectation that further increase in the
IMR value would see the fundamental frequency drop to zero while the rest of the frequencies
would settle at around those of the clamped-clamped condition. However, in this case neither
the mass nor the inertia are large enough for this condition to be reached. Instead, an
intermediate condition, which is close to the clamped-sliding condition, is achieved. In Figure
5.1, the exact clamped-sliding frequencies are included as asymptotic lines to illustrate this.
Observation of the mode shapes, a representative set of which is given in Figure 5.2 for an

IMR value of 114.5, in fact confirms the restriction in the slope at the free end.

An examination of the relative contributions of the original modes to the new modes
following modification according to equation (5.11), indicated that, from an IMR value of
0.01, contributions from the original modes to the modes immediately downstream become
increasingly significant. For example, the largest contributor to the new mode 5 is the
original mode 4 and that to mode 6 is the original mode 5. This is representatively illustrated
in Table 5.1 for mode 5. This fact is critical in understanding the effect of an error in the
modeshape vector of a given mode on the predictions of frequency as will be shown in the

next section.
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For the purposes of the discussion which follows, it has to be acknowledged that use of a
nine-mode database would produce significant modal truncation errors in the predictions as
demonstrated in Figure 5.3. Figure 5.3 shows an increase in the error of the prediction with
increase in mode number and the severity of modification. It will also be seen from the
figure that the errors in the predictions for each mode level off at the IMR value where the
frequency values were no longer transient (see Figure 5.1). Figure 5.3 indicates that for a
given modification, the error in the modal prediction of frequency increases with increase in
the mode number; an observation which is consistént with modal truncation. This problem
is however dealt with by using a modal prediction based on error-free data as the basis for
comparison. In this way, any error,introduced in the predictions based on seeded data is
directly related to the error introduced in the modal data since only one parameter is varied

at a time.

53.1.2 Relation Between the Magnitude of the Error In the Rotations and the
Magnitude of the Error in the Predicted Frequencies

In the following sections, an attempt is made to relate the magnitude of the errors in the

rotations with the magnitude of the errors in the predictions of frequency. At the same time,

the effect of a given level of bias error at selected rotational degrees of freedom is also

established. In each of the cases which are presented, a 10% bias error was introduced at the

tip rotation for a particular mode of the beam. This level of bias was chosen in order to

exaggerate the effects on the predictions.

(a) Discussion of the Results from the case of the Error in the Tip Rotation of the
First Mode of the Database
Figure 5.4a summarises the effect of mass modification at the free end of the cantilever using
a modal database which has a +10% error introduced into the FE tip rotation of mode 1 on
the predicted frequencies of the modified structure. It is clear that, for small amounts of
inertia addition, the frequencies of the new structure are still very close to those of the
unmodified structure. However, as the inertia is increased, the error in the modal prediction
for the first two modes is seen to rise up to a level which remains constant in spite of further
increases in the IMR value. While the frequency of the first mode is seen to be under-

predicted, that for mode 2 is over-predicted. The errors in the prediction of the frequencies
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of the rest of the modes (modes 3-9) in the database however remain virtually unchanged.
A closer examination of the errors in the predicted frequencies revealed that in fact the
frequencies for modes 3 to 9 were generally slightly under-predicted with a fall in the
magnitude of the error as the mode number was increased. While the magnitude of the errors
in the predicted frequencies beyond mode 2 were less than 0.2% and diminishing, the errors
for the first two modes, which were the largest, were just under 7%. The overall effect of
the seeding therefore was to introduce some flexibility into the modified structure resulting
in an under-prediction of the frequencies of all the modes in the structure except for the mode

adjacent to the first mode, which initially had the noise.

An alternative way of viewing the effect of the +10% error in the tip rotation for mode 1 was
to consider the relative contributions of the original modes to the new modes. It will be seen
from Figure 5.2 that the new mode 2 is very similar in shape to the old mode 1. This
observation is borne out by the fact that the relative contributions of the original modes 1 and
2 to the new mode 2, shown in Figure 5.5, are such that the contribution from mode 1
becomes dominant beyond an IMR value of 0.1. This explains why the new second mode
is significantly more sensitive to the error introduced to the tip rotation of the first mode than
the rest of the modes in the database to which the contributions from mode 1 were an order
of magnitude lower. Thus the presence of error in the tip rotation of the first mode was seen
to ‘contaminate’ the prediction of the adjacent mode. On the other hand, the error-free tip
rotations in the other modes had a ‘diluting’ effect on the original error. This was signified
by the magnitude of the error in the prediction of the frequency of the first mode which was
less than the magnitude of the error in the tip rotation. The observation is in agreement with
the findings reported by Tayeb [70] from his investigations on the effect of errors in the

initial translations and frequencies on the predictions.

Figure 5.4b shows the effect of the same modification but this time using a database with a
-10% error in the FE tip rotation of the first mode. This time the behaviour of the errors in
the predicted frequencies is seen to be reversed to that seen for the case when a +10% error
was introduced in the tip rotation of the first mode. This seeding therefore has, except for
the second mode, a stiffening effect on the modified structure. The relative magnitudes of

the errors are however similar. This was a heartening observation as it suggested that while
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the sign of the error in the rotation affected the resulting frequencies in a particular manner
(under-prediction or over-prediction), the magnitudes of the errors in the predicted frequencies
were unaffected. In both Figures 5.4a and 5.4b, at severe modification (IMR greater than 10
for this system), the error in the frequencies for mode 1 and 2 is seen to even out to around

6.5%.

While the behaviour of the relative modal contribution values is consistent with the assertion
that the new modes are formed as linear combinations of the old ones according to equation
(5.11), it does not offer any insights into either the manner of the predictions (i.e., the over-
prediction of the second mode frequency for the case of a +10% error in the tip rotation of
mode 1 or the reverse for a -10% error), or the magnitude of the error in the prediction of

frequency (6.5% in this case). The explanation is thus qualitative rather than quantitative.

In order to provide further insight into the contribution of the error in the rotations to the
errors in the predictions, the modification mass matrices in modal space (from equation (5.7))
were examined. This examination revealed that in the transformation of the modification
matrices from physical to modal space, as required by the dual modal space method according
to equation (5.4), the presence of any error in any modal vector component of a given mode
was reflected only in the elements of that mode in the modal space modification matrix (i.e.,
the row and column for that mode). For example, the error in the tip rotation of the first
mode was reflected in the elements of mode 1 only in the modal space mass modification
matrix (i.e., only the first row and the first column of the matrix reflected the error). It must
also be noted that the use of equation (5.4) produces symmetrical modal space modification

matrices which are however not diagonalised.

A summary of the errors in the modal space modification mass matrix elements as a result
of -10% and +10% errors in the tip rotation of the first mode is presented in Figure 5.6. It
is immediately seen from the error plots that the largest error which was introduced in the
elements of the mass matrix was in the element on the leading diagonal (m,,). This error is
seen to increase rapidly as the IMR value is increased. The error in the off-diagonal elements
however levels off at about 10% as the IMR value is increased beyond 1.0. In the case of

the leading diagonal element, the rise in the error continues up to around 18% (nearly twice
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the error originally introduced in the rotation) at an IMR value of 10. When this large error
in the leading diagonal is viewed in the light of the errors in the frequency predictions, the
'dilution’ effect of the error-free rotations is apparent. This is indicated by the magnitude of
the error in the predicted frequencies as shown in Figure 5.4 (about 6.5% for modes 1 and
2 and lower than 0.2% for the rest). However, it must be understood that there is no
suggestion of a quantifiable link between the errors in the modification mass elements and

the resulting predictions as will be shown later in this section.

An attempt to trace the errors from source to effect indicated that the initial error in the modal
vectors was initially amplified to around 18% in the leading diagonal element, my,, only (the
error was around 9% in the elements for the adjacent mode i.e., m,, and m,, and insignificant
(= 0%) in most) when the eigen problem was transferred to modal space using equation (5.7).
This amplified effect was however reduced to around 6.5% in the solution process when
simplifying the characteristic equation and solving for the frequencies. While such a
sensitivity analysis is possible for a 2 degree of freedom problem, it is not amenable to

problems with larger numbers of degrees of freedom.

The relationship between the magnitude of the error in the tip rotation for mode 1 and the
magnitude of the error in the modal prediction of frequency is presented in Figure 5.7 for an
IMR value of 114.5. The plots for the other levels of modification severity were similar. It
will be seen from the figure that there exists a reasonably linear relationship between the level
of error at the modification location and the level of error in the prediction of frequency.
This is particularly attractive since it offers guidance in estimating the accuracy of a
prediction for a known level of error at the modification location for the modification under
investigation. Analysis for the case of increasing under-estimation of the rotation at the tip
yielded similar magnitudes of the prediction error but with all the modes, except the second

mode, over-predicted as was shown earlier.

An alternative way of viewing the data is presented in figure 5.8 in which the effects of
‘contamination’' and 'dilution' are clearly demonstrated. The scale on the y-axis is non-
dimensional and represents the relative error in the prediction of frequency as the ratio of the

percentage error in the prediction of frequency to the percentage error in the rotation at the
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free end of the beam. A particularly interesting feature which is evident from the figure is
the level of ‘contamination’ of the second mode with increase in the level of error in the tip
rotation. It will be seen that the relative error in the frequency prediction is higher for the
second mode for magnitudes of the error in the tip rotation of 5% and above. It is also
interesting to note that, for the first mode, the relative error in the prediction of frequency
actually drops as the level of error in the tip rotation is increased. For example, for the IMR
value of 114.5 (Figure 5.8b), the relative error in the prediction ranges from about 0.8 for a
1% error in the tip rotation to 0.4 for a 100% error in the tip rotation. There is however no
obvious explanation for this behaviour. In addition, the results also indicated that, as would
be expected, the range of the relative error in the prediction of frequency for the first two

modes reduced as the IMR was reduced (compare Figures 5.8a and 5.8b).

(b) Discussion of the Results from the case of the Error in the Tip Rotation of the
Last Mode of the Database
In this case, a £10% error was introduced in the tip rotation of the ninth mode. The results
are presented in Figure 5.9 in the form of error plots with increasing severity in the
modification. As the IMR value is increased, the error in the predicted frequencies is seen
to rise for all modes until the stable state is reached at an IMR value of around 0.01.
However, the increase is moderate when compared to the cases where the error was
introduced to the tip rotation of the first mode. As would be expected, the error in the
predicted frequencies of the ninth mode, which had the initial error, is seen to be the largest
(about 1.9%). However, in contrast to the cases investigated before, contamination of the
adjacent mode (mode 8) is much less in this case (only about 0.65% error in the prediction).
This is however not surprising since the effect of the error in mode 9 on the prediction would
be to contaminate the mode immediately downstream (higher frequency) than the mode
immediately upstream (lower frequency). Figures 5.9a and 5.9b also show the 'dilution' of
the effect of introducing the error. This is reflected by the reduction in the error in the
predicted frequencies as one goes down to the fundamental mode of the database. The error
in the predicted fundamental frequency (furthest from the mode with the initial error) is, as

would be expected, very small (below 0.2%).
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The relative contributions of the original modes to the new modes were, in this case, observed
to follow a different pattern even though the new frequencies were under-predicted as in the
case of the +10% increase in the tip rotation of the first mode. Here there was increased
contribution from the original mode 9 to all the new modes except to the new mode 9 to
which the contribution was reduced. Figure 5.10 presents the modal contributions to the new
mode 9 from modes 8 and 9 which were the key contributors. It will be seen that although
the original mode 9 was still the main contributor to the new mode 9, there was a significant
contribution from the old mode 8 beyond an IMR value of 0.01. This explains why the error
in the frequency prediction of mode 9 was much lower than the 10% error initially introduced
into its tip rotation. The associated reduction in the error in the predictions of frequency
upstream of mode 9 (i.e., lower frequency modes) is also a consequence of the reduction in

the contributions from mode 9 to the other modes.

The overall effect of the seeding was to introduce flexibility into the new structure and hence
the general under-prediction of the frequencies. This was not unexpected as it was consistent

with previous observations in which the rotation was over-estimated.

The results from the corresponding analysis on the effect of seeding the largest tip rotation
in the database with a -10% error are summarised in Figure 5.9b. A reversal of the
behaviour, but with the same orders of magnitude of the error in the predicted frequencies is
immediately apparent. Examination of the relative contributions of the original modes to the

new modes also confirmed the reversal in the behaviour.

Figure 5.11 summarises the error in the elements of the modal modification mass matrix for
a positive bias error in the tip rotation. It will be seen that contrary to observations from the
case of bias error in the tip rotation of the first mode, the mass elements were over-predicted
although the resulting predictions of frequency were consistent with those seen for a +10%
error in the tip rotation of mode 1, i.e., under-prediction of the frequencies. It is also
particularly interesting to note that in this case, the error in the leading diagonal elemént, my,,
is higher (>20%) than that seen for the leading diagonal element, m,,, for the case with the
error in the tip rotation of the first mode (<19%). When this is viewed in the light of the

corresponding error in the frequency prediction which is lower than that seen for the case of
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the bias error in the tip rotation of the first mode, it confirms the qualitative nature of the

explanation of the effect of the modification on the prediction of frequency alluded to earlier.

The smaller errors in the predictions resulting from this seeding when compared with the case
when the noise was added to the tip rotation of the first mode suggests that the predictions
of the low frequency modes are more sensitive to the errors in the rotations than are

predictions of the high frequency modes.

From the smoothness of the error curves and the similarities in the magnitudes of the errors
in the predicted frequencies as shown in Figures 5.4 and 5.9, it may be concluded that an
over-prediction of the rotation at the modification location will result in an under-prediction
of the frequencies following a mass modification. On the other hand, if the value of the
rotation is under-estimated, the resulting frequencies will be over-predicted. This is consistent
with qualitative expectations since a restriction in movement (translational or rotational)
suggests higher stiffness and hence higher frequency while the reverse is true for excessive
movement. It is also clear from the foregoing discussion that a given level of error in the
rotations does not necessarily translate into the same level of error in the predicted
frequencies. The errors in the frequencies are seen to be much lower than the errors in the
rotations. This is however not surprising since error was introduced in only one mode shape
vector component. The other error-free components tended to moderate the influence of the

single error.

(c) Discussion of the Results from the Case of the Error in the Tip Rotation of the
Fifth Mode of the Database

Figure 5.12 summarises the effect of introducing a +10% error in the tip rotation of the fifth

mode in the database. In this case, it will be noted that the seeding leads to an under-

prediction of the frequencies of the low frequency modes up to the mode which initially had

the error. On the other hand, the frequencies for modes 6-9 were over-predicted. However,

it will be seen that the error in the prediction of the sixth mode was the largest.

While the complexity of a sensitivity analysis on the quantitative effect of the error in the tip

rotation on the predictions of frequency leaves a void on the discussion of Figure 5.12, the
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relative magnitude of the errors in the prediction of the sixth mode can be attributed to the
dominance of the relative contribution from the original mode 5 to the new mode 6. This is
illustrated in Figure 5.13a from which it is apparent that the new mode 6 has a relatively
smaller contribution from the original mode 6 beyond an IMR value of 0.005. Since the bias
error was in the original mode 5, the relatively larger error in the prediction of the sixth mode
is therefore not unexpected. It should also be remarked that the relative contributions from
the other modes in the database were all less than 0.1 each except that from mode 7 which

was about 0.17.

The variation of the relative contributions to the new mode 5 from modes 4 and S is
presented in Figure 5.13b. It will be noted that the new mode S is made up of predominantly
the original modes 4 and 5 beyond an IMR value of 0.007 with mode 4 being the dominant
contributor. It is therefore not surprising that the error in the prediction of the fifth mode is

less than the error in the prediction of the sixth mode.

The particular under-prediction of the frequencies of the modes upstream of mode 5 and the
over-prediction of the frequencies of the modes downstream of mode 5 is in this case
however not linked to the over-prediction of the modification modal mass elements which is
shown in Figure 5.14. Comparison of Figure 5.14 with Figure 5.12 does not reveal any direct
correlation between the two. It does, nevertheless, highlight the 'dilution’ effect of the error-
free rotations on the predictions which is indicated by the much smaller errors (less than 3%)
in the predictions. What is of pmiculm interest however is the fact that the largest error in
the mass elements was in the leading diagonal element, mys (about 21%), while the rest all
levelled off at just under 10%. It is once again evident that while the higher magnitude of
error in the prediction of the frequency of the mode upstream of the mode with the initial
error can be explained in terms of equation (5.11), the manner and actual magnitude of the

resulting prediction cannot be similarly dealt with.

(d) Discussion of the Results from the case of the Error in the Tip Rotations of all
the Modes in the Database
Figure 5.15 presents the effect of introducing a +10% error in the tip rotations of all the

modes in the database on the predicted frequencies. Although under-prediction of the
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frequencies is the common feature for all modes, it is clear that the relative magnitude of the
under-prediction cannot be easily related to the pattern and level of seeding. It is also evident
that the magnitudes of the errors in the predictions of frequency bear no correlation with those
seen when the error was introduced in the tip rotation of a single mode. The plot instead
reveals a peaking of the errors in the predicted frequencies, but at different IMR values for
each mode. However, when Figure 5.15 is viewed in conjunction with Figure 5.1, it will be
seen that the IMR values at which peaking of the errors in the predicted frequencies for
modes 2 to 9 occurs are consistent with the IMR values at which the predicted frequencies
drop as a result of the mass modification. In other words, the largest magnitudes in the errors
are seen in the region where the frequencies are transient from one steady state to another.
In the region where the frequencies are stable (Figure 5.1), the errors were very low (less than
1%). In the case of the fundamental mode, the continuing rise in the error is also consistent

with the continuing drop in the fundamental frequency as the IMR value is increased.

