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ABSTRACT

Given a set, the Sikorski differential space structure is determined on it by a collection of
real-valued functions, while the Frölicher (smooth) structure is defined by a pair of paths
into along with real-valued functions which fulfil specified sets of axioms. According to A.
Batubege and P. Ntumba, when these structures are provided with an additional group
operation that is compatible with the smooth structure, they are then called differential
groups or Frölicher Lie groups, respectively. The infinite Cartesian product of differential
groups was investigated by W. Sasin, and since a Frölicher space is a differential space in
the sense of Sikorski, it turns out that a Frölicher Lie group is a differential group. Now, the
differential structure on the product of differential groups is the product of structures of the
factors. On the product of Frölicher Lie groups as for general Frölicher spaces, it is rather the
set of structure curves that has this property, and not the set of structure functions. In this
study we use a class of Frölicher spaces free of this defect, in order for the resulting Frölicher
Lie groups to satisfy the property similar to that of smooth functions on the product of
differential groups. To this end, we consider a class of differential groups made of differential
spaces whose set of structure functions is reflexive in the sense that it generates Frölicher
curves from which the generated Frölicher functions are exactly the Sikorski functions which
induced the smooth structure. Such differential spaces, so-called pre-Frölicher spaces by
A. Batubege, induce a class of Frölicher spaces (Frölicher Lie groups) so-called DF-spaces
(groups) on which, unlike differential groups, the set of smooth functions is the product of
sets of structure functions from the factors. This induces the results similar to the study by
W. Sasin.
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INTRODUCTION

In this dissertation, we consider differential and Frölicher Lie groups. Since Lie groups are
both groups and manifolds (see [35], [18]) it will be necessary to understand the elementary
properties of Lie groups and their connection to differential spaces and Frölicher spaces. This
fact allows us to use concepts from algebra and analysis to study differential and Frölicher
Lie groups (see [27]).
Lie groups are differentiable manifolds which are also groups and in which the group operation
is smooth. The study of the classical concept of Lie groups has been extended to modern
smooth spaces such as diffeological spaces, differential spaces and Frölicher spaces. When
these smooth spaces are provided with an algebraic group structure that is compatible with
the differential one, one speaks of diffeological groups, differential groups and more recently,
of Frölicher Lie groups. We are more interested in the latter two classes of smooth spaces.

In the first chapter of this dissertation we shall look at the geometry and topology of differ-
ential spaces and differential groups. Here we show the relation between differential spaces
and differential groups. Henceforth, the dissertation will discuss some properties of differen-
tial groups in the sense of Sikorski, looking at the standard facts concerning left invariant
vector fields and left invariant forms on a differential group. Furthermore, we will introduce
the main concepts on differential groups as they were investigated by W. Sasin (see [30]),
P. Multarzynski (see [24]), and Z. Pasternack-Winiarski (see [25], [26]). To this end, this
part will contain the definitions and facts from the theory of Sikorski differential spaces,
differential subgroups, Hausdorff differential group, tangent vector to a differential space as
well as some important results associated with differential spaces and groups.

Chapter two of the dissertation is devoted to the study of smooth structures which are
generated on a set M by a collection of maps from R into M , called contours (which will
become smooth curves) and the set of maps from M into R, the scalar functions which
will be called smooth functions. We point out that the smooth structure on M is obtained
without requiring that M be a linear or Banachable space. These spaces were introduced by
Alfred Frölicher who called them ’smooth spaces’, which were later named after him by P.
Cherenack (see [10]), P. Michor and A. Kriegl (see [16]). The link between Frölicher spaces
and Frölicher Lie groups will be discussed. We mention here that the concept of Frölicher Lie
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groups was introduced by A. Batubenge, P. Ntumba and M. Laubinger to cite but very few
(see [33], [1], [10], [29]). The topics to be considered here include definitions, diffeomorphisms
of Frölicher spaces, the notion of bundles on Frölicher spaces and so forth. Lie groups in the
setting of Frölicher spaces are called Frölicher Lie groups or F-Lie groups. A similar concept
of Lie groups exists in the category of Sikorski differential spaces, the so-called differential
groups.

In chapter three we investigate the infinite Cartesian products of smooth spaces. Here we
investigate and describe the topologies underlying these spaces, the Cartesian products and
the infinite Cartesian product of differential groups (see [30]). In particular we will show
that the infinite Cartesian product of Lie groups may be viewed as a differential group.
Similarly we examine if the infinite Cartesian product of Frölicher Lie groups is a Frölicher
Lie group. We will show that the set of structure functions on the Cartesian product of
Frölicher Lie groups is not the product of sets of structure functions in general. Therefore, we
will introduce a class of spaces which allows resemblance of product structures for both types
of spaces. A way out for this will be that of considering a class of differential groups made
of differential spaces whose set of structure functions is reflexive (see [37], [38]) F = ΦΓF ,
the so-called pre-Frölicher spaces ([6]), on which the process of yielding a Frölicher structure
on the same set is smooth function preserving. The resulting Frölicher spaces we shall call
DF-spaces, the smooth groups of which are the spaces of high interest for this research. They
are called DF-Lie groups.

The last chapter which is the conclusion will highlight on the geometry and the topology of
infinite products of the DF-spaces. Then we will construct infinite Cartesian products on
DF-Lie groups.
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1. DIFFERENTIAL SPACES

1.1 Preliminary Definitions

In this section we recall the basics on differentiable manifolds since it is known that they
are the building blocks of Lie groups. In simpler terms a manifold is a Hausdorff second
countable topological space, which locally (i.e in a close-up view) resembles the spaces de-
scribed by Euclidean geometry but which globally (i.e, when viewed as a whole) may have
a complicated structure. e.g the surface of the earth is a manifold, locally it seems to be
flat, but viewed as a whole from the outer (globally) it is round. We begin by defining a
topological space as this will help to understand the differential space and subsequently the
differential group.

Definition 1.1.1. ( [36]) A topological space is a non-empty set X equipped with a distin-
guishable family of subsets, called the open sets which forms a topology τ such that:

1. the empty set and the set X are both open,

2. the intersection of any finite collection of open sets is again open,

3. the union of any collection (finite or infinite) of open sets is again open.
Example 1.1.2. For any X, P(X) = U is a topology called the discrete topology on X.
Example 1.1.3. Take U = {φ,X}. This is a topology called indiscrete topology on X.
Definition 1.1.4. ([35]) A locally Euclidean space M of dimension d is a Hausdorff topo-
logical space M for which each point has a neighbourhood homeomorphic to an open subset
of Euclidean space Rd.
Definition 1.1.5 (Induced topology). ([36]) For any non-empty subset A of a topological
space (X, τ), the induced (or relative) topology, τA, on A is defined to be that given by the
collection A ∩ τ = {A ∩ U : U ∈ τ} of subsets of A.
Definition 1.1.6 (Hausdorff topological space). ( [36]) A Topological space (X, τ) is
said to be Hausdorff if for any pair of distinct points x, y ∈ X , (x 6= y), there exist sets
U, V ∈ τ such that x ∈ U, y ∈ V and U ∩ V = ∅.
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Definition 1.1.7 (Smooth manifold). ([33], [35]) Given any integers N,M with N ≥
M ≥ 1, an m-dimensional smooth manifold in RN , for short, a manifold, is a nonempty
subset S of RN such that for every point p ∈ S there are two open subsets Ω ⊆ RM and
U ⊆ S and a smooth function ϕ : Ω→ RN such that ϕ is a homeomorphism between Ω and
U = ϕ(Ω) and ϕ′(to) is injective, where to = ϕ−1(p).
Definition 1.1.8. ([18]) Let U ⊂ Rd be open, and let f : U → R. We say that f is
differentiable of class Ck (or simply that f is Ck), for k a non-negative integer, if all the
partial derivatives ∂αf/∂ra exist and are continuous on U for [α] ≤ k. If f : U → Rn, then
f is differentiable of class Ck if each of the component functions fi = riof is Ck, where fi
is called the ıth component function of f and [α] =

∑
αi for α = (α1, ..., αn) d-tuples.

Definition 1.1.9. ([18]) A differentiable structure F of class Ck(1 ≤ k ≤ ∞) on a locally
Euclidean space M is a collection of coordinate systems {(Uα, ϕα) : α ∈ A} satisfying the
following properties

(a)
⋃
α∈AUα = M

(b) ϕαoϕ−1
β is Ck for all α, β ∈ A

(c) The collection F is maximal with respect to (b); that is , if (U,ϕ) is a coordinate system
such that ϕoϕ−1

α and ϕαoϕ−1 are Ck for all α ∈ A, then (U,ϕ) ∈ F .

We note that a d-dimensional differentiable manifold of class Ck (similarly Cω or complete
analytic) is a pair (M,F) consisting of a d-dimensional, second countable, locally Euclidean
space M together with a differentiable structure F of class Ck. We denote the differen-
tiable manifold (M,F) simply by M , with the understanding that when we speak of the
"differentiable manifold M" we are considering the locally Euclidean space M with some
given structure F . Our attention will be restricted solely to the case of class C∞, so by
differentiable we will always mean differentiable of class C∞. We also use the terminology
smooth to indicate differentiability of class C∞. Thus we shall always refer to differentiable
manifolds simply as manifolds, with differentiability of class C∞ always implicitly assumed
(see [35]).