The variation of the errors in the predictions shown in figure 5.15 was attributed to a change
in the mix of the original modes in the formation of the new modes when the seeded database
was used. This is clearly illustrated in figure 5.17 for modes 1, 5 and 9 where the variation
of the discrepancy in the relative modal contributions to the new modes when comparing the
modal predictions based on unseeded and seeded databases is shown. It is clear that at low
IMR values, the changes in the modal contributions are very small. However, as the IMR
value is increased, there are significant differences in the mix of the old modes in forming
the new modes. These differences however diminish with further increases in the IMR value
beyond 10 for all modes except the fundamental mode for which the discrepancies are
observed to settle at around 10%. Thus, it is clear that introduction of the error in all tip
rotations introduced a variable truncation error in the predictions which was manifest in the

particular pattern of the errors in the predictions.

It has already been shown that for the tip mass modification, the relative modal contributions
to the new modes are dominated by the contribution from the mode immediately upstream
of the mode of interest. While this still holds in this case, there does not seem to be any
correlation between the relative modal contributions and the resulting frequency predictions.

The errors in the modal modification mass matrix elements, typically shown for mode 5
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elements in Figure 5.16 (the plots for the other modes were similar), also do not suggest any
correlation between these and the errors in the predictions of frequency. In this case, the
errors in the mass elements all level off at around 18% unlike in the cases when the error was
introduced in the tip rotation of an individual mode, i, where the largest error in the prediction

of the mass elements was at the leading diagonal element, m,,.

Notwithstanding the foregoing, the results indicate that the new fundamental mode suffers
most from the seeding while the highest frequency mode, mode 9, is least affected. This
confirms that predictions for the low frequency modes are more sensitive to errors in the
rotations than are predictions for the higher frequency modes. This is however not surprising
since an error in the tip rotation of a low frequency mode has a more significant effect on the
mode shape than an error in the tip rotation of a high frequency mode. This is because there
are more sign changes in the slope for the higher modes which tends to dilute the effect of

the error on the modeshape as a whole.

In the foregoing discussions of the effect of an error in the rotation entries at the tip of the
cantilever, an attempt was made to trace the errors from source to effect. While the data
indicates that errors in the rotations have an effect on the frequency predictions, it is clear that
although the effect is quantitative, it is not directly quantifiable. This is manifestly shown by
the absence of a link between the errors in the rotations and the errors in the modal mass
matrix elements on one hand, and the errors in the modal modification mass matrix elements
and the errors in the resulting frequency predictions on the other. This is attributed to the
difficulties which are associated with sensitivity analysis for systems involving more than two

degrees of freedom.

5.3.1.3 Effect of Errors in the Rotations on the SDM Predictions

(a) Analytical Data

In this series of tests, a mass of 0.2 kg having a moment of inertia of 0.3 kgm? was added
to the free end of the cantilever described in the previous section but modelled with 61
equidistant measurement points. The inertia value is roughly 10 times that of the beam itself
(ie., IMR = 11) and was chosen to exaggerate the effects of any errors in the calculated

rotations. The effect of such a large inertia is shown by the fact that addition of the mass
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with zero rotational inertia reduces the fundamental frequency from 42.1 Hz to 32.6 Hz,

whereas inclusion of the inertia drops this to 11.7 Hz.

Modal data for the first 28 flexural modes of the unmodified structure was obtained from the
analytical Euler-Bernoulli solution for a cantilever beam. Exact data was used in this case
since the object was to compare the predictions based on exact rotations with those based on
calculated rotations.. The large number of modes was chosen in order to minimize modal
truncation effects. The reduction in modal truncation effects was highlighted by the

participation of nearly all the original modes in the formulation of the new mode shapes.

Theoretical estimates of the rotations at the 61 measurement points were obtained by curve
fitting the original translational data using the interpolant which, as shown in Chapter 4, was
the best approximant for error-free data. Figure 5.18a presents the comparison of the errors
in the predicted frequencies from databases using exact and calculated rotations for a mass
modification which included inertial effects. It must be noted that, in this case, the calculated
and exact translations were equal and therefore had no bearing on the predictions. The
particular form of the plots in Figure 5.18a is seen to be a result of the effect of the inertia

alone as shown in Figure 5.18b where the effect of the mass was excluded.

The errors in the frequency predictions based on calculated rotations range from 0.7% for the
first mode to 4% for mode 28. When these errors are compared with the errors in the
calculated tip rotations which . ranged from -2.5% to 13% (as summarized in Figure 5.19),
the results are seen to be very good. Comparison of these results against those reported by
Green et al [30] for the same modification shows an improvement in the estimates of the
rotations and in the predictions. The similarities in the magnitudes of the error in the
predictions from the exact and expanded databases and the over-prediction of the frequencies
generally suggest that the errors in the predictions were largely due to modal truncation
effects and not due to errors in the rotations. This was confirmed by the observation that the
largest errors in the computed rotations were obtained for the higher frequency modes. The
better accuracy seen in the predictions based on calculated rotations beyond mode 10 is
explained by the relatively large over-estimation of the rotations in the higher frequency

modes. As shown earlier, this over-estimation of the rotations would lead to an under-
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prediction of the frequencies following a mass modification. However, in this case, because
some of the tip rotations in the database were under-estimated which would lead to an over-
prediction of the frequencies, the overall effect was to yield frequencies which were lower
than those arising from the exact database and which, in turn, were closer to the exact
solution for this modification. It is interesting to note that 18 of the tip rotations in the
database were under-estimated while 7 were over-estimated, albeit with much larger
magnitudes. The results therefore indicate the relative dominance of the under-estimated
rotations over the over-estimated values on the frequency predictions which was not

unexpected.

(b) Simulated Experimental Data

Predictions of the dynamic effects of mass modifications from simulated experimental data
were performed in order to establish whether the optimum approximant of the rotations had
to be mathematically accurate or whether an approximation in the ‘ball-park’ would suffice.
In this regard and for the same model of the beam described in the previous section (17 point
model), estimates of the rotations and the corresponding modal predictions of the effects of
the 0.2 kg mass with and without the inertia of 0.3 kgm? at the tip were computed for a range
of fits satisfying the boundary conditions at either the fixed end or the free end. Only the
first five modes of the 1-0-1-0- (with error at the tip) and 0-1-0-1-databases (see Chapter 4)
were used and in each case, the fit function was used to calculate translational as well as
rotational displacements, the former to utilise the smoothing effect of the fit function on the

original data. The results are summarised in Tables 5.2a and 5.2b.

For the test in which the moment of inertia was ignored, the differences between the different
fits were small and very similar to the predictions based on the raw (unsmoothed) data (albeit
with higher magnitudes for 0-1-0-1-data). This is however not surprising since the fits which
satisfied the boundary conditions for the cantilever already satisfied the fitting criteria for the
translations as was indicated in Chapter 4. Although the maximum errors in the smoothed
translations were 0.8% for the root boundary condition and 1.8% for the tip boundary
condition, the similarity of the predictions suggests that the predictions were relatively
insensitive to the discrepancies in the translations. For the 1% bias error in this data, the

benefits from smoothing are thus relatively small.
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Significant variations are, however, apparent when the moment of inertia is included and the
presence of rotational degrees of freedom is required. While errors of 13% in mode 5 may
appear large, these should be contrasted with an error of around 30% which would result if
the moment coupling were ignored. It will be recalled from the previous section that an
attempt was made to determine the effects of a given level of error in the rotations on the
errors in the frequency predictions. It was shown that a 10% error in the tip rotations of all
the modes led to a maximum error of about 9% in the prediction of the frequency of the
fundamental mode and a maximum error of about 1.5% for the fifth mode. In this case
however, it is seen that much smaller error values in the rotations (less than 0.2%) yield
errors of about 13 %. This has significant implications about the generality of applying the
findings to different database sizes although the structures are the same. In the case of the
FE data, a nine-mode database was used while in this case, a five-mode database was
employed. Thus, it is not surprising that the results from the nine-mode database are superior
although the errors in the rotations at the modification location were higher. This is further
evidence that the predictions are less sensitive to the errors in the rotations than to the effects

of modal truncation.

It was shown in Chapter 4 that the best fit function for estimating the rotations over the full
length of the beam was that for which the root rotation was minimised (see Table 4.2 for 0-1-
0-1-data). With regard to the SDM predictions of the mass modification, the expectation was
that this fit would yield the best results. However, the results were surprising as they
indicated that in fact superior predictions were obtained for the fit for which the second
derivative at the free end was minimised. This might have been expected, since the
modification site was at the free end. However, while the benefit in the quality of the
predictions is relatively small, it will be appreciated that in applications where it is known at
the outset that the modification site will be at the free end, the alternative fit criterion could

be used with little loss of accuracy.

It may therefore be concluded that for this modification, there is no benefit in searching for
a more accurate estimator of the rotations once the approximant for which the second
derivative at the tip is minimised is found. This would reduce the time required for searching

for the optimum estimator of the rotations.
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It will also be noted from Tables 5.2a and 5.2b that the predictions from the two databases
are very similar. This observation was however not surprising since the errors in the tip
rotations from the two databases had the same signs and were of the same orders of
magnitude. It is thus seen that for this modification, the predictions of frequency are not very
sensitive to the pattern of the errors in the initial data and also indicates the benefit, albeit

small in this case, which derives from smoothing.

(c) Real Experimental Data

A discussion of the accuracy of the SDM predictions based on a real experimental database
for a cantilever beam is given in Appendix 3. Although the results are not intended to
provide new insights, they provide further confirmation of the observation that the predictions
of the mass modification at the tip are not very sensitive to the errors in the rotations. The
results indicate that the errors in the predictions are less than 15% even for errors in the

rotations which are in excess of 40%.

5.3.2 Bending Stiffness Modification

In this case study, the effect of error in the rotations was studied by adding a bending
stiffness of 1 MNm/rad at the free end of the cantilever (see Figure 5.20). The effect of this
modification was to increase the frequency of the fundamental mode from 42.1 Hz to 67.9
Hz. The database used was the 61-point, 28-mode database previously described in section

5.3.1.3a for which the rotations were estimated using an interpolating spline.

Figure 5.20 shows the variation of the errors in the predictions of frequency when the
predictions based on interpolated rotations are compared with the predictions based on exact
rotations. It is apparent that the errors in the predictions are less than 0.4%, the largest errors
being for modes 21 to 25. When Figure 5.20 is seen in the light of Figure 5.19 which shows
the variation of the errors in the tip rotations, it is immediately clear that for the high
frequency modes (i.e., beyond mode 24), the errors in the predictions are seen to fall while
the errors in the rotations rise from beyond 5% to 15%. It is thus clear that the predictions
are not sensitive to the rising errors in the rotations. This is consistent with earlier
observations. However, the relationship between the under-estimation and the over-estimation

of the rotations shown in Figure 5.19 and the over-prediction and the under-prediction of the
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frequencies seen in Figure 5.20 is not immediately obvious. The upward turn of the error plot
in the figure is however consistent with expectation since, for stiffness modifications, an
under-estimate of the rotations at the modification location would lead to a corresponding

under-prediction of the frequencies.

5.3.3 Rib Stiffener Modifications

The steel cantilever beam used in the mass modification investigations was employed as the
base structure in this analysis also. The beam was modelled with 61 equidistant measurement
points. Ribs of the same width as the original cantilever but with various depths were added
along the full length of the cantilever. Rib depths of 10%, 50% and 100% of the original
beam were used to study the effect of the increase in the severity of the modification. The
required modification mass and stiffness matrices were obtained from a finite element
formulation in which the eccentricity of a stiffener is taken account of by using an offset
transformation [80]. The details of the offset transformation are given in Appendix 2. For
each modification, predictions were made using exact rotations and rotations calculated from
the exact translations using the interpolating approximation on a 28-mode database. Since
this modification linked all the rotations on the beam, it was envisaged that the study would
provide different insights into the effect of errors in the rotations on the predictions. This
modification also had the added advantage that it caused all the frequencies of the original
structure to shift by the magnitude of the percentage increase in the depth without changing
the resulting mode shapes. It was therefore envisaged that because the mode shapes were
unchanged, the predictions should not suffer from truncation effects as the new mode shapes

would be adequately represented by the original modal vectors.

Figure 5.21a presents the comparison of the modal prediction of the frequencies based on
exact data with the exact solution. Although the results show a rise in the errors in the
predictions with increase in the severity of the modification as would be expected, the distinct
shape of the error plots was not consistent with expectation. At the very least, some over-
prediction was expected as a result of truncation over the entire database. The plots show a
distinct change over from over-prediction at low frequency to under-prediction at higher
frequency. While the initial over-prediction is consistent with modal truncation effects (this

was borne out by the relative modal contribution values which had significant off-diagonal
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terms), it is clear that this effect was superseded by a more dominant effect which was
responsible for the distinct shape of Figure 5.21a. Attempts to explain the behaviour were
explored by performing FE analyses using the offset beam element. The results from these
tests, which are discussed in Appendix 2, pointed to the theoretical formulation of the offset
element as the probable cause for the distinct shape of the error plots. No further
investigations were performed on this aspect but it is obviously an area which requires further

attention.

Figure 5.21b presents the error in the modal predictions based on calculated rotations when
compared with modal predictions based on exact rotations. The plots show increasing under-
estimation of the frequencies from the expanded database with rise in the mode number.
When this is viewed in the light of the errors in the rotations, the averages of the moduli of
which are plotted in Figure 5.21c, it is seen that for the rib modification, under-estimation of
the rotations leads to under-prediction of the frequencies. This observation is consistent with
expectation since rib stiffener modifications are primarily governed by the stiffness matrix
such that an under-estimation of the rotations will result in lower values of the stiffness
matrix elements (when the eigen problem is transferred into modal space) thereby leading to
a corresponding under-prediction of the modified frequency values. This finding has also

been reported in published work involving rib-stiffener modifications [25,29].

Further examination of Figures 4.21b and 4.21c shows that the predictions of frequency are
relatively more sensitive to the errors in the rotations than was the case for the lumped-mass
and bending stiffness modifications which depended only on one rotation value (i.e., the value
at the modification location). While a 14% error in the rotation yielded a 4% error in the
frequency prediction for a lumped mass modification, an average error of 2.3% in the
rotations yielded a 1.5% error in the frequency prediction for the rib modification. This is
however not surprising since the error in the prediction is dependent on the estimates of

rotations at every point on the beam.

Finally, it may be remarked that the predictions of frequencies do not seem to be very
sensitive to the severity of modification. This is indicated by the relatively small increase in

the maximum error from 0.6% to 1.5% when the depth of the added stiffener is increased
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from 10% to 100% of the depth of the original beam. This is again not surprising since it
is indicative of the fact that the modeshapes of the modified structure are not different from

those of the base structure even with increased modification severity.

5.4 Modifications on Plate Structures

S.4.1 Free-Free Plate '

For this test, a free-free mild steel plate, 152 x 300 x 5.5 mm was used. The plate was
modelled using 16 thin plate finite elements ona 5 x § grid of measurement points. Modal
data for the first 20 modes was obtained from an FE analysis of the structure. Rotations were
also obtained from surface fitting using the interpolant. It should however be noted that the
fitting results indicated that the spatial description of the structure did not allow for accurate
representation of the last five modes in the database. This accounted for the significantly

higher errors in the rotations for these modes, as shown in Table 5.3a.

S5.4.1.1 Lumped Mass Modification

A mass of 0.2 kg with a moment of inertia of 0.3 kgm? about an axis parallel to the long side
of the plate was added to one corner as shown in Figure 5.22. To give an idea of the effect
of the large inertia applied, adding a mass of 0.2 kg with zero inertia reduces the fundamental
elastic frequency from 328 Hz to 272 Hz, but with the inertia included, the value is 106 Hz,

albeit with change in the resulting mode shape.

Table 5.3a gives the errors in thg DMSM predictions with and without the mass using data
sets based on calculated rotations when compared with modal predictions based on FE
rotations (column (2) in the table).  This excludes truncation effects in the comparisons.
The errors in the modal prediction using FE rotations when compared with the FE solution
are also included (column (1) in the table). The table also gives the error in the calculated
in-plane rotation at the modification location. Since the interpolant was used to estimate the
rotations, the discrepancies in the translations were insignificant and therefore did not affect
the predictions. The errors in the calculated rotations range from less than 1%, for the rigid
body modes, to about 130% for the tenth elastic mode. This large error was a result of a
difference in the sign of the computed rotation from that of the FE value. It is however

interesting to note that the error in the frequency prediction for this mode is only about 7%
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and is the maximum over the entire set of predicted frequencies. While the comparison of
the modal predictions based on FE rotations with the FE predictions (column (1)) indicates
that the frequencies were over-predicted, it is clear from column (2) that the predictions based
on interpolated rotations were, except for the first elastic mode, all under-estimated. It will
also be seen that the errors in the predictions based on interpolated rotations were generally

less than 1% except for modes 9, 10, 13, 16, 17 and 18.

An examination of the modeshapes following modification indicated that, as would be
expected, the modes which exhibited the highest prediction errors when compared with FE
predictions were the ones for which there was significant rotation at the attachment point
about the axis parallel to the long side of the plate (modes 7, 9, 12, 14, 16 and 18, column
(1) in Table 5.3a). These modes also exhibited large shifts in frequency after modification.
The results in column (2) also confirm that of the modes with the relatively large errors in
the rotations (modes 7, 9, 10, 13, 15, 16, 17, 18, 19, and 20), it was those modes with
significant rotation about the axis parallel to the long side of the plate (modes 9, 16, and 18)
at the attachment point which had the largest errors in the predictions (above 3%). Thus, it
is seen that the other modes, particularly the high frequency modes (upwards of mode 15),

were relatively insensitive to the errors in the rotations.