A differential space or d-space is one of the ways of generalising the classical concept of
a smooth manifold. We recall that a smooth manifold is a Hausdorff second countable
topological space which is locally homeomorphic to a Euclidean space. When looking at a
differential space, the starting point is to properly choose the set together with a topology
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in it and some family of continuous real functions on this set. Then one determines the
differential structure on the considered set if these functions are required to satisfy specific
conditions. We mention that every differentiable manifold is a differential space, but not
every differential space is a differentiable manifold. The details are given in the literature
below. It is assumed that N = {1, 2, ...}.

Let X be a nonempty set, F an R-algebra of real functions on X with the usual operations of
pointwise addition and multiplication. We consider the weakest topology τF on X in which
functions of F are continuous (see [11],[12]).
Definition 1.1.10. A function f : X → R is called a local F-function on X if for every
p ∈ X there is a neighborhood V of p and α ∈ F such that f |V = α|V . The set of all local
F-functions on X shall be denoted by FX .
Remark 1.1.1. Note that any function f ∈ FX is continuous with respect to the topology
τF . Then τFX

= τF .
Definition 1.1.11. A function f : X → R is called F-smooth function on X if there exist
n ∈ N, ω ∈ C∞(Rn) and α1, ..., αn ∈ F such that

f = ω ◦ (α1, ..., αn)

.

The set of all F -smooth functions on X will be denoted by scF .

Since F ⊂ scF and any composition ω ◦ (α1, ..., αn) is continuous with respect to τF , that is
(α1, ..., αn) : X → Rn, we obtain τscF = τF (see [12], [23]).
Lemma 1.1.1. If A ⊂ B ⊂ X, then (FB)A = FA. In particular, (FA)A = FA

Proof. Let us take f ∈ (FB)A, where (FB)A is the function on B to the subset A. For any
point p ∈ A, there is a neighbourhood U of p ∈ A such that f |U = g|U for g ∈ FB. Since
g ∈ FB, there exist a neighbourhood V of p in B and a function h ∈ F such that g|V = h|V .
But W := U ∩ V is a neighbourhood of p in A and f |W = h|W , which means that f ∈ FA.
Therefore FB ⊂ FA.
Now let us show that FA ⊂ (FB)A. Given f ∈ FA and a point p in A, there exist a
neighbourhood U of p in A and a function g ∈ F such that f |U = g|U . But since U ⊂ A ⊂ B,
and h := g|B ∈ F|B is such that f |U = h|U , it follows that f ∈ (FB)A.
Proposition 1.1.1. If V is an open covering of X, f a function defined on X, and f |V ∈ FV
for every V ∈ V, then f ∈ FX .

5



Proof. Let p be a point in X. There exists a neighbourhood V ∈ V such that p ∈ V .
Since f |V ∈ FV , it follows that there is a neighbourhood U of p in V such that f |U = g|U ,
for some g ∈ FM .
Definition 1.1.12 (Differential space). ([39], p.12) Let X be a nonempty set. A dif-
ferential structure, sometimes called a Sikorski structure on X, is a nonempty family F of
functions into R, along with the functional topology τ , which is the weakest topology on X
for which every element of F is continuous, satisfying:

1. (Smooth Compatibility) For any positive integer k, functions f1, f2, ..., fk ∈ F , and
F ∈ C∞(Rk), the composition F (f1, f2, ..., fk) is contained in F .

2. (Locality) Let f : X → R be a function g ∈ F satisfying f |U = g|U , U ∈ τ . Then
f ∈ F .

Definition 1.1.13. A set X equipped with a differential structure F is called a differential
space, or a Sikorski space, and shall be denoted by (X,F). The functions f1, ..., fk are called
generators, and F0 = {f1, f2, ..., fk} the generating set for the structure F .

Equivalently we have that;
Definition 1.1.14. ([29]) A differential space (sometimes called a Sikorski space) X is a
topological space equipped with a differential structure. A differential structure is a family of
functions, denoted C∞(X), that satisfies the following:

1. The set {f−1(a, b) ⊆ X | f ∈ C∞(X), (a, b) ⊆ R} is a sub-basis of the topology of X.

2. if f1, f2, .., fn ∈ C∞(X) and F ∈ C∞(RN) then F (f1, f2, ..fn) ∈ C∞(X).

3. If f : X → R is such that for any x ∈ X there exists a neighbourhood U ⊆ X of x such
that x ∈ X and a function fx ∈ C∞(X) so that f |U= fx |U , then f ∈ C∞(X).

Remark 1.1.2. 1. Let X be a set and F a family of real-valued functions on X. The
weakest topology on X such that F is a set of continuous functions will be called the
topology induced or generated by F , and will be denoted by τF (see definition 1.1.5). A
sub-basis for this topology is given by

{f−1(I)|f ∈ F , I is an open interval in R}.

2. The smooth compatibility of a differential structure guarantees that F is a commutative

6



R algebra under pointwise addition and multiplication.
Example 1.1.15. ([19]) Consider X = Rn for some n ∈ N and F = C∞(Rn). Then
(X,F) is a smooth Euclidean n-dimensional differential space. Note that F is generated by
projections π1, ..., πn, where πi(x1, x2, .., xn) = xi, i = 1, ..., n, (x1, x2, ..., xn) ∈ Rn.
Example 1.1.16. The pair Rd := (R, C∞(R,R)) is a differential space, and is called the
canonical Euclidean differential space.
Example 1.1.17. Consider some classical smooth manifold X and all smooth (in the clas-
sical sense) real functions on it, C∞(X). Then (X,C∞(X)) is a differential space.
Example 1.1.18. Consider M = {(x, y) ∈ R2|xy = 0}. From classical point of view (0,0)
is a singular point and M cannot be equipped with a classically smooth differential structure.
It is an example of a differential space, which is not a manifold. This differential structure
consists of restrictions of smooth functions from R2, i.e. if F = {f |M ; f ∈ C∞(R2)}, then
(M,F) is a differential space.

Now we define induced and coinduced differential structures (see [24]).
Definition 1.1.19. ([10], [24] ) Let (X,F) and (Y,G) be differential spaces. A differential
structure F is said to be induced on X from a family {Xi,Fi | i ∈ I} of differential spaces
by a family of mappings {fi : X → Xi, i ∈ I} if F is the weakest differential structure on
X with respect to which all mappings fi, i ∈ I, are smooth (see also 1.1.5). Analogously,
a differential structure G is said to be coinduced on Y from a family {Yi,Gi | i ∈ I} of
differential spaces by a family of mappings fi : Y → Yi, i ∈ I if G is the strongest differential
structure on Y with respect to which all mappings fi, (i ∈ I) are smooth.

Furthermore, we have that
Proposition 1.1.2. ([24]) Let {fi : Xi → X}i∈I be a collection of set maps where the Xi′s

are differential spaces with structure functions Fi, correspondingly. Then the pair (X,F) is
the coinduced differential space corresponding to the family of set maps {fi : Xi → X}i∈I if

1. the maps fi : (Xi,Fi)→ (X,F) are smooth, and

2. for any other differential space (X,G) in the diagram

(Xi,Fi)
fi //

fi %%

(X,G)

(X,F)

I

OO

with the fi smooth in both cases, the identity map I in the given direction is smooth. Thus,
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F is the greatest differential structure on X with respect to which each fi, i ∈ I, is a smooth
mapping.
Proposition 1.1.3. The differential space (X,F) has the induced structure arising from the
family {fi : X → Xi}i∈I of maps.

Proof (see [24], p. 4)
Next we have the coinduiced structure
Proposition 1.1.4. Given a family of set maps {fi : Xi → X}i∈I where the Xi′s are the
differential spaces, the set

F := ∩i∈I(f∗i)−1(Fi)

where
(f∗i)

−1(Fi) = {f : X → R | f ◦ fi ∈ Fi}

for all i ∈ I, defines the coinduced differential structure on X corresponding to the collection
{fi : Xi → X}i∈I of set maps.
Proof (see[24], p. 5)
Definition 1.1.20. ( [37], p. 16) Having fixed some differential space (X,F), any function
from F is called smooth in the sense of Sikorski.

In his thesis, Jordan W.(see [37], p. 16), also (see[19]) has shown the following result.
Proposition 1.1.5. ([38], [37]) (X,F) is a differential space.

Proof. Let X be a set, and let Q be a family of real valued functions on X. Equip X with
the topology induced by Q.
First, we show smooth compatibility. Let f1, ..., fk ∈ F and F ∈ C∞(Rk). Then, we want
to show F (f1, ..., fk) ∈ F . Fix x ∈ X. Then for each i = 1, ..., k, there exist an open
neighborhood Ui of x, q1

i , ..., q
mi
i ∈ Q and Fi ∈ C∞(Rmi) such that

fi | Ui = Fi(q
1
i , ..., q

mi
i ) | Ui.

Let U be the intersection of the neighbourhoods of Ui, which itself is an open neighbourhood
of X. Then

F (f1, ..., fk)|U = F (F1(q1
i , ..., q

mi
i ), ..., Fk(q

1
k, ..., q

mk
k )|U
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Let N := m1 + ...+mk. Define F̃ ∈ C∞(RN) by

F̃ (x1, ..., xN) = F (F1(x1, ..., xm1), F2(xm1+1, ..., xm1+m2), ..., Fk(x
m1+...+mk−1+1 , ..., xN)),

then
F (f1, ..., fk)|u = F̃ (q1

1, ..., q
m1
1 , q1

2, ..., q
m2
2 , q1

k, ..., q
mk
k )|U

By definition of F , we have F (f1, ..., fk) ∈ F .