The lack of sensitivity of the predictions of frequency to the errors in the rotations is further
highlighted by comparing the results in Table 5.3a (column (1)) with the predictions based
on a relatively smoother approximation of the rotations (only one knot in each direction in
the plane of the plate) (see Chapter 4), shown in Table 5.3b. It will be seen that although the
errors in the computed rotations are higher than those given in Table 5.3a from interpolation,
the errors in the predictions exhibit the same orders of magnitude. In addition, the errors in
the predictions based on calculated translations and rotations in Table 5.3b are broadly similar
to those seen for the predictions based on computed rotations only. This is indicated by the
relative superiority of the predictions based on smoothed data (translations and rotation) to
those based on calculated rotations only (compare (3) with (2)). It will also be noted that the
under-prediction seen in Table 5.3a is also present in Table 5.3b. Comparison of the results
in the two tables thus suggests that, for this modification, a relatively loose approximation

yields rotations which are sufficiently adequate to produce comparable modification
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predictions with those from a database expanded by interpolation. This is in agreement with
the results obtained from the analysis on the cantilever beam using simulated experimental
data in which a 'ball park' approximation (within 20% of the correct value) was seen to yield
errors in the modification predictions which were under 10% . This is however not surprising
since for the number of measurement points used in this case, the approximation using one
internal knot in each direction actually had the same number of knots as the interpolating

approximation would have except that the value of the smoothing factor was higher.

5.4.2 Cantilever Plate

A mild steel cantilever plate, 500 x 150 x 5 mm was modelled using 140 thin-plate elements
on a 36 x 5 grid of measurement points as shown in Figure 4.27. Translations and rotations
were obtained from an FE analysis of the structure. Rotations were also obtained from

surface fitting using the interpolating approximation.

5.4.2.1 Lumped Mass Modification

A mass of 0.2 kg with a moment of inertia of 0.3 kgm? about an axis parallel to the long side
of the plate was added to a free corner of the plate (see Figure 5.22). The mass without any
inertia effects dropped the fundamental frequency of the plate from 18.7 Hz to 16.8 Hz.
Addition of the inertia further dropped the fundamental frequency to 6.96 Hz without any

change in the modeshape.

Table 5.4a summarises the results of the prediction for the case where the rotational inertia
is not included. Comparison of the modal prediction with the FE prediction showed some
very small discrepancies, the majority of which were less than 1% in magnitude. This was
not unexpected as the modification was largely dependent on the translations at the
modification site since no inertial effects were included. It should be understood that the
effects of truncation, albeit small, are also present in this comparisons. However, this is not
the main object of the study. The focal point is the inclusion of the inertial effects which
paints a very different picture as shown in Table 5.4b. Here, even the modal prediction based
on FE rotations predicted only 13 of the 20 modes predicted by the FE computation. While
the frequencies of some of the rest of the modes were close to those predicted by the FE

analysis, the mode shapes were significantly different. This was an indication that the
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predictions had suffered from serious truncation effects and therefore that the DMSM
computation was unable to form the new mode shapes from linear combinations of the
original mode shapes. While the added mass was less than 10% of that of the plate itself, it
was clear that the added inertial moment was sufficiently high to cause significant modal
truncation. This was demonstrated by the Modal Assurance Criterion (MAC) comparison of
the modal vectors of the unmodified structure with those of the modified structure. The
severity of the modification was illustrated by the significant departure from unity of the
values on the leading diagonal (only modes 1 and 3 had MAC values of 0.99 and 0.85 at the
leading diagonal) which, in turn, suggested significant changes in the mode shapes. This was
also buttressed by the observation that only 4 off-diagonal terms suggested any correlation
between the modified and the unmodified modeshapes. These correlations had MAC values
above 0.90 and occurred as follows: old mode 1 correlated with new mode 2 (MAC=0.99),
old mode 6 correlated with new mode 7 (MAC =1.00), old mode 10 correlated with new
mode 11 (MAC =0.97) and old mode 17 correlated with new mode 19 (MAC=0.94). It was
therefore not surprising that the predictions were so seriously affected by the effects of
truncation. Thus, it appears that the modification was so severe that the dynamic
characteristic; of the original structure had been significantly changed. The resulting failure

to predict all the new modes was therefore not surprising [78].

The errors in the modal predictions of frequency based on the expanded database when
compared with modal predictions based on FE rotations are summarised in Table 5.4b. The
errors in the estimated rotations at the modification location are also given (column (1)). It
will be seen that the errors in the frequencies of the modes which were successfully predicted
are acceptably low (ranging from -5.98% to 2.28%). When these are viewed in the light of
the errors in the rotations which are in excess of 100% for some modes, it is seen that the
predictions are not sensitive to the errors in the rotations. It will also be noted that although
the rotations at the modification location were, in the main, under-estimated (except for 3
modes), the frequencies were not correspondingly over-predicted. Five of the frequencies
were under-predicted while the rest were over-predicted. This behaviour is consistent with
that observed for the case of the mass at the free end of the cantilever in part (a) of section
5.3.1.3. That is, the relative mix of under-estimation and over-estimation of the rotations

leads to a particular mix in the over-prediction and under-prediction of the frequencies. In
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this case, the over-prediction of the majority of the frequencies is consistent with the under-

estimation of the majority of the rotations at the modification location.

5.4.3 Simply Supported Plate

A mild steel plate of dimensions 600 x 400 x 5 mm was used as the third case study in this
series. The plate was modelled using a 5 x 5 grid of measurement points thereby producing
16 four-noded plate elements (Figure 5.23). The plate was simply supported at the corners.
Modal data was obtained from FE analysis. Rotations were also computed as previously

described using the interpolating approximation.

54.3.1 Lumped Mass Modification

A mass of 0.2 kg with a mass moment of inertia of 0.3 kgm? about an axis parallel to the
short side of the plate (i.e., about the y-axis) was added at the centre of the simply supported
plate. The effect of this modification was to drop the fundamental frequency from 31.4 Hz
to 25.2 Hz. It will be understood that this modification had different effects on different
modes. For one mode, the modification had no effect at all (i.e., there was neither translation
nor rotation at the centre) while for others the mass had rotation only. For the remainder, the
mass had both rotation and out-of plane translation. An examination of the mode shapes, the
plots of which are given in Figure 5.24, confirmed this and in fact indicated that this
modification merely introduced a new fundamental mode while the frequencies and mode
shapes of the original modes remained virtually unaffected. That is, for example, the
frequency and mode shape of the.new mode 2 were very similar to those of the old mode 1

and so on.

The results for this modification are summarised in Table 5.5a. The last column in the table
shows the errors in the modal prediction using estimates of rotations from the interpolating
spline when compared with the modal prediction based on FE rotations. It must also be
understood that since an interpolating approximation was used, there were no discrepancies
between the calculated and FE translations and thus the translations had no effect on the

errors in the predictions.
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It will be seen from the results that the predictions for modes 1, 3, 4, 6 and 9 were error-free
whereas the predictions for the rest had appreciable errors, particularly modes 2 and 5. The
error-free predictions were not surprising since there was little or no rotation about an axis
parallel to the short side of the plate (i.c., the y-axis) at the modification location for these
modes. This has to be seen in the light of the observation that there was a correlation
between the new modes and the original modes as indicated above. It is thus interesting to
note that although the original mode 3 had an error of around 7% in the rotation at the
modification location, the prediction for mode 4, which correlated with it, was not sensitive

to this error (0% error in the prediction).

The high errors in the predictions of modes 2 and 5 were attributed to the observation that
these modes also had the largest shifts in frequency (59% and 36% respectively) as a result
of the modification. It is however interesting to observe that there were no errors in the
rotations at the modification location in the original modes with which they correlated (modes
1 and 4). Thus it is seen that these relatively large errors in the predictions were not due to
the errors in the rotations but due to the absence of key descriptor modes required to form

the new modes.

The 3% error seen in the prediction of mode 7 was attributed to the 39% error in the rotation
at the modification location for the original mode 6 with which it correlated. While there
was no error in the rotation at the modification location in the original mode 7, there was a
4.5% error in the frequency prediction of the new mode 8 with which it correlated. This
mode also had the third largest shift in frequency (around 30%) as a result of the
modification. Thus, the error in the prediction for this mode was not due to the error in the

rotation but due to truncation effects.

5.4.3.2 Rib Stiffener Modification

If a central rib stiffener was to be placed across the plate, as shown in Figure 5.23, the
connection could be idealised in one of two ways; namely by a substructuring approach or
by the dual modal space procedure. This case was chosen in part to allow comparisons to
be made between the two. Although the substructuring approach [70] gives good results

when compared with the FE prediction, as shown in Table 5.5b (column (2)), it requires
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separate modal data for both structures. If this is not readily available, it would be more
convenient to link the shared translations and rotations using the dual modal space method.
The required mass and stiffness matrices for the rib were, as before, obtained from the offset
finite element formulation (see Appendix 2). While the DMSM results using FE rotations
(column (1) in Table 5.5b) show good agreement with the substructuring resulits, the dual
modal space method has the added advantage of being quicker and cheaper [12].
Examination of the mode shapes of the modified structure, which are shown in Figure 5.25,
revealed that, except for mode 9, the new modes were similar to the original modes. Thus,

it was not surprising that the largest error in the predictions was obtained for mode 9.

The last column in Table 5.5b summarises the comparison of the modal predictions based on
rotations from an interpolating spline with the modal predictions based on FE rotations. It
will be noted that the frequency predictions for modes 3, 4, 6 and 7 have little or no error.
When these are viewed in the light of the errors in the rotations at the points of attachment
(Table 5.5¢), it is clear that these errors are a result of the very low error values in the
rotations for these modes. It is also interesting to note that although the longitudinal axis of
the stiffener had significant flexing for modes 4 and 7, this had little effect on the frequency

predictions since the errors in the rotations about the x-axis were very small.

The relatively higher error values in the frequency predictions for modes 1, 2 and 8 (i.e,,
0.3%, 0.1% and 0.4%) can be related to the relatively higher errors in the rotations at the
attachment points for these modes which were 15.8%, 7.5% and 39% respectively. However,

for the fundamental mode, the longitudinal axis of the stiffener does not flex.

The errors in the frequency predictions for modes 5 and 9 (which are the largest) are not due
to the errors in the rotations since these were zero (Table 5.5c). However, the stiffener axis
under-goes significant flexing for mode 9 (Figure 5.25) while this is not the case for mode
5. Thus the frequency predictions for these modes seem to suffer from truncation effects as
highlighted by the comparison of the modal prediction based on FE rotations with the FE

prediction of the modification.
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It will finally be noted from Table 5.5b that the overall errors in the predictions were small
(with a maximum value of 0.6%). This was not unexpected since the frequency shifts
produced by this modification were not large (only up to 3%). Nevertheless, the predictions
are seen to be relatively insensitive to the magnitudes of the errors in the rotations. However,
the under-prediction of the frequencies is consistent with the under-estimation of the rotations

about the x-axis as was observed in the case of the rib stiffener modification on the beam.

A comparison of the errors in the modal predictions (using the interpolated rotations when
compared with FE predictions) against the results reported by Green and Williams [30] for
the same modification indicated that the results from the present work were superior by an

average of about 30%.

The accuracy of prediction for a more severe modification was investigated using a central
rib stiffener with doubled cross-sectional dimensions (20 x 20 mm). The results are
summarised in Table 5.5d. The last column presents the comparison between modal
predictions based on calculated and Fe rotations. It should be understood that this
modification produced larger frequency shifts than the previous case, the largest being for
mode 7 (26%) and the smallest being for modes 3 and 8 (1% and 0.6%) respectively, with

the rest averaging at around 9-11%.

In this case, modes 2, 4, 7 and 8 had significant rotation at the points of attachment about the
x-axis, while modes 1, 3,4, 5 and 6 had significant rotation at the points of attachment about
the y-axis. The magnitude of the errors in the predictions of frequency for modes 1, 2, 4, 7,
and 8 are not surprising since these modes also had significant errors in the rotations about
the x-axis at the points of attachment. The 3.7% error in the prediction for mode 7, which
was also the maximum, was not particularly surprising since this mode had the largest shift
in frequency as a result of the modification. The very low error in the prediction for mode
3 was also not unexpected since, for this mode, there were no errors in the rotations about
the x-axis at the points of attachment and the frequency shift as a result of the modification
was very small. The errors in the predictions for modes 5 and 6 were attributed to the shifts
of frequency which were 9 and 11%. In addition, while the mode shapes for modes 1 to 4

were similar to those seen for the less severe modification above, the shapes for modes 5 to

141



8 were different from those seen earlier. This explains the error levels in the predictions for

modes 5 and 6.

Finally, it will be noted that although the rotations at the points of attachment were, in the
main, under-estimated, half of the frequencies were over-predicted while the other half were
under-predicted. Thus, it is seen that, in this case, the expected relationship between over-
estimation or under-estimation of the rotations with over-prediction or under-prediction of the
frequencies is not apparent. What is clear however is that the modes for which the
frequencies were over-predicted (modes 3, 4, 5 and 6) were those for which the errors in the

rotations were zero or nearly so.

5.4.4 L-Beam Plate Structure

Modifications on plate structures which have been presented so far are based on error-free
databases. However, the technique for estimating rotations which is proposed in Chapter 3
and investigated in Chapter 4 is intended for use on real experimental databases. The data
which was available for use in this case was not consistent with the findings on optimising
the performance of the approximating technique as presented in Chapter 4. For this reason,
the accuracy of the SDM predictions based on this experimental database is discussed in
Appendix 3. The appendix provides further confirmation for the observation that, for a mass
modification, the predictions are relatively insensitive to the errors in the estimates of the
rotations at the modification location. The data also highlights the fact that the exclusion of
rotational degrees of freedom results in very large errors in SDM predictions. In addition,
the results illustrate the benefit which derives from smoothing the original data for SDM

applications.

5.5 Effect of Seeding on the Accuracy of the Mode Shapes

One of the important considerations in a study such as this one is the determination of the
magnitude of the effect of a given level of error on the overall accuracy of the modeshape
vectors and hence on the predictions following a modification. While several techniques are
available for quantifying the comparison between mode shapes from different sources, the

Modal Assurance Criterion (MAC) is perhaps the most widely used.
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In order to determine the effect of the addition of error to one degree of freedom in the
modeshape vector in the original database on the modeshape vectors in the seeded database,
the MAC comparison of the databases with 1%, 5%, 10%, 20%, 50% and 100% error in the
tip rotation of the first mode of the cantilever against the error-free database was performed.
This was compared with the results of the auto-mac analysis on error-free data and the results
are presented in Table 5.6. While there was no change in the leading diagonal terms of the
MAC matrix up to the 50% error level, the off-diagonal terms showed some appreciable
discrepancy even for the case with the 1% error level. Departure from unity for the leading
diagonal terms was observed for the 50% error level (down to 0.97) and the 100% error level
(down to 0.91). When this is viewed in the light of the errors in the predictions of frequency
based on the seeded databases, it is apparent that the MAC is not a good indicator upon
which to gauge the effect of a given level of error in the rotations on the predictions of
frequency. For instance, while Figures 5.4 and 5.9 indicate appreciable error in the
predictions of frequency for a 10% error level in the tip rotation of the first and ninth mode,
the comparison of the MAC values for the comparison of error-free and seeded (10% error
in tip rotation) databases with the auto-mac computation on error-free data indicated no
change in the leading diagonal term, 2.6% change in the off-diagonal term for the second
mode, and discrepancies from 9% to 20% in the off-diagonal terms for modes 3 to 9. It is
therefore apparent that while the errors in the predictions of frequency are greater for the
mode with the noise in the tip rotation and the mode adjacent to it (modes 1 and 2
respectively), the MAC computation, on the other hand indicates that the corresponding MAC
values for these modes are least sensitive to the noise in the tip rotation of the first mode.
This feature was also observed for higher levels of seeding albeit with higher magnitudes of
discrepancy. This was attributed to the fact that the MAC computation is an integrating type
of computation and thus the effect of an error in a single mode would be insignificant in a
large database. It may therefore be concluded that the MAC comparison is not a satisfactory
indicator of the level of error in modeshape vectors for purposes of predicting the effect of

such errors on the prediction of structural changes.

5.6 Closing Discussion
The efficiency and, thus, the success of a method of estimating rotations from translational

data is measured by the success in using the expanded data in structural dynamics
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modification work and the comparison of the results with those from existing techniques. In
this regard however, it will be recalled from Chapter 2 that the majority of references cited
are silent on the performance of the techniques in SDM work. Of those in which the matter
is addressed [25,26,29,30], it was found that the errors in the prediction of structural changes
were generally less than 10% for error levels in the rotations of up to 100%. However, with
the exception of references [25] and [30], the rest did not provide a complete description of
the structural and/or database details to enable direct comparisons to be made. Nevertheless,
the analyses reported in this chapter have shown that the errors in the dual modal space
method predictions have generally been of a similar order of magnitude. While this is a very
welcome observation, it is however not surprising given that the errors in the prediction of
structural changes are less sensitive to errors in the estimates of rotations than to the effects

of modal truncation.