Next, we show locality. Let f : X → R be a function with property that for every x ∈ X
there is an open neighbourhood U of x, and a function g ∈ F such that g|U = f |U . Fix x,
and let U and g satisfy this property. Shrinking U if necessary, there exist q1, ..., qk ∈ Q and
F ∈ C∞(Rk) such that

g | U = F (q1, ..., qk)|U.

Hence,
f | U = F (q1, ..., qk) | U.

Since this is true at each x ∈ X, by definition, f ∈ F . This completes the proof.
Definition 1.1.21. A differential space (X,F) is said to be Hausdorff if the induced topology
τ is Hausdorff (see definition 1.1.6).
Example 1.1.22. (see [29]) The differential space (Rn, εn) is Hausdorff.
Example 1.1.23. Let X = R and p, q ∈M (M ⊆ X), p 6= q. Let F = {f ∈ C∞(R)|f(p) =

f(q)}. It follows that (X,F) is a differential space, where M is a subspace of X.
Remark 1.1.3. Note that (X,F) is Hausdorff if and only if, for any two distinct points
x, y ∈ X, there is a function f ∈ F such that f(x) 6= f(y).
Definition 1.1.24. Given a differential space (X,F), we say that a set Fo of functions
generates the differential structure F if and only if, given any point p ∈ X, there are functions
f1, f2, ..., fn ∈ F0, ω ∈ C∞(Rn,R) and a neighborhood U ∈ τ (where τ is the topology induced
by F0) such that

f |U = ω ◦ (f1, f2, ..., fn)|U

The differential structure F is the smallest structure that contains F0.
Definition 1.1.25 (Subset differential structure). ([37], [38]). Let (X,F) be a differ-
ential space, and let Y ⊆ X be any subset. Then Y acquires a differential structure FY
generated by restrictions to Y of functions in F . That is, f ∈ FY if and only if for every
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x ∈ Y there is an open neighbourhood U ⊆ X and a function f̃ ∈ F such that

f |U ∩ Y = f̃ |U ∩ Y

We call (Y,FY ) a differential subspace of X.

Equivalently we have;
Definition 1.1.26. ([25]) Let (M,C) be a differential space and A ⊂M , A 6= ∅, then CA is
a differential structure on A and a differential space (A,CA) is called a differential subspace
of (M,C). We have that CA = (i∗C)A, where i is the inclusion mapping of A in M .

It follows, therefore, that every subset of a Euclidean space is a differential space. This
property of Euclidean spaces is enough to show one the scope of the differential space concept.
Indeed, differential spaces are a generalisation of differentiable manifolds since manifolds are
locally smooth spaces.
Example 1.1.27. The graph of the function |x| : [−1, 1]→ R is not a smooth manifold, but
it is a differential space. For, let X = {(x, |x|) ⊂ Rn|x ∈ [−1, 1]}, then (X,C∞(R2)|X) is a
differential space.

In his works W. Jordan, (see[22]) had also shown the following result;
Lemma 1.1.2. ([37], [38]) Let (X,F) be a differential space. Then for any subset Y ⊆ X

the subspace topology on Y is the weakest topology for which the restrictions of F to Y are
continuous.

Proof. We first set some notation. Let τY be the subspace topology on Y and let G be all
the restrictions of functions in F to Y .

Fix U ∈ τY and x ∈ U . We will show that there exists a basic open set W ∈ τG such that
x ∈ W ⊆ U . By definition of the subspace topology on Y , there exists an open set V ∈ τF
such that

U = V ∩ Y

There exists f1, ..., fk ∈ F such that

W̃ :=
k⋂
i=1

f−1
i ((0, 1)).
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is basic open set of X containing x and contained in V . Define

W := W̃ ∩ Y.

Then

W =
k⋂
i=1

f−1
i ((0, 1)) ∩ Y

=
k⋂
i=1

(fi|Y )−1((0, 1)).

But fi|Y ∈ G, and so W is a basic open set in τG that contains x and is contained in U .

Next we show that for U ∈ τG, U is in fact open in the subspace topology. It is sufficient
to show this for any basic open set U , in the basis generated by G. To this end, fix a basic
open set U ∈ τG and x ∈ U . There exist g1, ..., gk ∈ G such that

U =
k⋂
i=1

g−1
i ((0, 1))

But then there exist f1, ..., fk ∈ F such that for i = 1, ..., k we have

gi = fi | Y.

Then,

U =
k⋂
i=1

f−1
i ((0, 1)) ∩ Y.

Since
⋂k
i f
−1
i ((0, 1)) is open in X, we have that U is open in the subspace topology on Y .

We have shown that the subspace topology on Y and the topology generated by restrictions
of functions F to Y are one and the same.
Proposition 1.1.6. ([37],[38]) The intersection of any family of differential structures de-
fined on a set X 6= ∅ is a differential structure on X.

Proof. Let {Fi}i∈I be a family of differential structures defined on a set X and let

F =
⋂
i∈I

Fi.

Then F is nonempty family of real-valued functions on X (it contains all constant functions).
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If n ∈ N, ω ∈ F∞(Rn and α1, ..., αn ∈ F), then for any i ∈ I, α1, .., αn ∈ Fi and consequently
ω ◦ (α1, ..., αn) ∈ Fi. Hence ω ◦ (α1, ..., αn) ∈ F which means scF = F .

Since F ⊂ Fi for any i ∈ I we have τF ⊂ τFi. It means that any subset of X open with
respect to τF is open with respect to τFi

, for i ∈ I.

Let β ∈ Fm. Choose for any p ∈ X a set Up ∈ τF and a function αp ∈ F such that p ∈ Up
and βUp = α|Up. Since αp ∈ Fi and Up ∈ τFi we obtain β ∈ (Fi)m = Fi for any i ∈ I. Then
β ∈ F and consequently Fm = F . Equalities Fm = F = scF means that F is a differential
structure on X.

As it is a well known fact from the theory of manifolds, subsets of differentiable manifolds
are not, generally speaking, differentiable manifolds. But in the differential spaces context,
differential structures can be induced from a base space to a subset. Thus we have;
Proposition 1.1.7. ([38]) Given a differential space X and a subset Y ⊆ X, Y is a differ-
ential space called a differential subspace of X ( see definitions 1.1.25 and 1.1.2).

Proof (see[38], p. 14)

1.2 Differential basis on differential spaces

The notion of differential basis on differential spaces is important when one is dealing with
the dimensionality of the differential space.

Let (M,F) be a differential space.
Definition 1.2.1. [28] A function f ∈ F is said to be differentially dependent (briefly,
d-dependent) on functions g1, g2, ..., gn ∈ F at a point p ∈M if there exist a neighbourhood
U ∈ τF of the point p and a function ω ∈ εn such that

f |U = ω ◦ (g1, g2, ...gn)|U

Example 1.2.2. Any function f ∈ εn differentially depends on projections π1, π2, ..., πn ∈ εn
at any point p ∈ Rn.
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Proof. Since εn = Gen{π1, π2, ..., πn}, f ∈ εn if and only if for any point p ∈ Rn there
exists a neighbourhood U ∈ τεn and a smooth function ω : Rn → R such that

f |U = ω ◦ (π1, ...., πn)|U

Definition 1.2.3. (see [28]) A set {f1, f2..., fn} ⊂ F is said to be differentially independent
at a point p ∈M if no function fi, ı = 1, ...n differentially depends on other functions of this
set at p. Any set F0 ⊂ F is said to be differentially independent at p ∈ M if every finite
subset of F0 is differentially independent at p.
Example 1.2.4. The set {π1, π2, ..., πn} ⊂ εn is differentially independent at any point
p ∈ Rn.

Evidently, from Definitions 1.2.1 and 1.2.3 it follows that both d-dependence and d-independence
of a set F0 ⊂ F are local properties of F0.
Definition 1.2.5. The tangent space TpM to M at a point p ∈ M is the set of all tangent
vectors at the point p. That is, the set of all mappings Xp : C∞(p) → R satisfying for all
α, β ∈ R and f, g ∈ C∞(p) the two conditions

(i) Xp(αf + βg) = α(Xpf) + β(Xp(g)) (linearity)

(ii) Xp(fg) = (Xpf)g(p) + f(p)(Xpg) (Leibniz rule)
Proposition 1.2.1. ([28]) Let M ⊂ Rn be a non-empty subset and F = (εn)M . The set
of the projections {π1|M , ..., πn|M} is d- independent at p ∈ M if and only if dimTpM = n,
where TpM is the tangent space on M at p ∈M .

More generally we also prove
Proposition 1.2.2. Let (M,D) be a d-space with F = Gen{f1, f2, ..., fn}, where the set
{f1, f2, ..., fn} is d-independent at any point p ∈M . Then, dimTpM = n for any p ∈M .

Proof. Since F = Gen{f1, f2, ..., fn} and {f1, f2..., fn} is d-independent, the function
ϕ := (f1, f2, ..., fn) is a diffeomorphism from (M,F) onto (ϕ(M), (εn)ϕ(M)). It is easy to see
that ϕ is one-to-one and onto. On the other hand, ϕ is smooth since ω◦(π1|ϕ(M), ..., πn|ϕ(M))◦
(f1, f2, ..., fn) = ω(f1, f2, ..., fn) ∈ F , for any ω ∈ ϕn. ϕ−1 is also smooth; indeed, for any
σ ∈ εn, σ ◦ (f1, f2, ..., fn) ◦ ε−1 = σ Hence, for any p ∈ (M,F), dimTpM = dimTxϕ(M) = n,
where x = (f1(p), f2(p), ...fn(p)).
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Corollary 1.2.1. .Let (M,F) be a differential space finitely generated by F0 := {f1, ..., fn}
and p ∈M . The following conditions are equivalent:

(i) F0 is differentially independent at p

(ii) dimTpM = n

The immediate proof to this corollary is omitted.

Another useful characterisation of the d-independence of a set of real-valued functions be-
longing to F is given by the following:
Theorem 1.2.0.1. A subset {f1, f2, ..., fn} ⊂ F is differentially independent at p ∈ M if
and only if for any functions ω ∈ εn and any neighbourhood U ∈ τF of p, the following
condition is satisfied

ω ◦ (f1, f2, ..., fn) = 0⇒ for all 1 ≤ i ≤ n, ∂i(f1(p), ..., fn(p)) = 0.

Proof. The implication(⇒) is immediate.
(⇐) Let us assume that for any function ω ∈ εn and any neighbourhood U ∈ τF of 1.2.3
is true. Let us suppose that one of the f ′is differentially depends on the other functions
of the set,that is on fi, ..., fi−1, fi+1,...,fn . Without loss of generality, suppose that there
exists a function σ ∈ εn−1 such that f1 = σ ◦ (f2, ..., fn) on some neighbourhood of p, i.e, f
differentially depends on f1, f2, ..., fn. Let ω be a function in εn, such that ω◦(f1, f2, ..., fn) =

σ ◦ (f1, f2, ..., fn) = 0, and then ∂1ω = 1. This contradict 1.2.3. Thus the set (f1, ..., fn) is
d-independent.

To further deepen our understanding of a local structure of a differential space we introduce
the following:
Definition 1.2.6. A subset G ⊂ F reproduces F at p ∈ M if, for any functions f ∈ F ,
there exists a neighbourhood U ∈ τF of p and functions g1, ..., gn ∈ G, ω ∈ εn such that
f |U = ω ◦ (g1, ..., gn)|U .
Remark 1.2.7. Let M,F be a locally finitely generated differential space.One can easily see
that a subset G ⊂ F reproduces F at p ∈ M if and only if G locally generates the structure
F in a certain neighbourhood of the point p.
Definition 1.2.8. A set G ⊂ F is a differential basis of the differential structure F at
p ∈M if G is differentially independent at p and G reproduces F at p.
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1.3 Functionally smooth maps

In differential geometry (see [35], [18] and [38]), the role of a structure-preserving map is
played by C∞-maps between two manifolds, which is defined as follows.
Definition 1.3.1. ([18]) The local representative of a function f (from a manifold M to a
manifold N) with respect to the coordinate charts (U, φ) and (V, ψ) on M and N respectively,
is the map

ψ ◦ f ◦ φ−1 : φ(U) ⊂ Rm → Rn.

This leads us to the following:

LetM and N be C∞ -manifolds of dimensions m and n, respectively.
Definition 1.3.2. ([18]) A map of sets f :M→ N is a C∞- map of manifolds if , for all
atlases of M and N , the local representatives are C∞ functions as defined in the standard
real analysis of functions between the topological vector spaces Rm and Rn, as in 1.1.7
Definition 1.3.3. [35] Let U ⊂ M be open. We say that f : U → R is a C∞ function on
U(denoted f ∈ C∞(U)) if f ◦ ϕ−1 is C∞ for each coordinate map ϕ on M. A continuous
map ψ : M → N is said to be differentiable of class C∞ (denoted ψ ∈ C∞(M,N) or simply
ψ ∈ C∞) if g ◦ ψ is a C∞ function on ψ−1(domain of g) for all C∞ functions g defined
domain of charts in N. Equivalently, the continuous map ψ is C∞ if and only if ϕ ◦ ψ ◦ τ−1

is C∞ for each coordinate map τ on M and ϕ on N. More generally, we have
Definition 1.3.4. ([18]) Let M,N be smooth manifolds. A continuous map f : M → N is
called smooth (C∞) if for each p ∈ M , for some (hence for every) charts ϕ and ψ, of M
and N respectively, with p in the domain of ϕ and f(p) in the domain of ψ, the composition
ψ ◦ f ◦ ϕ−1 (which is a map between open sets in Rn, Rk, where n = dimM , k = dimN) is
smooth on its domain of definition.

From the definition above, we can say that the composition of two differentiable maps is again
differentiable. Furthermore, we see that the mapping ψ : M → N is C∞ if and only if for
each m ∈M there exists an open neighbourhood U of m such that ψ|U is C∞.

In particular, a differentiable function is defined to be a C1 function. A function that is C∞

is also said to be smooth.
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1.4 Examples of differential maps

Recall the following notions from the theory of smooth manifolds:

1. A continuous map ψ : M → N is said to be C∞(ψ ∈ C∞(M,N)) or ψ ∈ C∞ if g ◦ ψ
is a C∞ function for all C∞ functions g defined on open sets in N .

2. Equivalently, the continuous map ψ is C∞ if and only if ϕ◦ψ ◦ τ−1 is C∞ for each map
τ on M and ϕ on N . We denote by ψ̂ = ϕ ◦ ψ ◦ τ−1 this Euclidean function and we
call it the local representative of the map ψ. The rank of ψ is understood as the rank
of its associated local representation.

For differential spaces (see [15], [10], [11],[28],[12], [25] and [29]), we rather have what follows.
Let (M,C) and (N,D) be differential spaces, then we have;
Definition 1.4.1. A map F : M → N is said to be functionally or Sikorski smooth if any
β ∈ D, one has β ◦ F ∈ C.

Equivalently, we note that;
Definition 1.4.2. Diffeomorphism ([35]) Let ψ : M → N be C∞, then ψ is a diffeomor-
phism if ψ is one-to-one onto Nand ψ−1 is C∞.

In addition to the above we have;
Definition 1.4.3. Two differential spaces (M,C) and (N,D) are said to be diffeomorphic if
there exists a smooth bijective mapM → N having smooth inverse. Informally, diffeomorphic
differential spaces can be thought of as ’the same’.
Proposition 1.4.1. ([23]) Let (M,C) and (N,D) be differential spaces and let D0 generate
D. A mapping α : M → N is smooth if for each f ∈ D0 we have f ◦ α ∈ C.

Further more a smooth map F : M → N is called a C∞ diffeomorphism if there is a map
G : N →M such that G ◦ F is the identity on M .
Remark 1.4.1. A functionally smooth map is continuous with respect to the topologies
induced by the differential structure.
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1.5 Tangent vectors and spaces

A smooth manifold is a generalisation to higher dimensions of a smooth surface immersed
in R3. That is, it can be linearized at each point. The resulting linear space is called a
tangent space (recall from definition 1.2.5). Between tangent spaces one can define a linear
map associated to the differentiable map between manifolds. The idea of a tangent space
to a manifold, and to a smooth space in general, is very important in differential geometry.
This is based in part on the intuitive geometric idea of a tangent plane to a surface in R3,
such as 2-sphere, a cylinder, a-2-torus and many more (see [18],[35],[14],[28], [15], [11], [12],
[24] and [29]).

Definition 1.5.1. (see [18], p. 73)

1. A curve on a manifold M is a smooth (i.e.,C∞) map σ from some interval (−ε, ε) of
the real line into M. Note that the ’curve’ is defined to be the map itself.

2. Two curves σ1 and σ2 are tangent at a point p in M if

(a) σ1(0) = σ2(0) = p;

(b) in some local coordinate chart (x1, x2, ..., xm) around the point, the curves are
’tangent’ in the usual sense as curves in Rm;

dxi

dt
(σ1(t))

∣∣∣∣t=0 =
dxi

dt
(σ2(t))

∣∣∣∣
t=0

for i= 1,2,...,m.

Note that if σ1 and σ2 are tangent in one coordinate chart, then they are tangent in any
other coordinate chart that covers the point p ∈M . Thus this definition is independent
of coordinate charts.

3. A tangent vector at p ∈M is an equivalence class of curves in M where the equivalence
relation between two curves is that they are tangent at the point p.
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Definition 1.5.2. ([18]) The tangent bundle TM is given by TM := ∪p∈MTPM .
Theorem 1.5.0.2. ([35]) The tangent space TpM is a vector space of dimension n if
dimM = n.

Equivalently (see [10], [27], [29], [28] and [30]), we have ;
Definition 1.5.3. ([10])

1. Let (X,F) be a differential space. A tangent vector V at p ∈ X is a derivation
V : F → R at P, i.e. a linear map such that

V (fg) = f(p)V (g) + g(p)V (f).

The set of such vectors form the tangent space TpX or TXp of X at p.