The work reported here has also provided valuable insights into the effects of errors in the
rotations on the resulting predictions of structural changes. However, the work has also
highlighted the limitations which present theoretical knowledge has in explaining the actual
magnitudes and the manner (under-prediction or over-prediction) of the predictions which

result from a given error mix in the modal vector components.

5.7 General Concluding Remarks

From the analyses reported in this chapter, it may therefore be concluded that:

1. the presence of error in a rotation vector component of a mode shape has an effect on
the predictions following a modification. This ‘contamination’ effect of the mode with
the error is, on the other hand, accompanied by a 'dilution’ effect on the predictions
from the error-free modes in the database (Figures 5.4 and 5.12).

2. errors in the rotation estimates do not necessarily translate to the same levels of
magnitude in the predictions following modifications. The magnitude of the error in
the predictions is, in the main, much lower than the magnitude of the error in the
rotations (i.e., a 10% error in the rotation gives up to about 6% error in the

predictions).
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10.

for a lumped mass modification on a cantilever beam, there exists a quantitative but
unquantifiable relationship between the error in the rotation at the modification
location and the error in the prediction of frequency (Figure 5.7).

for mass modifications, an under-estimation of the rotations has a ‘stiffening' effect on
the modified structure which leads to over-prediction of the frequencies. On the other
hand, an over-estimation of the rotations leads to under-prediction of the frequencies
(Figures 5.4 and 5.9).

for mass modifications, when errors are present in all the rotations at the modification
location, predictions for the low frequency modes are more sensitive to errors in the
rotations than are predictions for the higher frequency modes (Figure 5.15).

for rib stiffener modifications, an under-estimation of the rotations leads to
corresponding under-prediction of the frequencies (Figure 5.21b, Tables 5.5b and
5.5¢).

generally, the errors in the frequency predictions from the dual modal space method
are less sensitive to errors in the calculated rotations than to the effects of modal
truncation consequent upon the imposition of severe modifications.

a 'ball park' estimation of the rotations (within 20% of the correct value) is sufficiently
accurate to yield predictions which have an error of less than 10% error following a
modification (Table 5.2).

the Modal Assurance Criterion comparison is not a satisfactory indicator of the level
of error in modeshape vectors for purposes of predicting the effect of such errors on
the predictions of structural changes.

the proposed technique for expanding modal data to include the unmeasured freedoms
provides data which enables predictions of structural dynamics modifications to within
5% of the correct value.
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Figure 5.2: Predicted Modeshape Plots for the Steel Cantilever
with a Tip Mass (m=0.2 kg, IMR=114.5)
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Figure 5.5: Modal Contributions to mode 2 for the case of the
10% error in the tip rotation of the first mode.
Steel Cantilever with a tip mass (mass=0.2 kg)
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Figure 5.11: Errors in the Elements of the Modification Modal Mass
Matrix for +10% error in the Tip Rotation for mode 9.
Steel Cantilever with a Tip Mass (m=0.2 kg)
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Figure 5.12: Effect of a +10% error in the Tip Rotation for mode
5 on the Frequency Prediction of a Tip Mass
Modification on the Steel cantilever (mass = 0.2 kg)

0.9 1
0.8
0.7

0.6

05

San
Tl =l il = =N A

modal contribution value

04 -

frommode 5 from mode 6

[P - -

03

0.2 —rrrr TP e PP AT T

y o
1E-06 1E-05 0.0001  0.001 0.01 .1 1 10 100 1,000
inertia modification ratio

Figure 5.13a: Modal Contributions to mode 6 for the case of the
10% error in the tip rotation of the fifth mode.
Steel Cantilever with a tip mass (mass=0.2 kg)
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Figure 5.14: Errors in the Elements of the Modification Modal Mass
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Steel Cantilever with a Tip Mass (m=0.2 kg)
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Figure 5.16: Errors in the Elements of the Modification Modal Mass
Matrix for +10% error in the Tip Rotations for all modes.
Steel Cantilever with a Tip Mass (m=0.2 kg)
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Figure 5.18a: Comparison of the Modal Predictions using Exact
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solution for the Steel Cantilever with a Tip Mass
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Figure 5.18b: Comparison of the Modal Predictions using Exact
and Calculated rotations against the Analytical

solution for the Steel Cantilever with a Tip Inertia
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Figure 5.19: Errors in the Estimates of the Tip Rotations from
an Interpolating Spline Approximation on the Steel
Cantilever
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Figure 5.20: Errors in the Predictions of Frequency for the
Steel Cantilever with a Bending Stiffness at the
Free end (K=1 MNm/rad)
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Figure 5.21a: Comparison of Modal Predictions based on exact
data with analytical solutions for full-length/full-
width rib modifications on the Steel Cantilever
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Figure 5.21b: Error in the Modal Predictions based on Estimated
rotations when compared with the predictions based
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modification on the Steel Cantilever
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Figure 5.21c: Variation of the averages of the moduli of the
normalised errors in the rotation estimates from an
interpolating spline for the Steel Cantilever
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Figure 5.22: Mass Modification on the Free-free Plate

Not to scale
Dimensions in mm
Material: Mild steel

Figure 5.23: Simply supported plate with a rib stiffener
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Table 5.1: Relative Contributions to the New Mode 5 from the Original Modes for the Mass
Modification on the Steel Cantilever; Mass=0.2 kg

Contribution to mode 5 from mode
IMR
1 2 3 4 5 6 7 8 9

0.00001 -0.166 0.168 -0.187 -0.295 0.875 0.102 0.041 0.021 -0.011
0.0001 0.164 -0.168 0.188 0.300 -0.872 -0.104 -0.042 -0.022 0.012
0.001 -0.148 0.165 -0.199 -0.349 0.832 0.125 0.054 0.030 -0.016
0.01 -0.011 0.100 -0.210 -0.651 0.557 0.170 0.090 0.055 -0.032
0.1 -0.113 | -0.004 0.138 0.870 -0.336 -0.134 -0.077 -0.049 0.030
1.14 0.127 -0.010 -0.122 -0.894 0.307 0.127 0.074 0.047 -0.028
34 -0.128 0.011 0.121 0.895 -0.305 -0.126 -0.074 -0.047 0.028
57 -0.129 0.011 0.121 0.896 -0.305 -0.126 -0.073 -0.047 0.028
8.0 0.129 -0.012 -0.120 -0.896 0.305 0.126 0.073 0.047 -0.028
103 0.129 -0.012 -0.120 -0.896 0304 0.126 0.073 0.047 -0.028
229 0.129 -0.012 -0.120 -0.896 0.304 0.126 0.073 0.047 -0.028
459 -0.129 0.012 0.012 0.896 -0.304 -0.126 -0.073 -0.047 0.028
68.8 -0.129 0.012 0.120 0.896 -0.304 -0.126 -0.073 -0.047 0.028
1145 -0.129 0.012 0.120 0.896 -0.304 -0.126 -0.073 -0.047 0.028
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Table 5.2a:

Errors in the Predicted Frequencies from Fits on the 1-0-1-0- database
following a Mass Modification on the Steel Cantilever;

Mass = 0.2 kg, Inertia = 0.3 kgm?.

Comparison Base: Predictions based on interpolation on exact data.

Mass alone (no added moment of inertia) Mass and moment of inertia added
Unmodified Percentage error in prediction Pﬂc::gi:uzox in
Mode S"“{“z“)‘" Modified Modified
a structure . Minimum structure . Minimum
(Hz) Raw Minimum sccond (Hz) Minimum

data ro<?t derivative ro?t derivative

rotation at tip rotation at tip

1 423 33.0 -0.39 -0.19 -0.20 11.7 3.40 3.15

2 264.9 2235 -0.13 -0.11 -0.33 59.3 231 -2.52

3 741.8 6513 0.12 0.14 -0.10 3279 8.17 5.34

4 1453.7 1309.9 0.50 0.41 0.55 821.0 9.35 8.32

5 2403.0 2203.7 1.21 1.23 1.23 1545.9 12.15 13.11

Table 5.2b:

Errors in the Predicted Frequencies from Fits on the 0-1-0-1- database
following a Mass Modification on the Steel Cantilever;

Mass = 0.2 kg, Inertia = 0.3 kgm?2.

Comparison Base: Predictions based on interpolation on exact data.

Mass alone (no added moment of inertia) Mass and moment of inertia added
Unmodified Percentage error in prediction Pm:rn;gi:ﬁxor in
Mode Structure Modified Modified
(Hz) structure » Minimum structure N Minimum
(Hz) Raw Minimum second (Hz) d
data root derivative root derivative
rotation at tip rotation at tip
1 423 33.0 -0.07 -0.11 -0.12 11.7 4.34 2.67
2 264.9 2235 0.05 -0.15 -0.25 59.3 1.07 -2.96
3 741.8 651.3 0.26 0.17 -0.12 3279 10.30 4.73
4 1453.7 1309.9 0.67 0.49 0.27 821.0 11.05 7.83
5 2403.0 2203.7 1.46 1.29 1.18 15459 12.03 12.99
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Table 5.3a:  Free Plate With Mass at Corner, Mass = 0.2 kg, Inertia = 0.3 kgm?
Rotations Computed Using an Interpolant.

Error in Modal Prediction Error in Rotation
unmodified Modified (%) at modification
mode (Hz) (Hz) location
) @ (%)
1 -0.00028 -0.00034 0.0 0.00 0.01
2 -0.00018 -0.00019 0.0 0.00 -0.005
3 -0.00013 -0.0001 0.0 0.00 0.06
4 0.00019 -0.00004 0.0 0.00 -0.03
5 0.00023 0.00014 0.0 0.00 0.68
6 0.00035 0.00017 0.0 0.00 -0.24
7 3285 106.3 45.62 0.72 10.70
8 401.0 278.0 129 -0.81 -4.53
9 886.1 403.7 16.62 -3.14 -19.89
10 921.4 734.3 381 2.7 10.42
11 1309.9 9229 2.17 -0.70 -1.14
12 1510.5 1285.8 5.69 -0.81 -3.98
13 1545.1 1354.4 439 -3.32 -52.30
14 1844.6 15634 8.56 -0.99 0.75
15 2064.5 1806.6 1.80 -0.05 -13.34
16 2450.4 1987.1 14.40 -7.19 -129.61
17 2866.3 2316.6 5.56 -1.50 2721
18 3409.4 2785.9 8.86 6.16 71.90
19 35299 32202 3.96 -0.20 53.27
20 3632.3 3589.7 -1.62 0.00 49.29
Key:

¢)) Comparison of modal prediction using FE rotations with FE predictions
2) Comparison of modal prediction using interpolated rotations with modal
prediction using FE rotations
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Table 5.3b:  Free Plate With Mass at Corner, Mass = 0.2 kg, Inertia = 0.3 kgm?
Rotations Computed using a Smoothing Approximation

Ervor in Frequency Prediction Error in Ermor in
o @ G location location
(%) (%)
1 -0.00028 -0.00034 - 0.00 0.00 -1.60 127
2 -0.00018 -0.00019 - 0.00 0.00 -0.08 7.26
3 0.00013 -0.0001 - 0.00 0.00 -0.62 125
4 0.00019 -0.00004 - 0.00 0.00 0.60 112
5 0.00023 0.00014 - 0.00 0.00 1.01 7.32
6 0.00035 0.00017 - 0.00 0.00 027 723
7 328.5 106.3 43.27 -19.96 -19.96 -1.36 -22.10
8 401.0 278.0 1.31 -1.46 -1.17 -0.14 12.42
9 886.1 403.7 15.48 -12.80 -11.56 -3.92 24.52
10 921.4 7343 3.81 -2.83 -2.40 0.27 -22.22
11 1309.9 9229 1.99 -1.74 -1.77 -4.90 -25.72
12 15105 1285.8 5.92 0.18 -0.07 -1.08 -26.21
13 1545.1 13544 429 -2.53 -3.26 -0.63 60.52
14 1844.6 1563.4 8.39 0.02 -0.41 3243 -23.52
15 20645 18066 . 192 -0.28 -0.97 -3.37 -39.39
16 24504 1987.1 13.75 -1.83 =275 18.22 148.21
17 2866.3 2316.6 3.46 0.96 0.59 -271 -34.67
18 3409.4 27859 743 -0.25 0.42 -0.89 203.70
19 35299 32202 3.11 0.08 0.20 1.97 -46.61
20 3632.3 3589.7 0.30 -0.01 0.00 -0.82 -48.90

Key: (1) Comparison of modal prediction using FE rotations with FE predictions

(2)  Comparison of modal prediction using smoothed data with modal prediction
using FE rotations

3) Comparison of modal prediction using calculated rotations with modal
prediction using FE rotations
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Table 5.4a: Cantilever Plate With Mass at Corner,
Mass = 0.2 kg, Inertia = 0.0 kgm?

FE prediction Error in
mode Modal
Unmodified | Modified Pre?;f )ﬁon
(Hz) (Hz)
1 18.7 16.8 0.01
2 117.3 97.8 0.11
3 126.1 121.2 0.00
4 330.7 297.4 0.50
5 394.0 363.0 0.15
6 482.3 432.4 0.06
7 654.3 583.6 1.33
8 707.3 673.4 -0.15
9 1091.6 926.8 2.53
10 1095.3 1100.4 -0.60
11 1359.5 1228.1 1.30
12 | 15480 | 14444 | 073
13 1580.2 1566.2 -0.73
14 1687.2 1661.6 -0.33
15 1917.5 1823.6 1.06
16 2174.6 2077.1 0.40
17 2375.2 2308.8 1.82
18 2436.1 2376.3 -0.25
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Table 5.4b:

Cantilever Plate With Mass at Corner, Mass = 0.2 kg, Inertia = 0.3 kgm?

Key: (1) emor in calculated rotation at modification location (%)

173

unmodified Modified conr:/;[a\r(i:son Modal prediction (12) f:;:"i::::‘();?)l
mode plate (Hz) '(’::; (mod. vs ) .
unmod.) FE Calculated FE rotations
rotations rotations
1 18.7 7.0 0.99 -19.0 79 8.0 1.27
2 117.3 23.7 0.00 6.6 29.4 30.0 2.04
3 126.1 105.2 0.85 -0.7 108.3 108.3 0.00
4 330.7 131.6 0.00 5.6 153.8 157.3 2.28
5 394.0 325.3 0.29 -5.7 - - -
6 482.3 363.4 0.00 -100.0 357.9 357.6 -0.08
7 654.3 431.9 0.00 2.2 432.6 4334 0.18
8 707.3 624.7 0.56 -15.4 - - -
9 1091.6 677.1 0.00 -20.0 661.5 660.9 -0.09
10 1095.3 966.0 0.01 -584.8 1020.4 1017.1 -0.32
11 1359.5 1117.8 0.00 -2 - - -
12 1548.0 1226.2 0.06 -3.8 1267.7 1288.5 1.64
13 1580.2 1465.2 .11 -43.9 1482.3 1480.4 -0.13
14 1687.2 1593.4 0.04 -5.8 - - -
15 1917.5 1685.5 0.00 -83 - - -
16 2174.6 1845.6 0.02 -81.6 1836.9 1839.0 0.11
17 2375.2 2137.8 0.01 -18.0 - - -
18 2436.1 2368.7 0.55 -12.1 2329.0 23523 1.00
19 2891.1 2399.2 0.00 -385.9 - - -
20 3009.4 25274 0.67 -20.6 2907.0 2733.3 -5.98
Others 385.2 393.2
738.9 751.9
1181.3 1184.0
1615.5 1641.2
1857.8 1888.1
2263.1 2300.5
2612.1 2656.2




Table 5.5a:  Simply Supported plate with Mass at Centre; m = 0.2 kg, I = 0.3 kgm?,

Error in rotation at Error in
unmodified Modified Modal Prediction modification location Frequen
mode Plate Plate using FE %) Pm?iia;oz);
(Hz) (Hz) rotations (Hz) (%)
8, 9,
1 314 252 30.8 0.00 0.00 0.00
2 74.7 30.8 339 -0.95 0.00 25.37
3 917 74.7 74.7 0.00 -6.86 0.00
4 119.1 105.3 119.1 0.00 0.00 0.00
b 185.6 119.1 127.7 0.00 0.00 30.46
6 201.9 185.6 185.6 0.00 -38.92 0.00
7 237.9 207.2 219.2 0.00 0.00 3.28
8 3235 2262 226.4 -2.66 0.00 4.46
9 380.6 3235 3235 0.00 -39.86 0.00
Table 5.5b:  Simply Supported Plate with Rib-Stiffener
(Rib Stiffener cross-section: 10 x 10 mm)
unmodified Modified Modal Error in Frequency Prediction (%)
mode Plate Plate Prediction FE
Hz Hz rotations
(tHz) ¢z) H2) a @ o)
1 314 30.5 30.6 0.33 033 -0.33
2 74.7 724 725 0.14 0.56 0.14
3 91.7 92.0 92.1 0.11 -0.33 0.00
4 119.1 120.8 120.9 0.08 -0.08 0.00
5 185.6 189.9 191.0 0.58 2.32 -0.63
6 2019 2039 2039 0.00 -0.98 0.00
7 2379 2420 242.8 0.33 0.00 0.04
8 3235 3152 3177 0.79 0.00 -0.35
9 380.6 3813 385.9 1.21 0.03 -0.49

(1) FE rotations, (2) substructure method, (3) Fe translations and calculated rotations
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Table 5.5c:  Errors in the Computed Rotations at the Points of Attachment of the Rib