2. Let (X,F) be a differential space and p ∈ X. Let c :] − ε, ε[→ X be a differentiable
curve on X such that c(a) = p. Let f ∈ F . Suppose that Vc is the derivation defined
by setting

Vc(f) = lim
t→a

f ◦ c(t)− f ◦ c(a)

t− a
Set TCXp = {Vc|c(a) = p}. We see that TCXp ⊂ TXp. TXCp is the tangent cone to
X at p.

Now for any α ∈ F , we have the differential of α at p ∈ X as a linear mapping TPX → R
given by the formula dpα(v) = v(α), where v ∈ TpX.

We denote by TX the disjoint sum of all tangent spaces to (X,F), that is

TX :=
⋃
p∈X

TpX.

Definition 1.5.4. The mapping dα : TX → R, for a function α ∈ F , satisfying the condition
dα|TpX = dpα is called the tangent mapping associated to the differential of a smooth function
α.
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Definition 1.5.5. The differential structure on TX will be denoted by TF , and is generated
by the set {α ◦ π : α ∈ F} ∪ {dα : α ∈ F}. One has:

TF = sc({α ◦ π : α ∈ F} ∪ {dα : α ∈ F})TX ,

where π : TX → X is the natural projection, satisfying π(v) = p, for any v ∈ TpX. The
triple ((TX, TF), π, (X,F)) is called the tangent bundle of a d-space (X,F).
Definition 1.5.6. [10] A tangent vector field on a d-space (X,F) is any mapping V which
associates with every point p ∈ X a tangent vector V (p) ∈ TpX. A tangent vector field V on
(X,F) is said to be smooth if and only if V : (X,F)→ (TX, TF). In addition we can also
say that a (smooth) vector field is a (smooth) section of the tangent bundle.
Definition 1.5.7. ([19]) A mapping X : M → TM , X : p 7→ Xp is called a tangent vector
field to (X,F). It is called smooth, if for all f ∈ F , X(f) belongs to F . The set of all vector
fields tangent to (X,F) is denoted by X(X).

A vector field X on (M,F) induces a linear mapping also denoted by X, X : F → F
satisfying the Lebniz rule, that is a derivation on the algebra F of smooth functions on X.
Proposition 1.5.1. ([28]) Let (M,F) be a differential space, f ∈ F and f |A = 0 for a
neighbourhood A of a point p ∈ M . Then ∂vf = 0 for every v ∈ TpM . Consequently, if
functions f, g ∈ F are equal on a neighbourhood A of a point p ∈ M , then ∂vf = ∂vg for
every v ∈ TpM .

Proof. Let (A,FA) be a differential subspace of a differential space (M,F) and let p ∈ A.
If v ∈ TpA, i.e, if v is a vector tangent to A at p, then the formula

v̄(f.g) = v(f |A)

for all f, g ∈ F , defines a vector v ∈ TpM . Indeed, v̄ is linear and

v̄(f.g) = v(f |A)g(p) + f(p)v(g|A)

= v̄(f)g(p) + f(p)v̄(g)

for all f, g ∈ F and p ∈ A. Clearly the map TpA→ TpM which assigns v̄ ∈ TpM to v ∈ TpA
is a linear monomorphism. We shall identify v with v̄.
Proposition 1.5.2. The tangent space TpA at p ∈ A to a subspace (A,FA) of a differential
space (M,F) is a linear subspace of TpM . If A is an open subset of M, then TpA = TpM for
every p ∈ A.
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Proof. It is easy to see that TpA is a linear subspace of TpM by virtue of 1.5.1. Now, let
us assume that A is open in M. If f, g ∈ FA, there exists a τF -open subset U in A such that

f |U = h|U, h ∈ F

g|U = k|U, k ∈ F

Therefore, for all ∈ TpM , we have, using 1.5.1

v(f.g) = v(h.k) = v(h)k(p) + h(p)v(k) = v(f)g(p) + f(p)v(g),

which proves that v ∈ TpA.

1.6 Cartesian product of differential spaces

We know from set theory that if A and B are sets, A×B denotes the Cartesian products of
A with B. This is defined by the set of all ordered pairs (a, b) where a ∈ A and b ∈ B.
Warner F. W and Isham J. C. (see [35],[18]) in their studies on differential geometry have
observed the following on Cartesian products of smooth manifolds
Theorem 1.6.0.3. [18] If M1 and M2 are two differentiable manifolds then the Cartesian
product M1 ×M2 can be given a manifold structure in a natural way.

Proof. Let (M1,F1) and (M2,F2) be differentiable manifolds of dimensional d1 and
d2 respectively. Then M1 × M2 becomes a differentiable manifold of dimension d1 + d2

(Since Uα,→ Rd1 ,Vβ → Rd2 =⇒ Uα × Vβ → Rd1 × Rd2 = Rd1+d2), with differentiable
structure F the maximal collection containing

{(Uα × Vβ, ϕα × ψβ : Uα × Vβ → Rd1 × Rd2) : (Uα, ϕα) ∈ F1, (Vβ, ψβ) ∈ F2}.

Thus this example shows that the Cartesian product of manifolds is also a manifold. The
dimensions of the product manifold is the sum of the dimensions of factors. Its topology is
given by the collection of the product of all charts on factors. Thus, an atlas for the product
manifold can be constructed using atlases for its factors.
Similarly as a follow up to the above definition, we have the following for differential spaces
which were studied by Sasin W. (see [30]) and by Ntumba P. (see [28]).
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Definition 1.6.1. ([28]) Let (M,F) and (N,G) be non-empty d-spaces. Let F × G be the
differential structure on the Cartesian product M × N , generated by the set of real-valued
functions

{f ◦ π1 : f ∈ F} ∪ {g ◦ π2 : g ∈ G},

where π1(p, q) = p, π2(p, q) = q for all (p, q) ∈M ×N . The d-space (M ×N,F ×G) is called
the Cartesian product of the d- spaces (M,F) and (N,G).
Proposition 1.6.1. The natural projections

π1 : (M ×N,F × G)→ (M,F)

and
π2 : (M ×N,F × G)→ (M,G)

are smooth.

Proof. . Clearly, for every f ∈ F , f ◦ π1 ∈ F × G and, for every g ∈ G, g ◦ π2 ∈ F × G.

Let (M ×N,F × G) be the Cartesian product of differential spaces (M,F) and (N,G). For
an arbitrary point p ∈M , let jp : M ×N be the embedding defined by

jp(q) = (p, q) for q ∈ N.

In the same way, let jq : M ×N , q ∈ N , the embedding defined by

jq(p) = (p, q) for p ∈M.

Now we see that
π1 ◦ jq = idM

π2 ◦ jp = idN

for p ∈M and q ∈ N .

In addition Ntumba (see [28]) has also observed the following;
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Proposition 1.6.2. [28] Let us consider the Cartesian product (M ×N,F ×G) of d-spaces
(M,F) and (N,G). For any tangent vector ω ∈ T(p,q)(M ×N), let us put

ωM = (jq ◦ π1) ∗ (p, q)ω

ωN = (jp ◦ π2) ∗ (p, q)ω

Then, we have the following:
ω = ωM + ωN

(1)
ωM(g ◦ π2) = 0 for any g ∈ G

(2)
ωN(g ◦ π1) = 0 for any g ∈ F

Proof. For any u ∈ F × G, we have

ωM(u) + ωN(u) = ω(u ◦ jq ◦ π1(p, q)) + ω(u ◦ jp ◦ π2(p, q)) = ω(u)

Moreover, for any g ∈ G, we have

ωM(g ◦ π2)(p, q) = ω(g(q)) = 0,

since g(q) is constant which proves (2) and (3).
More generally, we have
Proposition 1.6.3. [28]) Let U ∈ χ(M) and V ∈ χ(N) be vector fields tangent to the
differential spaces (M,F) and (N,G) respectively. Then,we have

1. (jq)∗pUp(g ◦ π2) = 0

2. (jp)∗qVq(f ◦ π1) = 0

3. T(p,q)(M ×N) = (jq)∗p(TpM)⊕ (jp)∗q(TqN).

For (p, q) ∈ M × N , f ∈ F , g ∈ G. Note that we have used, in the equations (1) and (2),
the identifications U(p) = Up and V (p) = Vp .

Proof (see [28])
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Definition 1.6.2. ([30]) Let (M,F) and (N,G) be two differential spaces. A vector w ∈
T(p,q)(M × N) is said to be parallel to (M,F) if w(g ◦ π2) = 0 for any g ∈ G. A vector
w ∈ T(p,q)(M ×N) is said to be parallel to (N,G) if w(f ◦ π1) = 0 for any f ∈ F .
Definition 1.6.3. [30]) A vector field Z ∈ χ(M × N) is said to be parallel to (M,F) if
(π2) ∗ Z(p, q) = 0 for every (p, q) ∈M ×N .
A vector field Z ∈ χ(M × N) is said to be parallel to (N,G) if (π1) ∗ Z(p, q) = 0 for every
(p, q) ∈M ×N .
Definition 1.6.4 (Infinite Cartesian product ). ([25]) Let {(Mi, Ci)}i∈I be an indexed
family of differential spaces. Then the differential structure Πi∈ICi generated on the Carte-
sian product Πi∈IMi by the family {fi◦pri : i ∈ I, fi ∈ Ci} (prj is the natural projection of Πi∈IMi)

onto Mj) is said to be the Cartesian product of the family {(Mi, Ci)}i∈I .
Remark 1.6.1. For a finite set of indices I = {i1, ..., ik}, we write Ci1 ×· · ·×Cik instead of
Πi∈ICi. The topology τΠi∈ICi

coincides with the standard topology of the Cartesian product
of topological spaces.

1.7 Differential groups

In order for us to define the differential group, we first briefly discuss Lie group as this is
foundation of differential groups. The key idea of a Lie group is that it is a group in the usual
algebraic sense, but with the additional property that it is also a differentiable manifold, and
in such a way that the group operation and the inversion map are smooth with respect to
this structure.
Definition 1.7.1. ([18]) A real Lie group, or briefly Lie group G is a set that is

(a) a group in the usual algebraic sense;

(b) a differentiable manifold with the properties that taking the product of two group ele-
ments, and taking the inverse of a group element, are smooth operations. Specifically,
the maps

µ : G×G → G

(g1, g2) 7→ g1g2
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and

i : G → G

g 7→ g−1

are both C∞.

We can as well simply say that a Lie group is a differentiable manifold which is also endowed
with a group structure such that the map G×G→ G defined by (δ, τ) 7→ δτ−1 is C∞.

For a complex Lie group G, one requires that G is equipped with a complex analytic structure
and that multiplication and inversion are holomorphic. The following definition is equivalent
to 1.7.1
Definition 1.7.2. ([35]) A Lie group G is a differentiable manifold which is also endowed
with a group structure such that the map G×G→ G defined by (σ, τ) 7→ στ−1 is C∞.
Remark 1.7.1. • If we let G to be a Lie group then, the map τ 7→ τ−1 is C∞ since

it is the composition τ → (e, τ) 7→ τ−1 of C∞ maps. Also the map (δ, τ) 7→ δτ of
G×G→ G is C∞ since it is the composition (δ, τ) 7→ (δ, τ−1) 7→ δτ of C∞ maps.

• The identity component of a Lie group is itself a Lie group; and the components of a
Lie group are mutually diffeomorphic.

• If G and H are Lie groups (both real or complex), then a Lie group homomorphism
f : G→ H is a group homomorphism which is a smooth map; so a continuous map.

Example 1.7.3. (a) The Euclidean space Rn is a Lie group under vector addition.

(b) The product G × H of two Lie groups is itself a Lie group with the product manifold
structure and the componentwise product group structure; that is, (δ1, τ1)(δ2, τ2) =

(δ1δ2, τ1τ2).

Accordingly, in a similar manner, we define a differential group;
Definition 1.7.4 (Differential group). ([25]) A pair (G,G) is said to be differential group
if and only if

• G is a group

• (|G|,G) is a differential space, where |G| denotes the set of elements of G;
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• a map δ : (G×G,G × G)→ (G,G), defined by the formula

δ(g, h) := gh−1,

is a smooth map.

Equivalently, Batubenge A. and Ntumba P. (see[29], p. 74) have also studied and investigated
differential groups were they gave the following;
Definition 1.7.5. A differential group is a differential space G together with two d-smooth
maps µ : G × G → G and ν : G → G such that G is a group with multiplication µ and
inversion ν.
Definition 1.7.6. ([27]) A group homomorphism G → H of differential groups is called a
map of differential groups provided it is a d-smooth map of the underlying differential spaces
G and H. Differential groups and maps between them constitute a category DIFFG (see1.4.2
for more on smooth maps).
Remark 1.7.2. We see that a differential group is automatically a topological group (with
the topology τG in G) because it is a differential space.
Example 1.7.7. Let G be an arbitrary group. If Go denotes the differential structure of all
constant functions on G then (G,Go) is a differential group. Similarly, if RG is the differential
structure of all real-valued functions on G then (G,RG) is also a differential group. In the
last case the topology τRG is the discrete topology on G.
Proposition 1.7.1. ([25],[27])Let H be a group,(G,G) - a differential group and φ - (an
algebraic) homorphism on H into G. Then (H,φ∗(G)H) is a differential group and φ :

(H,φ∗(G)H)→ (G,G) is a smooth map.

Proof. The smoothness of φ follows directly from the definition of the differential structure
φ∗(G)H . This implies that

H ∗H 3 (g, h)→ η(g, h) := φ(g)φ(h−1) ∈ G

is smooth with respect to the differential structure φ∗(G)H × φ∗(G)H and G, respectively.
Example 1.7.8. (see [25]) If H is a Lie group then (H,C∞(H)) is a differential group.
If G is an arbitrary subgroup of H, φ is the natural embedding of G into H and G :=

φ∗((C∞(H))G = C∞(H)G then (G,G) is a differential group.
Example 1.7.9. Let θ : G→ Gl(n,R) be an n-dimensional matrix representation of a group
G, n ∈ N. By 1.7.1 the pair (G, θ∗(C∞(Gl(n,R)))G) is a differential group. We see that the
differential structure θ∗(C∞(Gl(n,R)))G is generated by the family {θij}1≤i,j≤n of all matrix
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elements of the representation θ.
Example 1.7.10. Let G be a locally compact, connected topological group. Let U be an
arbitrary neighbourhood of the identity element of G. Then there exists a normal subgroup N
of G such that N ⊂ U and G/N is a Lie group.
Example 1.7.11. Let θ : G → Gl(n,R) be an n-dimensional matrix of a group G, n ∈ N,
the pair (G, θ∗(C∞(Gl(n,R)))G) is a differential group.

Denote by φ the canonical map on G onto G/N. From proposition 3.1 it follows that
(G, φ∗(C∞(G/N)G) is a differential group.
Theorem 1.7.0.4. ([25]) Let F be a family of real-valued functions defined on a group G. Let
G := scFG be a differential structure generated by F on G. The pair (G,G) is a differential
group if and only if the following condition is satisfied:
For any f ∈ F and any (g, h) ∈ G × G, there exists a neighbourhood U ∈ τF of g, a
neighbourhood V ∈ τF of h, mapping σ ∈ F r, β ∈ F s and a function ω ∈ C∞(Rr+s) such
that for each (g′, h′) ∈ U × V ,

f(g′h′−1) = ω(σ(g′), β(h′)).

Proof. Suppose that (G,G) is a differential group. Since the map σ is smooth we obtain
that, for any f ∈ F ⊂ G, the map f ◦ σ ∈ G × G. This follows directly from the definition
of G and G × G,i.e, (G×G,G × G)

σ−→ (G,G).

Suppose now that F satisfies the condition in the definition of the differential structure. Since
any function G is locally a function from scF , we obtain that G also fulfils the definition.
Hence σ is a smooth map, and (G,G) is a differential group.

1.8 Differential Subgroup

Definition 1.8.1. ([25]) Let (G,G) be a differential group and H be any subgroup of G. The
differential structure G satisfies the conditions in 1.7.0.4. This then means that the family
F := f|H : f ∈ G also satisfies the condition in the theorem. Consequently the group H with
the differential structure H = FH generated by F on H is a differential subgroup of (G,G).
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Equivalently, we have;
Definition 1.8.2. ([17]) If (G,C) is a differential group with the differential structure C
on G then, for any subgroup G0 of G, the pair (G0, CG0) is a differential group, called a
differential subgroup of the differential group (G,C).

1.9 Cartesian products of differential groups

Definition 1.9.1. Let (Gi,Gi)i∈I be a family of differential groups, where I is an arbitrary
set of indices. Let also for any j ∈ I, prj : Πi∈IGi → Gj be the natural projections of the
Cartesian product Πi∈IGi onto Gj. For any j ∈ I, G the family F = {fj◦prj : fj ∈ Gj, j ∈ I}
of functions on the product Πi∈IGi satisfies the condition (Πi∈IGi,Πi∈IGi) is a differential
group which is a direct product of the family of differential groups (Gi,Gi)i∈I .
Example 1.9.2. Let G be a group and {θi}i∈I be an arbitrary family of matrix representa-
tions of G. For any i ∈ I, the map θi : G→ Gl(ni,R) is a homomorphism of groups. Define
the map θ : G→ Πi∈IGl(ni,R) by the following way

θ(g) := (θi(g))i∈I ∈ Πi∈IGl(ni,R), g ∈ G.

It is obvious that θ is a homomorphism of G into the direct product Πi∈IGl(ni,R). By
proposition 1.7.1 the pair (G,G) where G = θ∗[Πi∈IC

∞(Gl(ni,R))]G, is a differential group.
The differential structure G is generated by the family {θik}i∈I , i ≤ k, 1 ≤ ni.

1.10 The tangent space of a differential group

Definition 1.10.1. For any g ∈ G, by the symbols Lg, Rg we shall denote the left and right
multiplication in the group G, which are defined as mappings of on G such that

Lg(h) := gh, (1.1)

Rg(h) = hg (1.2)

and the automorphism adg(h) := ghg−1. It is obvious that

adg ≡ Lg ◦Rg−1

Proposition 1.10.1. ([7], [26]) If (G,G) is a differential group then, for any g ∈ G, the
translations Lg, Rg and the automorphism adg are diffeomorphisms.
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Corollary 1.10.1. Let (G,G) be a differential group. Then, for any g ∈ G,

dimTgG = dimTeG,

where e is the identity element of G.