Stiffener on the Simply Simply Supported Plate

Percentage error in calculated rotation at point
mode 11 12 13 14 15
6, 6, 6, 0, 6, 9, 0, 9, 0, 0,
1 -15.77 0.00 39.50 0.00 0.00 0.00 39.50 0.00 -15.77 0.00
2 <132 0.00 2.17 0.00 -0.95 0.00 217 0.00 -1.32 0.00
3 0.00 997 0.00 -8.73 0.00 -6.86 0.00 -8.73 0.00 -9.97
4 045 0.00 -0.06 0.00 0.00 0.00 -0.06 0.00 -0.45 0.00
5 0.00 -12.50 0.00 -18.06 0.00 0.00 0.00 -18.06 0.00 -12.50
6 0.00 -18.17 0.00 -29.15 0.00 -38.92 0.00 -29.15 0.00 -18.17
7 -5.55 0.00 211 0.00 0.00 0.00 2.11 0.00 -5.55 0.00
8 -38.78 0.00 12.03 0.00 -2.66 0.00 12.03 0.00 -38.78 0.00
9 0.00 -4.99 0.00 -50.25 0.00 -39.86 0.00 -50.25 0.00 -4.99
Table 5.5d: Simply Supported Plate with Rib-Stiffener
(Rib Stiffener cross-section: 20 x 20 mm)
Error in Frequency Prediction
unmodified Plate Modified Plate Modal Predictions using (%)
mode (Ha) (Hz) FE rotations (Hz)
FE translations .and calculated
rotations
1 314 282 29.1 -1.72
2 747 66.4 67.5 -1.63
3 91.7 92.6 93.7 0.85
4 119.1 129.6 1302 1.38
S 185.6 206.7 2122 278
6 2019 220.0 230.4 3.56
7 2379 300.8 313.0 -3.71
8 323.5 3253 317.6 -1.92
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Table 5.6: MAC Comparisons of Modal Databases for the Cantilever with and
without Error in the Tip Rotation of the First Mode

Error in the Tip Rotation of Mode 1
Mode Compared
with mode 1 0% 1% 5% 10% 20% 50% 100%
1 1.00 1.00 1.00 1.00 1.00 0.97 091
2 039 0.39 0.39 0.40 0.41 0.43 0.46
3 0.08 0.08 0.08 0.09 0.10 0.12 0.16
4 0.11 0.11 0.11 0.12 0.13 0.16 0.20
5 0.06 0.06 0.06 0.06 0.07 0.10 0.14
6 0.07 0.07 0.07 0.08 0.09 0.12 0.17
7 0.05 0.06 0.06 0.06 0.07 0.11 0.16
8 0.07 0.08 0.08 0.08 0.10 0.14 0.21
9 0.07 0.07 0.07 0.08 0.10 0.15 0.23
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CHAPTER 6

GUIDELINES FOR OPTIMUM PERFORMANCE,
CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

This study has endeavoured to contribute towards the development of a quick but effective
technique of expanding experimental modal data to include the unmeasured degrees of
freedom for structural dynamics modifications. To this end, the study has attempted to

answer two important questions. These are:

1. How accurate are the estimates of the rotations from the spline approximations?
This is an important consideration since errors in the modal vector values at
modification sites affect the accuracy of the predicted effect of the modifications.

2. What are the effects of errors in the rotations on the accuracy of the predictions
of dynamic changes following structural modifications? This is the true measure of
success or failure since the suitability of an expansion technique is judged by its ability

to predict the effects of structural modifications.

Detailed discussions and conclusions which were drawn from the analysis are given at the end
of each relevant chapter and will not, therefore, be repeated here. Nevertheless, for
completeness, the main points of the discussions are summarised here. Consequently,
guidelines on the optimal use of the proposed technique of estimating rotational degrees of
freedom are presented. Finally, the major conclusions of the work along with recommendations

for further work are presented.

6.2 Summary of the Discussion of the Results and Implications

6.2.1 Estimation of Rotational Degrees of Freedom

In an attempt to provide an answer to the first question above, this work has identified and
considered the effect of several parameters on the accuracy of spline curve and surface fitting.

These include the density and distribution of the measurement points on the structure, the
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smoothing factor which in turn controls the number of knots in the fit function and the level

of error in the initial data.

While the analysis indicated that the interpolating spline was the best estimator of rotations
from error-free data, it was apparent that interpolation was undesirable for noisy data and it was
necessary to search for the optimum approximation using some suitable acceptability criteria.
It was also shown that while the method was able to provide acceptable estimations of rotations
away from the boundaries once the underlying mode shape function had been picked up, it was
unable to truly represent the mode shape functions at and near the boundaries. However, it was
shown that once the minimum number of measurement points between nodal lines was met (at
least two), the inclusion of an additional point near the boundaries dramatically improved the
estimates of the rotations there. Consequently, it was demonstrated that boundary conditions
were suitable acceptability criteria for optimising the performance of the approximation method.
Although the First-Order Difference computation was not included in the approximation
algorithm, a separate analysis indicated that the computation was a useful indicator of the level
of smoothing required (which in turn is a measure of the level of noise in the initial data) prior

to fitting.

In the analysis, it was shown that the accuracy of the estimates of rotations is dependent on the
spatial description of the mode shapes. The data indicated that the level of smoothing required
increases with the amount of noise and with the complexity of the mode shape function, the
resulting errors in the rotations from noisy data being generally under 10% provided there are
at least two measurement pointé between nodal lines for the highest mode of interest. When
this is compared with the results reported in the investigations which used polynomial or spline
functions to estimate rotations [24,29,30] which yielded error levels of between 15% and 70%
for comparable test cases, the present method is seen to be superior. Even when compared with
the more accurate FE-based mapping, condensation and expansion methods [24,25,26] which
offer errors of up to 5% for beam type structures, it is apparent that the present method is very
attractive as it is much quicker and simpler. While the level of error in the original
translational data affects the accuracy of the estimates of rotations, this work has shown that
the precise pattern of the errors does not appear to influence the quality of the estimates

obtained.
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Surface fitting results indicated that the estimates of the rotations about the in-plane axes were
dependent on the modelling of the structure with regard to the number of measurement points
in each direction and the level of smoothing used. Thus the choice of axes during the
formulation of the problem has to take account of the end-use of the required rotational entries.
The study on noisy data (Appendix 3) has indicated that as in the case of curve fitting, the
approximation which minimises the slope at the fixed end also minimises the overall error in
the rotations. Although it was not specifically investigated for plate structures, it is envisaged
that the requirements for measurement point distribution established for curve fitting will also
apply for surface fitting. Where the cross-section of the plate structure demands treating the
structure as separate planes, as in appendix 3, it has been shown that, at the intersection of the
planes, where more than one entry of the rotation was generated, the entries to be retained were,
where applicable, those from the planes with the larger cross-sectional dimensions. Finally, it
has been shown that for the same controlling parameters, the estimates of rotations from curve

fitting are superior over those from surface fitting.

6.2.2 Structural Dynamics Modification Predictions

The main finding from the SDM predictions performed in this work was that the errors in the
predictions were generally less sensitive to errors in the estimated rotations than to the effects
of modal truncation consequent upon the imposition of severe modifications. However, the
analysis also highlighted the difficulty associated with attempts to establish the relationship
between cause and effect with regard to the effect of errors in the estimates of rotations on the
errors in the predictions of the effects of structural changes. This was especially pertinent in
the situations where the modification was such that it linked several rotational degrees of
freedom. Nevertheless, the analysis on mass modifications indicated that, an over-estimation
of the rotation at the modification location leads to under-prediction of the frequencies
following a modification with the reverse being true for an under-estimate of the rotation. For
rib stiffener modifications, under-estimation of rotations leads to under-prediction of the
frequencies. Thus it is seen that the effect of under-estimation or over-estimation of the
rotations on the predictions of structural changes is dependent on the type of modification

considered.
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6.3 The Key Questions and Guidelines for Optimum Performance

From the foregoing, the approximation to be used for estimating rotations in a given situation

will therefore depend on the answers to the following key questions:

@
(i)

(i1i)
(iv)
)

(vi)

(vii)

What is the level of error in the original data?

How many measurement points are available and where are they located on the
structure? This limits the number of modes which can be acceptably expanded.
How many modes are there in the data base? This is closely linked to the
number of available measurement points.

Is the original data real or complex?

Is the measurement accuracy the same for all the data points in the data base?
What type of structure is being investigated? This determines the choice of the
method of approximation to be used between curve or surface fitting.

What is the end-use of the expanded data? If the end-use of the data is
structural dynamics modification, what type of modification is to be applied and

where is it to be located?

It is apparent that answers to these questions provide guidance on the use of spline curve and

surface fitting for estimating rotations from translational modal data. In this regard, the

following guidelines thus emerge:

O
O

The best estimator of rotations from error-free data is the interpolating spline.
With real-world (noisy) data, interpolating should be avoided since it picks up
all of the noise in the measured data.

The general distribution of measurement points should reflect the shape of the
highest mode of interest. In particular, satisfactory estimates (less than 10%
error) can be expected if there are at least two measurement points between
nodal lines.

Additional measurement points should be located near the boundaries if there is
an expectation that these regions will be required as modification sites.

For structures with one or more clamped boundaries, the fit giving the best
overall estimates of rotation is that which minimises the slope at the clamped
boundaries. However, each clamped boundary will have its own optimum fit.

Thus the fit to be used will be that which gives the best overall estimates.
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Although this work has not investigated the applicability of this guideline to
plates, it would be expected that this should hold for plate structures as well
since the boundary conditions associated with rectangular plates are similar to
those associated with beams.

O Where estimates of rotations are required at free or simply-supported boundaries,
there is benefit (more than 5% improvement in the predictions) in setting the
fitting criterion to minimise the second derivative of the displacement at the
boundary.

O When the rotation is required at a point or at points in a line, curve fitting
should take precedence over surface fitting as it provides better estimates of
rotations.

O For plates, the orientation of the global axes should take account of the fact that
the accuracy of the rotations is particularly sensitive to the density of
measurement points in each in-plane direction and the level of smoothing used.

O Where the cross-section of a plate structure requires treating the structure as
separate planes during surface fitting, the rotational entries to be retained at the
lines where the planes intersect are those from the planes with, where applicable,

the larger cross-sectional dimensions (Appendix 3).

6.4 Conclusions

6.4.1 Estimation of Rotations

1.

While the use of cubic spline curve fitting for estimating rotational degrees of freedom
had previously received some attention, its applicability on real experimental data had
not been established. In addition, the use of bicubic surface fitting has not been hitherto
investigated. This work has identified five parameters which control the accuracy of
the estimates of rotations from translational data using spline approximations of the
mode shape functions; namely the smoothing factor, the number and location of the data
points on the structure, the level of error in the initial data and although it has not been

investigated in this work, the weighting of the data points.
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The results in the analysis have indicated that the proposed curve and surface fitting
method using cubic splines provides a quick and simple, but versatile and effective
method of estimating rotational degrees of freedom of structures for many engineering
applications. It is however acknowledged that the application of the method to circular
structures will require the use of polar coordinates and that in such applications, the
tangential components of the displacements cannot be used in the fit. In the case of
curved beams, it is envisaged that the technique will be applicable provided the out-of
plane displacements are much larger than the in-plane displacements which are not

usable by the method.

The ability to generate data for unmeasured freedoms (both translational and rotational)
from the fit function is particularly attractive for structural modification applications.
In addition and although this feature has not been investigated in this thesis, the
capability of fitting through points which are arbitrarily located on the structure is
particularly attractive as it provides the opportunity of analysing structures for which it
is physically impossible to obtain measurements in straight lines or on a rectangular

grid.

This 'modeshape’ expansion approach presents a number of practical advantages over
FE based expansion methods: there is no need to perform FE analyses of the structure
thus CPU power (since smaller amounts of computational effort are required) and
storage requirements are smaller. However, the relative computational costs still need

to be established.

6.4.2 Structural Dynamics Modification Predictions

It will be acknowledged that the problem of relating the effect of errors in the rotations to the

errors in the predictions is an extremely difficult task since several parameters are involved.

These include the number of measurement points on the structure and the number of the modes

of vibration which are of interest; the geometry of the structure and the associated boundary

conditions and the type and location of the modification. In addition, it is an extremely difficult

if not impossible task to trace the errors from source to effect. Therefore generalisations about

the applicability of the expanded data to different types of structures and modifications should
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be made and treated with great caution. In this regard, while some of the following conclusions
(1, 2 and 5) may be universally applicable, it is prudent that all the conclusions are viewed in

the light of the structures which have been used in the investigations unless otherwise stated.

1. Although it is well known that the accuracy of the predictions of the dynamic behaviour
of a modified structure depends on the accuracy of the original modal data, the effect

* of the errors in the rotations on the predictions has not been hitherto well documented.

It was, however, shown in Chapter 5 that structural dynamics modification predictions

are more sensitive to the effects of modal truncation consequent upon the imposition of

severe modifications than to the errors in the estimates of the rotations.

2. The investigations have established that predictions of the low frequency modes are
more sensitive to errors in the computed rotations than are the predictions of the higher
frequency modes. Typically, predictions of the low frequency modes for which the
errors in the rotations were smaller (generally less than 7% when smoothing) had the
largest errors in the predictions (generally greater than 10%). However, as one moved
up the modes, the predictions of frequency were seen to be less sensitive to the errors
in the rotations. This was evident in that errors in the rotations at the modification
location which were in excess of 100% for these modes yielded errors in the predictions

of frequency which were less than 10%.

3. The cases studied in this work have shown that the effect of under-estimation or over-
estimation of the rotatior;s is dependent on the type of the modification being
investigated. While under-estimation of the rotations leads to over-prediction of the
frequencies for a mass modification, for a stiffness modification, under-estimation of the
rotations leads to under-prediction of the frequencies. This is consistent with reported

findings in published work {25,29].

4. Since the main objective of expanding translational modal data to include the
unmeasured rotations (and other required unmeasured translations) at specific locations

on a structure is to allow for moment transfers which are needed in SDM applications,
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the proposed technique provides data which is sufficiently accurate (up to 10% error in
the rotations) for the structures investigated in this work (generally less than 5% error

in the predictions).

S. From the beam analysis performed in this work, it has been shown that a 'ball park'
estimation of the rotations (within 20% of the correct value) is sufficiently accurate to
yield acceptable predictions (up to 10% error) following a modification. It must
however be recognised that the magnitudes of the errors in the predictions are dependent

on the severity of the modification.

6.5 Recommendations for Further Work

The result of the work carried out in this study was the development of an analytical technique
capable of estimating the missing rotational degrees of freedom along with any unmeasured
translations. The study has identified how the performance of the estimating technique can be
optimised for the best performance in structural dynamics modification work. However, the
following recommendations are seen as necessary extensions and logical developments of the

work carried out in this study:

1. While the effects of measurement errors on the predictions are well documented and
hopefully well understood, these errors cannot yet be quantified by analysis. The
development of a method of determining the magnitude of the measurement errors
present in a modal data base is a logical next step. When the magnitudes of these
errors are known, they can be correlated with the errors in the predictions thereby
making it possible to make corrections. However, it is acknowledged that this is a very
difficult, if not impossible task. Thus, the alternative of improving existing
measurement techniques or developing new, more accurate measurement techniques,

such as current efforts with laser technology, seems to hold greater chance for success.

2. While this work has used only real modal data in the analysis, it is known that in the
instances where mode shape data is markedly complex, expansion of such data to
include the unmeasured degrees of freedom may lead to gross errors. An extension of

the estimation method used in this work or the development of new techniques to
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handle complex data would, to a great extent, enhance the range of applicability of

complex modal data in structural dynamics modification work.

Although the proposed technique is capable of handling data with different measurement
accuracy by applying variable weighting to the data points prior to fitting, this feature
was not utilised in this work. Further investigation of this capability is therefore

required in order to establish its validity boundaries.

The unexpected poor performance of the dual modal space method (and the FE method)
in predicting the full-length, full-width rib-stiffened cantilever using the offset beam
formulation suggests the need for further investigation of the offset beam formulation

in order to enhance its utilisation.

Since rib stiffener modifications link several degrees of freedom on a structure, the
errors in the predictions cannot be easily related to the errors in the rotation estimates.
Development of a method of relating the errors in the rotations to the errors in the
predictions for this and other related modifications such as substructuring would
advance understanding of the effect of errors in the rotations on the predictions and

would provide a platform for initiating corrective action.

The work reported in this thesis has mainly considered a cantilever beam and several
plate structures. It is however acknowledged that the conclusions drawn from the
analysis may not be uni;/e‘rsally applicable to the wide range of structural geometries
and types of modifications. Further investigations on a wide range of structural
geometries will enhance the range of applicability of the proposed technique and also

provide a ready reference database to the user of the technique.

o0o
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APPENDIX ONE

SOFTWARE DESCRIPTION

ALl Introduction

This appendix provides a detailed description of the software which was developed for the
work reported in this thesis. To begin with, a general overview of the system of computer
programs, termed the Structural Dynamics Modification (SDM) system, is given. A
discussion of the details of the individual procedures is then given. In each case, the

flowchart is included.

The link between experimentation and curve fitting was an important consideration in this
work. Experimental modal parameters were exported from the STAR software to the
main-frame computer in Universal File Format (UFF). In order to facilitate this data
transfer, the procedure UFFREADER was developed. The flowchart for this procedure is
also included in this appendix.

Al.2 General Description of the Structural Dynamics Modification Software

The system of computer programs for expanding translational modal data to include the
required rotations and solving the eigen problem of the modified structure consisted of
three main computer programs, namely MODS, AUGFITTER, and EIGEN. The computer
programs and the associated data files were held in four libraries named SDMFOLDER,
WORKLIB, DATALIB and SDMMODLIB. SDMFOLDER held all the computer
programs, WORKLIB held the intermediate files containing geometry and display
sequence data and the modification matrices, DATALIB was the user's data area
containing the initial and augmented modal data files. The general print file which held
all the output data for the complete run was held in this library also. SDMMODLIB held

all the modification files.

The three system programs were run successively beginning with the procedure MODS.
MODS processed and formatted geometry and display sequence data for the fitting

procedure and also generated the modification mass, damping and stiffness matrices.
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AUGFITTER performed the expansion and therefore produced the required rotational entries
at each point. The third program, EIGEN, solved the eigen problem of the modified structure
and formatted the resulting data in Universal File Format in readiness for transfer to the
STAR modal analysis system for display and further processing. The system was activated
by the command SDM(PHIIN=libname.filename, PHIOUT=libname.filename,
MODS=libname.filename, PRINTFILE=libname.filename) under which a series of machine

commands for the sequential operation had been compiled.

Figure Al.1 shows the lay-out of the SDM system including the internal file manipulation.
For completeness, the link to the STAR modal analysis package (and hence the test bed) is
also included. The flowchart for the sequential operation of the SDM system is presented as
Figure A1.2 while the commands for the sequential operation of the system are given in

Listing A1.1.

Two input files were required upon entry into the system, namely the input modal data file,
PHIIN, and the modifications file, MODSFILE (shortened to MODS in actual operation).
PHIIN contained the number of modes in the database, the total number of measurement
points, the number of degrees of freedom for which entries were available at each
measurement location (3 or 6), the number of measurement points in the x and y-direction
(not applicable for curve fitting), a tag to identify whether smoothing or interpolation was
required and the actual modal data. The modification file contained the title of the job,
structural geometry and display sequence data (connectivity), modification data stating the
type (mass, damping, linear spring or rib stiffener) and location(s) of the modification and the
associated parameters, the type of the modification material and the associated properties.
This file also held information about whether augmentation was required or not, whether
smoothed translations (where applicable) were to be retained or not, whether it was curve
fitting or surface fitting required, whether in the case of curve fitting, motion was in two
directions and the number and list of the fitting planes. In the display sequence data list, each
measurement point was also assigned the number of the plane in which it was to be used

during fitting. This information was especially useful in the case of surface fitting where a
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measurement point might have to be defined in two fitting planes (if it was at a joint line, for
example). Samples of the formats of the files PHIIN and MODSFILE are given in Listings
A1.2 and A1.3 respectively.

The file PHIOUT was the main output file containing the eigen solution of the modified
structure. A similar format to that used for the file PHIIN was used for this file to facilitate

its use as an input file should the need arise.

Al.2.1 Procedure MODS

The procedure MODS, the format and philosophy of which were due to Green [81], was used
to read and process the modifications file, MODSFILE. The information held in this file was
processed using column headers and modules. The subroutine SPOT was used to identify
whether the line contained module identifiers, column headers or numbers such as
coordinates, display sequence data or modification details. For the preparation of the
modification matrices and tagging of the points to be used in fitting and/or evaluation, the
subroutine ACTION was used.

The output from this procedure, which was the processed coordinates with the associated tags,
the display sequence data and the modification mass (DELTAM), damping (DELTAC) and
stiffness (DELTAK) matrices, was separately stored in intermediate files. The coordinates and
display sequence information were also written to the output UFF file for the modified
structure. This file would later have the modal data from the solution of the eigen problem

appended to it.

Figure A1.3 gives the flowchart for the procedure MODS.

Al1.2.1.1 Coordinate Transformation

In the definition of the fitting problem, it was recognised that the line or plane of the fit may
not always lie in the global x-direction for curve fitting or the global x-y plane for surface
fitting. It was therefore necessary to transform the global axes to a local set of coordinates
such that the line of curve fitting was always the local z-direction and the plane of surface

fitting was always the local z-x plane. This transformation involved the rotation of the global
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axes about the global x, y and z axes in turn, to produce the new set of local axes X,y and
z. The angles required for the transformation were obtained using the structural geometry
and trigonometric properties. These were then used to assemble the matrices for
transformation to and from the local axes using the subroutine MATMAK. Fitting was
carried out in the local axes to produce a set of local rotations which were then transformed
back into the global coordinate system. The subroutine TRANS was used to effect the

transformation from global to local axes and vice-versa.

The need to realign global axes into local ones also demanded that the modification matrices
had to be assembled in local axes and then transformed into the global axes before storage.
In the case of the rib modifications, the modification matrices were formulated using the
offset beam element in local axes and were transformed to the structural points using the

subroutine OFFTRANS.

A1.2.2 Procedure AUGFITTER

The procedure AUGFITTER was the main focus of the work reported in this thesis since the
estimation of the rotations was carried out here. The expansion of the modal data was
performed, a single mode at a time, in local axes using the NAG subroutines E02BEF for
curve fitting and EO2DDF (smoothing) or EO2DAF (interpolating) for surface fitting. The
transformation from global to local axes and vice-versa was done using the same subroutines

as in the procedure MODS.

AUGFITTER required translational modal data and processed geometry and display sequence
data (from MODS) as input data. The flags relating to whether augmentation was required,
whether curve or surface fitting was required and whether, in the case of curve fitting, there
were two directions of motion were contained in the file containing the processed geometry

data.

The fit functions obtained from the subroutines EO2BEF and E02DDF or E02DAF were
differentiated and evaluated using the NAG subroutines EO2BCF and E02DEF for curve and
. surface fitting respectively. The subroutine EO2BCF evaluated and differentiated the curve

fit function and also evaluated the derivative while the surface fit function was evaluated
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using the subroutine EO2DEF. Subsequent partial differentiation of the surface fit function
and evaluation of the derivatives were performed by the subroutine EO2BCFE. It must be
noted that the optimisation conditions were applied following the evaluation of the fit function
and its derivative(s) but in local axes. The output from this procedure was stored in the file
PHIINAUG. It must be remembered that PHIINAUG would not only contain modal entries
at the measurement points, it would also include the entries for other non-modal points which

may have been included in the geometry definition for purposes of locating modifications.

Figure A1.4 presents the flowchart for this procedure.

A1.2.3 Procedure EIGEN

The procedure EIGEN, based on a code by Green [81], was used to transfer the modification
matrices to the modal space of the unmodified structure (modal space 1) and to formulate and
solve the eigen problem for the prediction of the dynamic effects of structural changes to the
original structure. The input data to this procedure was the augmented data file, PHIINAUG,
and the modification matrices, DELTAK, DELTAC and DELTAM.

Transfer of the eigen problem to modal space 1 was effected by the subroutine MODAL
while the NAG subroutine FO2GJF solved the eigen problem. Since the output from the NAG
eigen solver contained both negative and positive eigen values, it was necessary to sort the
output such that only the positive eigen values and their associated eigen vectors were
retained. It will be noted that at this stage, the solution vectors were in modal space 1. It
was therefore necessary, for purposes of display and further processing (if required), to

transfer this data into the physical space of the modified structure.
While the output from this procedure was stored in the file PHIOUT, it was also written to
the UFF file (which at this stage already contained the coordinate and display sequence

information from MODS) in preparation for transfer to the STAR package.

The flowchart for this procedure is given in Figure A1.5.
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AlL.3 Linking the Test Bed with the SDM System

In order to facilitate data transfer from the test bed to the main-frame computer, on which the
SDM system was installed, the procedure UFFREADER was developed. This procedure was
used to read the modal data from test, which was in Universal File Format, and to
subsequently format this data for entry into the procedure AUGFITTER. Geometry and
display sequence data was also formatted according to the MODSFILE format.

Development of the code for the procedure UFFREADER was based on the use of two copies
of the input UFF file. From the first copy, all the data was read as characters. These were
then used to identify and classify the various types of data lines in the line recognition
subroutine SPOT using pre-defined records. The actual numbers were read from the second

copy of the UFF file after they had been identified as such from the first copy.

This procedure was activated by the command UFF in which the command structure required
to successfully run the procedure was compiled. The flowchart of the procedure is presented

in Figure A1.6. The command sequence is also given in Listing Al.4.

00o
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read augmented modal
data and modification matrices

transfer problem
into modal space 1

formulate matrices
for the eigen problem

1
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write results to
PHIOUT and UFF file
STOP

Figure Al1.5: Flowchart for EIGEN
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Listing A1.1: Sequential Command Structure of the SDM System

PROC SDM IS (LITERAL PHIN,LITERAL PHIOUT,LITERAL MODS,
LITERAL PRINTFILE:="WORKLIB.PRINT")
BEGIN
SEND_MESSAGE(" ")
SEND_MESSAGE(" STRUCTURAL DYNAMICS MODIFICATIONS")
SEND_MESSAGE(" Mechanical Engineering Dept.")
SEND_MESSAGE(" Nottingham University")
SEND_MESSAGE(" ")
ALBL(*NAGEF)
STRING WORK:="WORKLIB.MODS",

DC:=":DELTAC",

DK:=":.DELTAK",

DM:=": DELTAM",

GEOM:="WORKLIB.GEOM",

CONECT:="WORKLIB.CONECT",

PHIAUG:=PHIIN+"AUG",

PRINT:=PRINTFILE

UFF:="UFFLIB.UFFFILE"
ULB(WORKLIB)
GWF(TEMP,INITSIZE=7168)
CNF(VAL PRINT,FUNIT=PRINT,INITSIZE=7168, MAXSIZE=7168,LIST=N)
CNF(VAL UFF,FUNIT=8, ACCESS=W,MAXSIZE=1024,LIST=N)

BEGIN
CNF(VAL MODS,FUNIT=1,ACCESS=R,LIST=N)
ECCE(VAL MODS,VAL WORK,CONTROL)
CNF(VAL WORK,FUNIT=2,ACCESS=R,LIST=N)
CNF(VAL PHIIN,FUNIT=3,ACCESS=R,LIST=N)
CNF(VAL DM,FUNIT=11,ACCESS=W,LIST=N)
CNF(VAL DC,FUNIT=12,ACCESS=W ,LIST=N)
CNF(VAL DK,FUNIT=13,ACCESS=W,LIST=N)
CNF(VAL GEOM,FUNIT=14,ACCESS=W,LIST=N)
CNF(VAL CONECT,FUNIT=15,ACCESS=W,LIST=N)
CF77(SDMFOLDER.MODS,LIST=NONE,SWCHECKS=NONE)
RUN(SDMFOLDER.MODS,DFILE=WORKLIB.DIAG)
SEND_MESSAGE("PHASE 1 COMPLETED")
END
CNF(TEMP,FUNIT=PRINT,LIST=N.MAXSIZE=7168)

BEGIN
CNF(VAL PHIIN,FUNIT=3,ACCESS=R,LIST=N)
CNF(VAL PHIAUG,FUNIT=4, ACCESS=W,LIST=N)
CNF(VAL GEOM,FUNIT=14, ACCESS=R,LIST=N)
CNF(VAL CONECT,FUNIT=15,ACCESS=R,LIST=N)
CNF(DATALIB. THTXLP1,FUNIT=9,ACCESS=W,LIST=N)
CNF(DATALIB.THTXLP2,FUNIT=10,ACCESS=W,LIST=N)
CF77(SDMFOLDER.AUGFITTER,LIST=NONE,SWCHECKS=NONE)
RUN(SDMFOLDER.AUGFITTER,DFILE=WORKLIB.DIAG)
SEND_MESSAGE("PHASE 2 COMPLETED")
END

APF(TEMP,VAL PRINT)
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CNF(WORKLIB.UFF,FUNIT=8, ACCESS=W,LIST=N)

BEGIN
CNF(VAL PHIAUG,FUNIT=4,ACCESS=R,LIST=N)
CNF(VAL DM, FUNIT=11,ACCESS=R,LIST=N)
CNF(VAL DC,FUNIT=12,ACCESS=R,LIST=N)
CNF(VAL DK,FUNIT=13,ACCESS=R,LIST=N)
CNF(VAL PHIOUT,FUNIT=5,ACCESS=W,LIST=N,INITSIZE=1024, MAXSIZE=1024)
CF77(SDMFOLDER.EIGEN,LIST=NONE,SWCHECKS=NONE)
RUN(SDMFOLDER .EIGEN,DFILE=WORKLIB.DIAG)
SEND_MESSAGE("PHASE 3 COMPLETED")
END
APF(TEMP,VAL PRINT)
APF(WORKLIB.UFF,VAL UFF)
SEND_MESSAGE("SDM COMPLETED")
END
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Listing Al.2a: PHIIN Input Data File - 3 DOF Format

nmodes nnodes ndof inter mmz mmx
FREQ(1) DAMP(1)

PHI(1,1,X) PHI(1,2,X) PHI(1,3,X)... PHI(1,nnodes,X)
PHI(1,1,Y) PHI(1,2,Y) PHI(1,3,Y)... PHI(1,nnodes,Y)
PHI(1,1,Z) PHI(1,2,Z) PHI(1,3,Z)... PHI(1,nnodes,Z)
FREQ(2) DAMP(2)

PHI(2,1,X) PHI(2,2,X) PHI(2,3,X)... PHI(2,nnodes,X)
PHI(2,1,Y) PHI(2,2,Y) PHI(2,3,Y)... PHI(2,nnodes,Y)

PHI(2,1,Z) PHI(2,2,Z) PHI(2,3,Z)... PHI(2,nnodes,Z)

FREQ(nmodes) DAMP(nmodes)

PHI(nmodes,1,X) PHI(nmodes,2,X) PHI(nmodes,3,X)... PHI(nmodes,nnodes,X)
PHI(nmodes,1,Y) PHI(nmodes,2,Y) PHI(nmodes,3,Y)... PHI(nmodes,nnodes,Y)
PHI(nmodes,1,Z) PHI(nmodes,2,Z) PHI(nmodes,3,Z)... PHI(nmodes,nnodes,Z)

Listing A1.2b: PHIIN Input Data File - 6 DOF Format
nmodes nnodes ndof inter mmz mmx

FREQ(1) DAMP(1)
PHI(1,1,X) PHI(1,1,Y) PHI(1,1,Z) PHI(1,1,6X) PHI(1,1,6Y) PHI(1,1,6Z)
PHI(1,2X) PHI(1,2,Y) PHI(1,2Z) PHI(1,2,6X) PHI(1,2,8Y) PHI(1,2,6Z)

PHI(1,nnodes,X)  PHI(1,nnodes,Y) PHI(1,nnodes,Z) PHI(1,nnodes,6X) PHI(1,nnodes,0Y)
PHI(1,nnodes,0Z)

FREQ(2) DAMP(2)
PHI(2,1,X) PHI(2,1,Y) PHI(2,1,Z) PHI(2,1,6X) PHI(2,1,0Y) PHI(2,1,0Z)
PHI(2,2,X) PHI(2,2,Y) PHI(2,2,Z) PHI(2,2,6X) PHI(2,2,0Y) PHI(2,2,6Z)

PHI(2,nnodes,X)  PHI(2,nnodes,Y) PHI(2,nnodes,Z) PHI(2,nnodes,0X) PHI(2,nnodes,0Y)
PHI(2,nnodes,0Z)

FREQ(nmodes) DAMP(nmodes)

PHI(nmodes,1,X) PHI(nmodes,1,Y) PHI(nmodes,1,Z) PHI(nmodes,1,6X) PHI(nmodes,1,0Y)
PHI(nmodes,1,0Z)

PHI(nmodes,2,X) PHI(nmodes,2,Y) PHI(nmodes,2,Z) PHI(nmodes,2,6X) PHI(nmodes,2,8Y)
PHI(nmodes,2,6Z)

PHI(nmodes,nnodes,X) PHI(nmodes,nnodes,Y) PHI(nmodes,nnodes,Z) PHI(nmodes,nnodes,0X)
PHI(nmodes,nnodes,0Y) PHI(nmodes,nnodes,07)
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Listing A1.3: MODSFILE Input Data File Format

TITLE: (up to 60 characters in length)

ROTATIONS: NO/YES (only one space after the colon)

MOTION IN 2 DIRECTIONS? NO/YES (only one space after the colon)

SMOOTHED TRANSLATIONS REQUIRED? NO/YES (only one space after the colon)
SINGLE VARIABLE? NO/YES (only one space after the colon)

NUMBER OF FITTING PLANES =1 (up to ten planes may be defined)

LIST OF PLANES
1

GEOMETRY (module header)

NODE X Y Z  (column headers)
0.00000 0.00000 0.00000 (all dimensions in m)
0.02500 0.00000 0.00000
0.05000 0.00000 0.00000
0.07500 0.00000 0.00000
0.10000 0.00000 0.00000

[ N S

Note: The number of nodes in this module will correspond to the number defined in PHIIN.
Any node number greater than NNODES is considered a non-modal node, i.e.; one for
which modal displacements are not available but are required for modification or
otherwise. The required displacements are generated from the fit function.

CONNECTIVITY (Display Sequence)
NODE PLANE

1 1 (the start of a new line in the display sequence is indicated by 0)
2 1
3 1
4 1
5 1
MASSES
NODE MASS X IY 1z

DAMPERS
FROM TO COEF  TORS

Note: COEF defines the damper coefficient while TORS is the torsional damping coefficient.
A value of zero in either the FROM or TO columns specifies that the point is to be tied
to ground.

SPRINGS
FROM TO STIF TORS
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Note: A value of zero in the FROM or TO columns indicates ground.
STIF and TORS are the linear stiffness (N/m) and the torsional stiffness (Nm/rad) of the
spring respectively.