Proof. Since Lg and Rg are diffeomorphisms, the tangent mapping deLg : TeG → TgG

(differential) proves to be an isomorphism of linear spaces.
Thus, the vector space TgG and TeG have same dimension.
Theorem 1.10.0.5. If (G, C) is a differential group, then the symmetry

inv(g) = g−1,

a right multiplication Ra(g) = ga and a left translation La(g) = ag are diffeomorphisms of
the differential space (G, C). Moreover the group operation

G×G 3 (g, h)→ A(A, h) = gh ∈ G

is a smooth mapping of the differential space (G×G,C ×C) onto the differential space (G,
C).

Proof. The following mappings

1. G 3 g 7→ ia(g) = (a, g) ∈ G×G

2. G 3 g 7→ ja(g) = (g, a) ∈ G×G

are smooth with respect to the differential structures C and C × C, respectively. Taking

a = e

we obtain that inv = Q ◦ ie is a smooth mapping on (G, C). On the other hand inv = inv−1

and this implies that the symmetry is a diffeomorphism on (G, C). Hence the mapping

G×G 3 (g, h) 7→ B(g, h) = (g, h−1) ∈ G×G

is smooth on (G×G,C×C) and we conclude that the group operation A = Q◦B is smooth
as a composition of smooth mappings. The smoothness of right and left translations follows
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now from equalities
Rg = A ◦ ja and Lg = A ◦ ia.

Taking into account that R−1
g = Rg−1 and L−1

g = Lg−1 we obtain that right and left transla-
tions are diffeomorphisms of (G, C).

1.11 Lie Algebra of a differential group

In this section it is important before we look at the Lie algebra of a differential group to
look back at the Lie algebra of a differentiable manifold as given by Warner F.W. (see [35],
p. 84).
Definition 1.11.1. Let (G,G) be a differential group. The vector space L(G), over R, of
all left-invariant and smooth vector fields on G, together with the Lie multiplication [., .] is
said to be the Lie algebra of (G,G), is the pair (L(G), [., .]), where [V,W ] = VW −WV for
V,W ∈ L(G).
Proposition 1.11.1. For any differential group (G,G), the linear space TeG and L(G) are
isomorphic.

Proof. (see [25])
Proposition 1.11.2. Let (G,G) and (H,H) be differential groups. For any smooth homo-
morphism f : G → H (f is said to be a homomorphism of differential groups), the mapping
L(f) : L(G)→ L(H), defined by

L(f) : jH ◦ def ◦ j−1
G

is a homomorphism of Lie algebras. Moreover, for any smooth homomorphism f : G → H

and g : H → Z

L(f) : L(g) ◦ L(f)

L(idG) = idL(G).
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2. FRÖLICHER SPACES

Frölicher spaces were first studied by A. Frölicher who referred to them as ’smooth spaces’.
Later on they were for the first time called Frölicher spaces by Cherenack P. (see[16], [9]).
Let C = C∞(R,R) be the set of smooth maps from R to R , X be a nonempty set and CX
be a subset of the set Map(R, X), a collection of curves c from the real line R to X and
FX be a subset Map(X,R), a collection of real-valued scalar functions from X to R. Now,
consider the following diagram

X

f
��

R f◦c //

c

>>

R

Definition 2.0.2. The pair (CX ,FX) is called a smooth structure or a Frölicher structure
on X if the following compatibility condition is satisfied,

ΓFX = CX and (2.1)

ΦCX = FX , (2.2)

where we denote by ΓFX the set of all paths (contours) (c : R→ X), the composition of which
with every f ∈ FX is a C∞ real function. Similarly, ΦCX is a set of all maps (f : X → R)

such that f ◦ c is a C∞ real function for all choices of paths (contours) in CX . A mapping
c ∈ CX is called a structure curve, and f ∈ FX is called a structure function.
Definition 2.0.3. ([33],[2],[9]) A Frölicher space is a triple (X,CX ,FX), where (CX ,FX)

is a Frölicher structure and X is the underlying set.

Equivalently, (see [29]), we have that;
Definition 2.0.4. A Frölicher (smooth) space is a set M together with a set CM of curves
c : R → M (CM ⊆ MR) and a set FM of real valued functions f : M → R(F ⊆ RM) such
that

• for any c ∈ CM and any f ∈ FM we have f ◦ c ∈ C∞(R,R).

• Note that the curves and functions determine each other in the following sense:
If c ∈MR is such that f ◦ c ∈ C∞(R,R) for any f ∈ RM then c ∈ CM , and if f ∈ RM
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is such that f ◦ c ∈ C∞(R,R) for any c ∈ CM then f ∈ FM .

In this work, when there is no confusion, we shall mention (M,C,F) or simply M as a
Frölicher space instead of (M,CM ,FM) with subscript M .
Definition 2.0.5. Given Frölicher structures (C,F) and (C ′,F ′) on a set X, we say that
(C,F) is finer than (C ′,F ′) if C ⊂ C ′ or equivalently if F ′ ⊂ F . Similarly, (C,F) is coarser
than (C ′,F ′) if C ′ ⊂ C.

In his work, Laubinger M.(see [21]) has given the following results:
Definition 2.0.6. Let X be a set, {(Xi, Ci,Fi)i∈I} be a collection of Frölicher spaces, and
gi : Xi → X and fi : X → Xi set maps. The initial Frölicher struture with respect to the
maps fi is the Frölicher structure generated by all f ◦ fi with i ∈ I and f ∈ Fi. Similarly,
the final structure with respect to the maps gi is the Frölicher structure generated by all gi ◦ c
with i ∈ I and c ∈ C.

The definition above is similar to 1.1.19 for differential spaces. In particular, if X is a
Frölicher space and i : A→ X the inclusion of a subset and π : X → B the projection onto
a quotient, then the subset structure on A is the initial structure with respect to i, and the
quotient structure on B is the final structure with respect to π.
Example 2.0.7. The finite-dimensional smooth manifolds where if X is such a manifold,
then CX = {c : R → X | c is smooth} and FX = {f : X → R | f is smooth} are examples
of Frölicher spaces.
Example 2.0.8. Let (R, C,F), where both C and F are the set C∞(R,R). The pair (C,F)

is a smooth structure called the standard Frölicher structure on the real line, on which all
smooth (C∞) usual functions are smooth curves and functions in the Frölicher sense. Then,
(R, C,F) is the standard (canonical) Frölicher space.
Example 2.0.9. If (M,CM ,FM) is a Frölicher space, and A ⊂ M a subset of M . Then A
is a Frölicher subspace of M .
Example 2.0.10. M = Rn, (M,C,F), where C = C∞(R,Rn) and F = C∞(Rn,R), M is
a smooth space as a smooth Manifold.
Theorem 2.0.0.6 (Boman’s Theorem). ([20]) Let f ∈ map(Rn,R) be such that f ◦ c is
C∞ whenever c : R→ Rn is C∞, then f is C∞.
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Example 2.0.11. We show that the canonical structure of R is generated by F0 = {idiR}

F0
Γ−→ ΓF0

Φ−→ ΦΓF0

ΓF′ = {c : R→ R : f ◦ c ∈ C∞ for all f ∈ F0}

= {c : R→ R : c ∈ C∞(R,R)}

ΦΓF0 = {f : R→ R : f ◦ c ∈ C∞(R,R) for all c ∈ C∞(R,R)}

= C∞(R,R)

For, if f /∈ C∞(R,R), then particular choice c = idR will yield a contradiction.

This first example above appears then as an immediate consequence of Boman’s theorem.
That is:
Corollary 2.0.1. If M is a smooth finite-demensional manifold, then

(C∞(R,M), C∞(M,R))

is a Frölicher structure on M .

It is important to mention here that there are some Frölicher spaces that are not smooth
manifolds, see[29]. The following are some of the examples of Frölicher spaces;
Example 2.0.12. K = {(x, y) ∈ R2|xy = 0} = {(x, 0) : x 6= 0} ∪ {(0, y) : y 6= 0} is a
Frölicher space as a subset of the Frölicher space R2. It is not a smooth manifold.
Example 2.0.13. G = {(x, |x|), x ∈ R} is the graph of the absolute value function in R
such that x 7→ |x| is a Frölicher subspace of R2 which is not a smooth manifold.

2.1 Frölicher subspace

Definition 2.1.1. (see [37], [38]) Let (X,CX ,FX) be a Frölicher space and A a subset of
X. Then, the inclusion iA : A → X places an initial structure on A, where the resulting
Frölicher space is (A,CA,FA) with

• CA = {c : R→ A|iA ◦ c ∈ CX}

• FA = ΦΓ{f ◦ iA|f ∈ FX}.
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With this structure A is called a Frölicher subspace of X.
Example 2.1.2. Let X = R and A = Q denote the rationals. Then, CA consists of the
constant maps and FA thus consists of all functions, and then has the discrete topology. We
call it a discrete Frölicher space.

2.2 Frölicher smooth maps

Definition 2.2.1. ([1], [29] and [34]) A map ϕ : (M, CM ,FM) −→ (N, CN ,FN) between
Frölicher spaces is termed smooth if it satisfies one of the following equivalent conditions:

(1) ϕ ◦ c ∈ CN for all c ∈ CM

(2) ϕ ◦ f ∈ FM for all f ∈ FN

(3) h ◦ ϕ ◦ c ∈ C∞(R,R) for all h ∈ FN

Equivalently (see [37]) we have that;
Definition 2.2.2. Let (X,CX ,FX) and (Y,CY ,FY ) be Frölicher spaces. Let F : X → Y be
a map. Then F is Frölicher smooth if for every f ∈ FY , f ◦ F ∈ FX .
Proposition 2.2.1. The composite of two Frölicher smooth maps is also a Frölicher smooth
map.