RIBS
FROM TO IN_PLANE OUT PLANE AREA J MATERIAL EXOF EYOF

Note: AREA denotes the rib cross-sectional area. IN_PLANE and OUT_PLANE are the
moments of area. EXOF and EYOF denote the offset of the rib and MATERIAL denotes
the material number (should match the value in the MATERIAL module). J is the polar
moment of inertia of the cross section.

MATERIAL
NUMBER E G RO

Note: NUMBER denotes the material number specified in the RIBS module. E, G and RO are
the Young's modulus, Torsional modulus and density of the material.

END

Note: Al values in the MASSES, DAMPERS, SPRINGS, RIBS and MATERIAL modules must
be in SI units.
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Listing Al.4: Command Structure for the UFF file Reading Procedure

PROC UFF IS (LITERAL INUFF)

BEGIN

SEND_MESSAGE(" ")

SEND_MESSAGE(" UFF FILE READING MODULE")

SEND_MESSAGE(" DEPT. OF MECHANICAL ENGINEERING")

SEND_MESSAGE(" Nottingham University")

SEND_MESSAGE(" ")

ULB(UFFLIB)

STRING WORK:="WORKLIB.INUF",
PHIIN:="UFFLIB.PHIIN",
MODS:="UFFLIB.MODSFILE"

CNF(VAL INUFF,FUNIT=7,ACCESS=R,LIST=N)

ECCE(VAL INUFF,VAL WORK,CONTROL)

CNF(VAL WORK,FUNIT=4,ACCESS=R,LIST=N)

CNF(VAL PHIIN,FUNIT=9,ACCESS=W,LIST=N)

CNF(VAL MODS,FUNIT=8,ACCESS=W,LIST=N)

CF77(UFFREADER,LIST=NONE)

RUN(UFFREADER)

SEND_MESSAGE("READING OF UFF FILE COMPLETED")

END
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APPENDIX TWO

THE OFFSET BEAM ELEMENT

A2.1 Introduction

In his study of the vibration of eccentrically stiffened plates, Davis [80], took account of
the eccentricity of a stiffener by using an "offset” beam element. This element is obtained
by applying a transformation to the stiffness and mass matrices of the simple beam
element. Three key conclusions ensued from his work:

@) good agreement with exact frequencies was obtained for most modes of
vibration,

(i)  special constraints did not have to be applied between the beam and the plate
elements in order to take account of the offset of the rib,

(ili)  large under-estimates were made in the frequency of vibration of the systems
if the eccentricity of the stiffening beams was not taken into account (the error
in the fundamental frequency when the stiffeners were taken as simple beams
was of the order of ten times greater than when they were idealised with the
offset beam).

For these reasons, the analysis involving rib stiffeners which is reported in this work used the

offset beam element formulation for the mass and stiffness matrices.

This appendix gives a brief exposition of the theoretical background of the element and

discusses aspects relevant to its application in this thesis.

A2.2 Development of the Element

In order to account for the eccentricity of beam stiffeners, it is necessary to find the effect
of forces and displacements on a node of a beam which is some distance away from the node
of interest. To do this, a transformation is performed on the simple two-node beam element

mass and stiffness matrices. Details of the derivation of the transformation now follow.

Let point A (Figure A2.1) be a node on a structure. Point B is one end of a beam which is

offset from point A in the y and z directions by e, and ¢, respectively. It is required that the
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forces and displacements on the beam be referred to node A on the structure. The
relationships between (P;}' and {P;} and {§,}' and {d,} at nodes B and A respectively can

easily be shown to be

PV =[wy- ) (A2.1)
and
8 =10 16,r (A2.2)
(Matrices and vectors with a * refer to a single node and those without refer to a two-node
system)
where
1 0 0 00 0]
0 1 0 000
0 0 1 000
[(W1"=10 e, <, 100
©, 0 0 010
e, 0 0 001
and
100 0 e, —¢,]
010-, 0 O
. 1001 e, O 0
(O] = ¢
000 1 O 0
000 0 1 0
000 0 0 1

The set of forces and displacements on the simple beam is related by
PV =[K]8,V (A2.3)

where [K] is the stiffness matrix for the simple beam.
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Substituting equations (A2.1) and (A2.2) into (A2.3) gives

P} = [W][K][Q] 6!

with
w10 }
L¥] [[01 ("
and
_tar [01}
(€] lw] (9"
Now
(W] =197
therefore

;)= [QT[K][Q]6;)

(A2.4)

where [Q]'[K][Q] is the stiffness matrix of the offset beam. The element mass matrix must

be similarly transformed using [Q].

A2.3 Application of the Elemeﬁt for Rib Stiffener Modifications on Beams

In the application of the element for modifying a beam (i.e., increasing the depth), it was

indicated in Chapter 5 that the results (Figure 5.21a) showed an oddity which was not readily

explainable. An attempt was therefore made to identify the source of the discrepancy. This

involved FE analyses involving a free-free beam and a cantilever beam using the offset

element. In the formulation of the problem, a rib of the same dimensions as the base

structure was added to the original structure using the offset element. The base structure,

with dimensions of 500 x 25.4 x 12.7 mm, was in each case modelled using 60 beam

elements.
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Figure A2.2 presents the comparison of the FE predictions with the exact solutions. The rigid
body modes are omitted for the free-free beam and in both cases, only modes with
displacement in the direction of the offset were considered. It will be seen from the plots that
the FE solutions under-predicted the frequencies with increasing under-prediction as the mode
number rises. These results were compared with physical space solutions using mass and
stiffness matrices generated by the procedure MODS and solved using the procedure EIGEN.
The comparison yielded no discrepancies. While no attempt was made to investigate the
cause for the behaviour seen in figure A2.2, the results at least confirmed that the coding in

the procedures MODS and EIGEN was correct.

Comparison of Figure A2.2 with Figure 5.21a shows that although the modal method initially
over-predicted the frequencies with subsequent under-prediction, the characteristic shape of
the error plot seen in Figure A2.2 is still inherent in Figure 5.21a. The initial over-prediction
seen in Figure 5.21a is a manifestation of the shift of the error curve (i.e., higher errors in the
modal predictions) due to the effects of truncation on the modal prediction and is therefore

not surprising.

It will be noted that the offset element finds widespread use in work involving the stiffening
of plates using rib stiffeners and does not seem to suffer from the anomalies seen in the
application in this work. This may be attributed to the fact that in plate work, the rib does
not undergo as much deformation as it does when it is attached to a beam (i.e., only the first
or second flexural modes of the rib are excited at the most) and thus the stiffener largely
experiences rigid body motion and the question of the motion of the neutral axis then
becomes trivial. In modifications involving beam analysis, it would seem that the formulation
does not account for any changes in the position of the neutral axis of the modified structure
which the modification may impose. This makes the structure overly flexible thus leading

to under-prediction of the frequencies.

Thus, it may be concluded that the use of the offset element in work involving beams requires

further investigation in order to enhance its application.

o0o
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Figure A2.2: Comparison of FE Predictions using the offset
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(100% depth increase)

214



APPENDIX THREE

ANALYSIS ON EXPERIMENTAL DATA

A3.1 Introduction

In this thesis, exact and simulated experimental data has been used to establish the
performance of spline curve and surface fitting for the estimation of rotations. The analysis
has presented key findings and conclusions along with guidelines for optimum performance
of the proposed method. However, the real test of an approximation method is its ability to
return acceptable estimates of rotations from real experimental data. In this regard, this
appendix endeavours to demonstrate the performance of the proposed technique on real

experimental data.

It must however be recognised that the use of real experimental data suffers from the basic
limitation that the level of error in the initial data is unknown. Therefore conclusions from
such studies must always be treated with caution. In addition, boundary conditions cannot

always be truly reproduced in theoretical analysis and thus comparisons are difficult to make.

In the discussion which now follows, an attempt is made to illustrate the performance of the
proposed technique on less-than ideal data. The databases used are less-than ideal because
they do not follow the guidelines given in Chapter 6 with regard to the density and
distribution of measurement points. It was envisioned that this limitation would serve to
exaggerate any shortcomings of the proposed technique in less-than ideal conditions. The
discussion considers the accuracy of the estimation of rotations with emphasis on the errors
in the resulting structural dynamics modification (SDM) predictions. Of the two case studies
which are presented, the surface fitting case provides new insights into the treatment of

multi-surface structures at the joint lines.

A3.2 Perspex Cantilever Beam
In order to demonstrate the performance of the optimum estimator established from the
analysis on simulated experimental data in Chapter 4, investigations were carried out on a

Perspex cantilever beam, 575 x 25.4 x 12.7 mm. Frequency response functions (FRF's) were
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measured at 24 structural points using the impact excitation test method. The data was captured
using the PC-based Data Physics (DP420) multi-channel Fast Fourier Transform (FFT) analyzer
for frequencies up to 2500 Hz. Each measurement was subsequently calibrated, for phase and
magnitude, using a calibration FRF measurement obtained by the free-free mass technique [3],
to ensure that the resulting modal parameters would be as accurate as possible. Modal
parameters were extracted from the FRF measurements by global curve fitting for the first eight
flexural modes of the cantilever beam using the PC-based modal analysis package called STAR

and it was noted that the mode shape vectors were, in the main, real.

In order to assess the adequacy of the resulting modal vectors, the Modal Assurance Criteria
(MAC) computation was performed on the experimental modal vectors. The results of the auto-
MAC computation, shown in Table A3.1, reveal that, in general, the modal vectors were

acceptably orthogonal.

A3.2.1 Estimation of Rotations

Estimates of the rotations were obtained by curve fitting the experimental data with the spline
function which minimised the rotation at the fixed end with all the data points carrying the same
weight on the assumption that all the measurements were of similar accuracy. Rotations were

also computed from the Euler-Bernoulli solution of the classical cantilever equation.

One of the important considerations when working with experimental data is the quantification
of the level of error in the initial data. In the absence of a proven method of determining the
magnitude of the measurement errors present in a modal data base, a 'feel' of the extent of the
error in the data used in this study was obtained by computing the percentage error in the
translations when compared against exact data. This comparison, which is presented
representatively in Figure A3.1 in the form of error plots for modes 2, 4 and 8 of the cantilever,
indicated that the discrepancies were random. The magnitude of the error was largest at the free
end. The effect of a point density which is not optimised is also particularly evident at the free

end. Nevertheless, the level of error in the experimental translations was seen to be generally
of the order of 4-7%.
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The comparison of the computed rotations (using the optimum fit function as defined above)
against the exact values is presented in Figure A3.2. It will be seen from the figure that even
with this less-than ideal database, the errors in the estimates of rotations (normalised to the
largest rotation for each mode) are, in the main, less than 10%. This very welcome
observation demonstrates the capability of the proposed technique for smoothing noisy data.
However, the real test is the accuracy of the resulting structural dynamics modification

predictions.

A3.2.2 Modifications on the Cantilever Beam

The cantilever beam was modelled using 24 two-noded beam finite elements. Translational
and rotational modal data for the first eight flexural modes was obtained from FE analysis.
This was compared with the modal data derived from the modal test as described above. The
comparison of the modal data from the two sources is given in Table A3.2. The table shows
a very good correlation between the two data-sets although the FE solution slightly over-
predicted the frequencies. This was attributed to the inability to experimentally create a
perfectly clamped boundary condition which allowed some flexibility in the structure.

Rotations were also obtained from the FE data using an interpolating spline.

In the cases which are discussed below, a mass of 0.2 kg (representing approximately 91%
of the mass of the beam) was added at a location 557.5 mm from the fixed end while the
inertia associated with it was varied by changing the geometry of the modification as shown
in Figure A3.3.

A3.2.2.1 Short Cylindrical Mass near the Free End.

A short cylindrical mass having a moment of inertia of 1.0457 x 10 kgm? was added near
the free end of the cantilever. The effect of the combined modification is illustrated by the
drop in the fundamental frequency from 11.6 Hz to 4.5 Hz, the mass being the dominant
contributor to the reduction in frequency. The severity of the modification is understood
better with the aid of the Modal Assurance Criterion (MAC) values computed from the
unmodified and modified structural modal databases of the experimental data shown in Table

A3.3. Although the first mode does not exhibit a large change in the mode shape as shown
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by the MAC value of very nearly unity, it had the largest shift in frequency (in excess of
60%) due to the modification and would thus be expected to yield the largest error in the
prediction. It will also be noted that because the value of the added inertia is small in
comparison with the added mass, the modification is heavily dependent on the translation at

the modification location although the rotation also plays a significant role.

Table A3.4 compares the Dual Modal Space Method (DMSM) predictions using FE
translations and rotations and calculated translations and rotations from FE and experimental
translations, with results from an experimental modal analysis of the modified structure. The
FE prediction of the modification is also included ((1)). It must also be noted that the
translation at the modification location was not measured. The value used in the computation

was obtained from the fit function following expansion.

A cursory examination of Table A3.4 immediately reveals good agreement between the
predictions from the various databases even though the errors in the predictions do not exhibit
a regular trend with increase in mode number. The similarity in the errors of the predictions
from FE-based databases ((2), and (3)) under-pins the good performance of the interpolant on
supposed error-free data. It will also be noted that the frequencies are, in the main, over-
predicted. This is consistent with the under-estimation of the rotations at the modification

location as shown in column 4 of Table A3.4.

It is interesting to note that the magnitude of the error in the rotations was not directly related
to the magnitude of error in the frequency predictions. Nevertheless, the large error in the
prediction of the fundamental mode deserves special mention. While the error in the rotation
derived from experimental data for the fundamental mode was about -51%, the error in the
prediction of the frequency for that mode using experimental data was of the same order of
magnitude as the FE-based predictions, albeit slightly lower. It will be noted that the error
in the FE rotation at the modification location for mode 1 was less than 0.025% while that
in the calculated rotation from FE translations was less than 0.4%. It would therefore seem
that the error in the prediction of the fundamental mode was not due to the error in the
rotations but due to some other effect. The results of the FE prediction of the modification

suggest that, as would be expected, the physical clamping in the experimental set-up did not
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completely constrain all movement at the supposed clamped end of the cantilever as was
presumed in the modal predictions. This, therefore, introduced some extra flexibility into the
experimental structure and is the reason for the modal over-prediction of the fundamental

mode seen in all the databases used in the study.

The errors in the modal predictions for modes 4 to 8 were attributed to a combination of two
effects. Firstly, these modes showed significant changes in the original mode shapes, as
shown by the MAC values in Table A3.3, thereby pointing to the inability of the DMSM to
form the new modes as combinations of the old ones. Therefore the degraded performance
of the predictor for the higher modes was not surprising. Secondly, modes 4, 5 and 6 had,
next to the first mode, the largest shifts in frequency (30%).

When the errors in the predictions are viewed in the light of the error in the rotations at the
modification location, it is clear that the predictions are relatively insensitive to the errors in

the modal vectors.

A3.2.2.2 Long Cylindrical Mass near the Free End.

In this case, a long cylinder having a moment of inertia of 2.6748 x 10 kgm? (about 25
times larger than the value used in the previous case and approximately 9 times smaller than
that of the beam itself) was added at the same location as in the previous case. The effect
of this modification is signified by the large drop in the frequency of the second mode from
77.8 Hz to 32.3 Hz compared to the reduction to 59.8 Hz in the previous case. The results
of the MAC computation for the modal data of the modified structure against the modal data
of the unmodified structure, shown in Table A3.5, confirm the relative increase in the degree
of the severity of the modification when compared with the previous case. The MAC values
for modes 3 to 7 show very little correlation between the mode shapes before and after the
modification thereby suggesting significant changes in the mode shapes. This was further
illustrated by the relative contributions of the modes in the original data set to the modes of
the modified structure. Examination of the relative contributions revealed that all the original
eight modes contributed to all but two (modes 1, and 2) of the new modes, with the relative
contributions of the higher modes increasing with increasing mode number. Thus, for this

relatively severe modification, large errors in the predictions would not be unexpected. This
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expectation was also supported by the fact that the shift in the frequencies of the new modes
were greater than those seen in the previous case although the magnitudes of the shift were

seen to drop with increase in the mode number.

Table A3.6 gives the results using the four databases as described in the previous case. The
results are once again seen to be broadly similar although the finite element prediction is
distinctly better than the modal predictions. It will also be noted that using FE rotations in
the analysis ((2)) yielded marginally poorer predictions than using calculated rotations from

FE translations.

As would be expected, the results show a modest increase in the errors in the predictions due
to the larger inertia applied in this case and once again show over-prediction which is
consistent with the under-estimation of the rotations at the modification location. However,
the errors in the prediction based on the experimental database (excluding that for the
fundamental frequency), which range from 2% to 24% ((4) in Table A3.6), confirm the good
performance of the DMSM while at the same time suggesting no correlation with the pattern
or magnitude of the errors in the rotations. The rather high over-prediction of the
fundamental frequency is once again evident. It is also interesting to note that the pattern of
the errors in the prediction in this case is different from that seen in the previous case. This
is attributed to a change in the mix of modes which were used to constitute the new modes.
This is highlighted by the differences in the MAC comparisons as shown in Tables A3.3 and
A3S.

A3.3 L-Beam Plate Structure

In this case, a modal test was performed on a 10mm thick Perspex L-beam plate structure
[82], 100 x 200 x 520mm, shown in Figure A3.4, using the impact excitation method. The
measurements were taken at 118 points. Excitation was applied in both the x and y directions
at the points along the joint line. This gave rise to 131 FRF measurements. The FRF's thus
obtained were processed as previously described for the case of the cantilever beam and the
modal parameters were extracted accordingly using a global curve fitter for the first 8 flexural
modes of the structure and it was noted that the identified mode shapes were, in the main,

real. The resulting mode shapes are presented in Figure A3.5.
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A331 Estimation of Rotations

According to published work [83], if it is assumed that the waveforms of vibrating plates and
beams are similar, the waveform of a plate can be obtained as the product of the characteristic
functions for two beams with similar boundary conditions. The boundary conditions
associated with rectangular plates will therefore be seen to be similar to those associated with
beams. Thus for rectangular plates, a free edge supports neither bending moment nor shear
while a clamped edge permits neither rotation nor translation. However, both the free and
the simply supported boundary conditions for plates are considerably more complex than the
equivalent beam boundary conditions. Based on this background therefore, the acceptance
threshold for the surface approximation was set to be the fit which minimised the error in the
rotations at the fixed end of the L-beam structure. Translations and rotations were also
obtained from a finite element analysis of the structure modelled as in the test. This data was

used as the comparison base in the discussion which now follows.

A3.3.1.1 Joint Line Considerations

It is important to understand from the outset that, in this case, two entries of rotational data
about the z-axis (Figure A3.4) were generated at the joint line. Experience with this type of
structure had indicated that because the planes of the structure are necessarily treated
separately during the fitting process (since only one out-of-plane direction can be used for
each fit), the resulting fit functions for each plane may not (and indeed did not) yield the
same values of the rotations about the z-axis at the joint line due to the different parameters
upon which the fit function depends for each plane. It was therefore necessary to pay
attention to the following considerations in this regard:

@) Which of the estimates about the z-axis at the joint line were to be retained in
the final data and might the average of the two entries be a more accurate
estimate?

(i)  in each plane, did the fit functions yielding the best estimates of the rotations
about the z-axis also yield the best estimates of the rotations about the x and
y axes? If not,

(iii)  did the fit functions which yielded the best estimates of the rotations about the

x and y axes in each plane also yield acceptable rotations about the z-axis?
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Ideally, it was envisaged that the fit functions which produced the best rotations about the z-
axis would also yield the best estimates of the rotations about the x and y axes. However,
since the results clearly indicated that this was not the case, it became necessary to determine
the ground rules to be used in order to obtain the best approximations. The comparison base
was the FE database containing the rotations of the structure. Comparison of the results from
the two planes indicated that the estimates of the rotations about the z-axis from the larger
of the two plane surfaces (plane 1) were in the main more accurate than those from the
smaller plane (plane 2). This was attributed to the better representation of the structure in the
larger plane (more measurement points) than was the case in the smaller plane. The averages
of the two entries were generally found to be less accurate than the values from plane 1.
Table A3.7 summarises the results for mode 2 which is typical of the behaviour for the other
modes. The estimates of the rotations about the z-axis from the fit on the larger plane were

therefore retained in the final data set.

With regard to the second and third considerations, the fitting results indicated conflicting
behaviour. In the case of the estimates of the rotation about the y-axis, the fit function which
gave the best estimates of the rotations about the z-axis did not also yield the best rotations
about the y-axis. The estimates of the rotations about the y-axis from the fit function which
gave the best rotations about the z-axis were found to be generally unacceptably poor (Table
A3.8). In this case, it was necessary to search for the fit function in plane 1 which produced
the best estimates of the rotations about the y-axis. It must however be noted that this
estimation did not satisfy the requirements for the rotations about the z-axis as illustrated in
Tables A3.7. On the other hand, the fit function which gave the best estimates of the
rotations about the z-axis in plane 2 in the main also produced the best estimates of the
rotations about the x-axis (see Table A3.8). This suggested that in order to obtain the best
estimates of the rotations about the x-axis it was necessary to search for the fit function which
produced the best estimates of the rotations about the z-axis in plane 2 and to retain the

estimates of the rotations about the x-axis from that fit function.

A3.3.1.2 The Fitting Results
The fitting results in the main confirmed the trends which were observed from the curve

fitting analysis and the analysis on surface fitting using ‘error-free data. Based on the
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acceptance threshold of minimising the error in the rotations at the fixed end of the structure,
the results revealed that generally, this criteria was also satisfactory at the joint line. Away
from the joint line, the data was much more oscillatory. However, the results indicated that,

generally, the error in the estimates of rotations was below 30%.

A3.3.2 Mass Maodification on the L-Beam Plate Structure

The modification was physically performed after which a modal test was carried out to obtain
the modal parameters of the modified structure [82]. Finite element analysis was also
performed in order to provide a theoretical comparison base. Modal predictions were
obtained from two sources; namely from the dual modal space method based on FE rotations
and rotations computed from the experimental translations of the unmodified structure, and
the SDM facility available on the STAR modal analysis system. The experimental
measurements were used as the platform upon which the predictions were validated. It must

be noted that the STAR system does not take account of rotations in the predictions.

A point mass of 0.51 kg (representing '/, of the mass of the unmodified structure) having
moments of inertia of 1.36 x 10 kgm?, 8.5 x 10° kgm? and 8.5 x 10" kgm? about the x, y
and z axis respectively was added to the structure at measurement point 23 as shown in
Figure A3.6. Choice of this modification location was based on its proximity to the antinode
of the third mode which is at point 8. It was envisaged that this modification would
significantly reduce the frequency of the third mode. Table A3.9a summarises the results and

confirms this expectation.

From the results in Table A3.9a, it is immediately clear that the predictions based on
experimental data are superior to those based on FE data, an observation which was not
unexpected due to the difficulty associated with reproducing the physical boundary conditions
in the finite element model. This does not only highlight the good quality of the experimental
data, it also suggests that for this modification, the predictions are relatively insensitive to the
errors in the estimates of the rotations at the modification location (given in Table A3.9b).
In addition, the results also highlight the benefit which derives from smoothing the original

data. A comparison of columns (2) and (3) in Table A3.9a indicates that the predictions
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based on the smoothed data are generally superior over those based on the unsmoothed

translations.

When the errors in the SDM predictions are viewed in the light of the STAR predictions of
the modificaton (Table A3.9a, (4)), it becomes clear that, except for mode 3, this
modification does not in fact require the rotational entries at the modification location.
However, mode 3 requires special attention as it exhibited the largest shift in frequency from
the unmodified value to the modified value, which was the desired effect of the modification.
Inclusion of the rotational entries at the modification location for this mode shows a marked
improvement in the prediction (36% error in the prediction of frequency from STAR down
to less than 0.3% from the DMSM). An examination of the mode shapes revealed that the
seven other modes in the database had little or no slope across the modification location.
However in the third mode, the modification location was in the proximity of the dominant
antinode of the mode, an area in which significant bending across the modification location
would be expected. Inclusion of the rotational entries at point 23 allowed the modal

prediction to correctly model the behaviour of the structure at that point.

Table A3.9a also highlights relatively large errors in the FE and modal predictions (based on
FE rotations) of the fourth mode. The errors in the translations at the modification location
(compared to the FE values), given in Table A3.9b, show that the largest errors were in the
translational data for the fourth mode. This indicated that the FE translational value at point
23 was responsible for the errors in the FE prediction and the modal prediction based on FE
data.

A comparison of the errors in the predictions of the modifications with the errors in the
computed rotations indicates that the errors in the predictions are not very sensitive to the
errors in the rotations. In addition, there was no direct relationship between the pattern of the

errors in the rotations and the pattern of the errors in the predictions of frequency.

A3.4 General Concluding Remarks
In this appendix, an attempt was made to show how the approximating technique performs

in a less-than ideal environment. The results have shown that the estimates of the rotations
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using structural boundary conditions as acceptability criteria are satisfactory for structural
dynamics modification work. The results indicated that the errors in the predictions are

generally less than 15% even with errors in the rotations which are in excess of 40%.

The analysis on the plate-like structure has shown that where the cross-section of a plate
structure requires treating the structure as separate planes during surface fitting, the rotational
entries to be retained at the joint lines are those from the planes with the larger cross-sectional

dimensions.

It must however be recognised that in studies such as the one conducted in this case,
interpretation of the results is very difficult since it is not easy to determine a comparison
base which can take account of the various sources of error in the experimental database. In
addition, the theoretical model only approximates the experimental model and does not always
truly represent the experimental boundary conditions. The errors ensuing from such sources

are not quantifiable.
Nevertheless, it may be concluded that the proposed method of estimating rotations performs

satisfactorily on experimental data and that the resulting rotations are adequate for structural

dynamics modification applications, even when the database used is less-than ideal.
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Point Mass Modification on the

L-Beam Structure

Figure A3.6:
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Table A3.1: Modal Assurance Criterion Matrix for Experimental Modal Vectors of the
Perspex Cantilever

1.0000 | 0.0000 | 0.0029 | 0.0066 | 0.0014 | 0.0010 | 0.0010 | 0.0035

1.0000 | 0.0061 | 0.0012 | 0.0024 | 0.0047 | 0.0009 | 0.0090

1.0000 | 0.0026 | 0.0038 | 0.0020 | 0.0001 | 0.0087

1.0000 | 0.0051 | 0.0050 | 0.0008 | 0.0072

1.0000 { 0.0013 | 0.0023 | 0.0060

1.0000 | 0.0006 | 0.0072

1.0000 | 0.0039

1.0000

Table A3.2: Comparison of the Experimental and FE Frequencies of the Perspex

Cantilever

mode FE i(});:)tion Expczr}‘{zun)emal Disc(r;)p)ancy I\\rligl(lie
1 12.9 11.6 11.2 0.9972
2 80.5 71.8 3.5 0.9998
3 225.1 2247 0.2 0.9990
4 441.3 439.5 0.4 0.9962
5 733.0 734.3 0.2 0.9928
6 1089.9 1094.8 0.4 0.9882
7 1522.8 1520.3 0.2 0.9553
8 2028.3 2030.1 0.1 0.9830
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Table A3.3: Modal Assurance Criterion Matrix for the Comparison between the
Unmodified Experimental Modal Vectors and the Modified Experimental
Modal Vectors (Short Cylinder Modification)

0.9985 0.0277 0.1049 0.0131 0.0768 0.0026 0.0203 0.0047

0.0360 0.8929 0.0517 0.0077 0.0436 0.0003 0.0030 0.0006

0.0152 0.3861 0.8646 0.0000 0.0004 0.0015 0.0056 0.0181

0.0001 0.1273 0.2676 0.6803 0.1107 0.0108 0.0032 0.0004

0.0623 0.2628 0.1557 0.2693 0.5045 0.1101 0.0011 0.0000

0.0199 0.1238 0.0946 0.0880 0.1767 0.5096 0.2688 0.0370

0.0748 0.1295 0.0734 0.1145 0.1452 0.0281 0.3689 0.1187

0.0861 0.1687 0.1744 0.0748 0.1667 0.0205 0.2275 0.5028

Table A3.4: Perspex Cantilever with a short cylindrical mass near the tip

Error in . . .
’ Modified rotation at Error in Frequency Prediction (%)
Unmodified \ .
mode Beam modification

Beam (Hz) (Hz) location
(%) 1 V)] 3) @
1 116 4.5 -51.2 356 356 35.5 333
2 77.8 59.8 -164 2.0 22 21 -3.2
3 2247 1759 -39 13 2.2 2.1 14
4 439.5 314.7 9.2 43 9.2 9.1 12.8
5 734.3 477.6 =30 10.1 19.7 18.8 114
6 1094.8 7322 -2.8 10.8 20.7 204 26.1
7 1520.3 1188.0 -28.1 0.6 99 89 9.8
8 2030.1 1620.0 42 1.2 11.8 11.8 73

Key:

(1) Finite Element Prediction

(2) FE translations and rotations

(3) FE translations and Calculated rotations from FE data

(4) Calculated translations and rotations from experimental data
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Table A3.5: Modal Assurance Criterion Matrix for the Comparison Between the
Unmodified Experimental Modal Vectors and the Modified Experimental
Modal Vectors (Long Cylinder Modification)

0.9991 0.0238 0.0479 0.0042 0.0183 0.0004 0.0081 0.0013

0.0330 0.8543 0.2852 0.0357 0.0022 0.0041 0.0000 0.0000

0.0167 0.5008 0.1381 0.4708 0.0283 0.0010 0.0006 0.0109

0.0000 0.1952 0.1118 0.0437 0.5930 0.0282 0.0003 0.0019

0.0647 03166 0.0172 0.0646 0.0762 0.2875 0.0024 0.0027

0.0208 0.1541 0.0144 0.0126 0.0353 0.2923 04137 0.0493

0.0765 0.1498 0.0067 0.0252 0.0191 0.0061 0.2377 0.1796

0.0882 0.2058 0.0296 0.0003 0.0288 0.0033 0.1605 04170

Table A3.6: Perspex Cantilever with a long cylinder near the tip

Error in Error in Frequency Prediction (%)
Unmodified | Modified rotation at
mode Beam Beam modiﬁqation

G @@ e | e | e | @
1 11.6 44 -512 34.1 34.1 33.7 34.1
2 77.8 323 -16.4 6.2 9.3 9.0 -102
3 224.7 93.8 -39 7.7 144 14.2 243
4 439.5 240.4 9.2 37 104 104 16.3
5 7343 460.5 -3.0 38 11.1 10.9 2.1
6 1094.8 766.0 -2.8 24 104 10.1 16.5
7 1520.3 1209.0 -28.1 3.5 48 48 44
8 2030.1 15810 42 29 13.5 134 89

Key:

(1) Finite Element Prediction

(2) FE translations and rotations

(3) FE translations and Calculated rotations from FE data

(4) Calculated translations and rotations from experimental data
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Table A3.7: Joint Line Considerations for 9, for the L - Beam Structure for mode 2

Measurerment FE Calculated Rotations about z-axis (1/m.kg")
Point Number (i‘z;?g% best fit best fit best fit
from P1 for @, from P1 from P2
71 6.42533 6.29215 5.87983 7.76126
72 6.76341 6.80441 6.19192 6.70045
73 7.09225 6.99000 6.35433 5.87479
74 7.41925 6.91783 6.37444 5.24123
75 7.56889 6.65685 6.25964 4.75673
76 7.50005 6.27597 6.01730 4.37825
77 7.11812 5.84345 6.65480 4.06205
78 6.47521 5.38434 5.17954 3.75726
79 5.56628 4.85508 4.59889 3.40898
80 4.32481 4.20773 3.92023 2.96225
81 2.94849 3.42164 3.15095 2.36211
82 1.55738 2.49789 2.29842 1.55361
83 0.44153 1.43814 1.37003 0.48180
84 0.00000 0.24407 0.37317 -0.90828
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Table A3.8: Joint Line Considerations for 6, and 6, for the L - Beam Structure for

mode 2
easurement 6, (1/mkg* 0, (1/mkg®)
point number
ey ) 3 1) 2
71 2.36839 1.57765 2.16181 -0.82210 -1.32368
72 3.00945 1.98472 2.18920 -1.45207 -1.12647
73 2.92447 2.21298 2.20948 -1.33199 -0.98597
74 2.87644 2,23704 2.22263 -1.33568 -0.90218
75 2.86905 2.42107 2.22866 -1.32829 -0.87510
76 2.82471 2.23649 2.22757 -1.30243 -0.90473
77 2.63073 2.21133 2.21936 -1.24516 -0.97104
78 2.44599 2.08965 2.20402 -1.13986 -1.01839
79 2.18735 2.04091 2.18156 -1.03825 -1.04350
80 1.88252 2.05467 2.15198 -0.90524 -1.04638
81 1.53521 2.08595 2.11527 -0.74820 -1.02703
82 1.09552 2.12961 2.07144 -0.55237 -0.98545
83 0.75560 | 2.18563 2.02049 -0.49326 -0.92163
84 0.00000 2.25403 1.96242 0.00000 -0.83558
Key:

(1) FE estimate
(2) Best fit for 6,
(3) best fit for 6,
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Table A3.9a: Point Mass Modification on the L - Beam Plate Structure; Mass = 0.51 kg

unmodified Modified Error in FE Error in Modal Prediction of Frequency (%)
mode Structure Structure Prediction

(Hz) (H) (%) m @ 3) @
1 359 31.6 -10.44 -0.13 -0.63 0.00 12.03
2 69.8 68.8 4.65 538 0.00 0.00 131
3 1212 835 5.75 5.75 0.00 0.24 36.05
4 1352 1345 16.80 16.88 -0.22 -0.22 0.15
5 188.9 183.9 -1.09 -0.49 0.82 0.82 223
6 320.6 3200 -4.50 -4.38 -031 -0.28 0.06
7 489.5 486.6 -1.81 0.62 -1.85 -1.77 0.39
8 5102 507.8 -2.64 0.65 -0.55 -0.57 037

Key:

(1) FE rotations

(2) Calculated rotations from Experimental data

(3) Calculated translations and rotations from Experimental data
(4) STAR prediction

Table A3.9b: Error in the Translation and Rotation at the Point Mass Modification
Location (measurement point 23) on the L - Beam Structure. Comparison
base is FE data.

% error in the translation % error in the calculated rotation
mode

measured Calculated 0, 0,
1 -1.538 -3.553 -1.994 -16.962
2 -43.318 -49.156 95.596 -5.979
3 -0.555 -1.418 3.430 11.011
4 81415 82.485 -49.018 87.549
5 -29.333 -29.762 7.634 -37.603
6 -31.594 -35.004 -41.225 -53.023
7 70.168 59.120 55.380 331.883
8 30.184 30.813 11.040 491.299
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