Proof. If M , N and P are Frölicher spaces and ϕ1 : M → N and ϕ2 : N → P

are Frölicher smooth maps then for some f ∈ FP and for some c ∈ CM , the composite
f ◦ (ϕ2 ◦ ϕ1) ◦ c = (f ◦ ϕ2) ◦ (ϕ1 ◦ c) is in C∞(R,R) since (f ◦ ϕ2) ∈ FN and (ϕ1 ◦ c) ∈ CN .
That is, (ϕ2 ◦ ϕ1) : M → P is a Frölicher smooth map.
Proposition 2.2.2. LetM be a Frölicher space. The structure curves inM and the structure
functions on M are Frölicher smooth.

Proof. Let us consider the canonical Frölicher structure on R. Each structure curve in M
is a map c : R→ M such that for all f ∈ FM , f ◦ c ∈ C∞(R,R) = FR. And each structure
function on M is a map f : M → R such that for all c ∈ CM , f ◦ c ∈ C∞(R,R) = CR.

Hence, according to definition 2.2.1 the structure function f is Frölicher smooth. So is each
structure curve c.
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Remark 2.2.1. Using the same notation as in the definition above, note that for any c ∈ CX ,
we have F ◦ c ∈ CY . Indeed, for every f ∈ FY , we have f ◦F ∈ FX . Hence F ◦ c ∈ ΓFY =

CY . Moreover, F : X → Y is Frölicher smooth if and only if for any C ∈ CX , we have
F ◦ c ∈ CY .

Frölicher spaces and maps between them form a category, which we denote FRL, which
has the following properties as shown by the works done by Frölicher and Kriegl[16] and
Cherenack[10], these further discussed by Batubenge and Tshilombo (see [5]):

1. It is complete, that is, arbitrary limits exist. The underlying set is formed as in the
category of sets as a subset of the Cartesian product, and the smooth Frölicher structure
is generated by smooth functions on the factors.

2. It cocomplete, that is, arbitrary colimits exist. The underlying set is formed as in the
category of sets, that is, as a certain quotient of the disjoint union, and the smooth
functions are exactly those which induce smooth functions on the factors.

3. It is Cartesian closed. That is, for any Frölicher spaces X, Y , and Z , the set C∞(Y, Z)

of all FRL - morphism from Y to Z carries a canonical smooth Frölicher structure
following an exponential law:

C∞(X × Y, Z) ∼= C∞(X,C∞(Y, Z)).

Now if X = R in this formula,we construct the set CY,Z of curves C : R → C∞(Y, Z)

by requiring that the map c̃ : R × Y −→ Z where c̃(t, y) := c(t)(y), is smooth. Then
using the functors Φ and Γ , we shall generate a Frölicher structure C∞(Y, Z), the
proof for this was done by Laubinger M (see[20]).

4. It is topological over Set. (see[10],[21]). That is, the category FRL behaves like
the category of topological spaces . One defines induced F-structures on new sets
constructed on Set and induces topologies. So, quotients, subsets, products and co-
products exist in FRL as limits or colimits lifted from the category of sets.

Proposition 2.2.3. ϕ : M → N is said to be a smooth map of Frölicher spaces (F-smooth)
if ϕ ◦ c ∈ CN for all c ∈ CM .
Proposition 2.2.4. [34] LetM be a Frölicher space. The identity map idM onM is Frölicher
smooth map.
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Proof. One considers the fact that ϕ = idM and N = M in definition 2.2.1. Hence the
proposition holds.
Definition 2.2.3. An F-diffeomorphism or diffeomorphism between Frölicher spaces is that
smooth map which has a smooth inverse.
Proposition 2.2.5. ([2]) Let (M,CM ,FM) be a Frölicher space. Consider a set N and
assume that F : (M,CM ,FM)→ N is an injective mapping. Then there exists on the image
F (M) ⊆ N a Frölicher structure making F an F diffeomorphism of M onto F (M).

A. Batubenge and Ntumba P. (see [29]) have shown the following two results
Proposition 2.2.6. Let (X,CX ,FX) be a Frölicher space, and let Y be a set, and let S =

{fi : X → Y, i ∈ I} be a family of set map ϕ : X → Y I by setting

ϕ(x) = (fi(x))I .

If ϕ is one-to-one, then (X,CX ,FX) is diffeomorphic to the subspace ϕ(X) of the Frölicher
space Y I (YI =

∏
I Y, where Y is the Frölicher space whose structure is the structure coin-

duced by the family S).

Proof. First note that the structure on Y is generated by the family

F0 = {f : Y → R|f ◦ fi ∈ FX for all i ∈ I},

and the structure on Y I has as generating set the family

{g ◦ πi : g ∈ F0, i ∈ I}.

Since g ◦ πi ◦ ϕ(x) = g ◦ πi((fi(x)) = g ◦ fi(x); then ϕ is smooth.

Now consider ϕ−1 : ϕ(X) → X. Curves on ϕ(X) have the form c(t) = (fi ◦ c̃(t))I , where
c̃ : R→ X is a structure of X. It follows clearly that

ϕ−1((fi ◦ (t̃)) = c̃.

that is ϕ−1 is smooth. As a straightforward consequence (see [29]), to Proposition 3.0.6, one
has
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Corollary 2.2.1. Let X and Z be Frölicher spaces, and let Y be a set, and let S = {f1, f2, ..., fn :

X → Y } and S′ = {g1, ..., gm : Z → Y } be families of set maps. Suppose that ϕ :=

(f1, f2, ..., fn) and ψ := (g1, ..., gm) are one-to-one maps X → Y n and Z → Y m respectively.
Then, the map α : X × Z → Y m+n denoted by

α = (f1 ◦ π1, ..., fn ◦ π1, g1 ◦ π2, ..., gm ◦ π2)

is one-to-one, and the product space X×Z is diffeomorphic to the subspace α(X×Z) of the
Frölicher space Y m+n (every Y in the product Y m+n is a Frölicher space whose structure is
coinduced by the family {f1 ◦ π1, ..., fn ◦ π1, g1 ◦ π2, ..., gm ◦ π2}).

In (see [29] and [7]),we have the following results;
Theorem 2.2.0.7. Let Y be a Frölicher space, and the pair (CX ,F) the Frölicher structure
induced on the set X via maps fi : X → Y, i ∈ I. Assume that the map ϕ : X → Y I , given
by ϕ(x) = (fi(x))I , is one-to-one. Then ϕ is a diffeomorphism onto the subspace ϕ(X) of
Y I .

Proof. . Let c : R→ X be a curve on X. Then

ϕ ◦ c(t) = (fi ◦ c(t))I

for all t ∈ R. Since the structure Y I is generated by the family {g ◦ πi : g ∈ FY , i ∈ I}, it
follows that ϕ ◦ c : R→ ϕ(X) is a smooth curve on ϕ(X). Hence ϕ is smooth.

Now, Let (xi)I ∈ ϕ(X). It is clear that

g ◦ fi ◦ ϕ−1((xi)I) = g ◦ πi ◦ ϕ ◦ ϕ−1((xi)I) = g ◦ πi((xi))I),

π ◦ f = fi by assumption. It follows that ϕ−1 is smooth, and the proof is finished.
Corollary 2.2.2. Let M be a set, and let f1, f2, ..., fn : X → R be real-valued functions
on M such that the map ϕ : M → Rn , ϕ(x) = (f1(x), f2(x), ..., fn(x)), is one-to-one. If
(CM ,FM) is a Frölicher structure generated by the {f1, f2, ..., fn} then ϕ is a diffeomorphism
onto the subspace ϕ(M) of Rn.
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2.3 Smooth structure generated by a set

Recall from definition 2.0.2 the operators Γ and Φ. We have that the set F0 is called a
generating set of functions for the Frölicher space (X,ΓF0,ΦΓF0). Analogously a set C0 of
maps R→ X on a set X generates a Frölicher space (X,CX ,FX), where

• FX := ΦC0 = {f : X → R|f ◦ c ∈ C∞(R,R) for all c ∈ C0}

• CX = ΓFX = ΓΦC0

Note that for any family of functions F0 from X to R and family of functions C0 from R to
X, we have

C0 ⊆ ΓΦC0, and F0 ⊆ ΓF0

These facts imply that

ΦΓC0 = ΦC0 and that ΓΦΓF0 = ΓF0.

Definition 2.3.1. ( [1],[29],[5],[34]) Let FM be the set of all f ∈ RM such that f ◦ c ∈
C∞(R,R) for all f ∈ FM . Then (CM ,FM) is a Frölicher structure on M generated by the
family C of curves.
Dually we define the smooth structure on M generated by a set of functions F ⊆ RM .

For the two sets P(MR) and P(RM), we have that;

• if C ∈P(MR), then ΦC = {f : M → R/f ◦ c ∈ C∞(R,R) for all c ∈ C}

• if F ∈P(RM), then ΓF = {c : R→M/f ◦ c ∈ C∞(R,R) for all f ∈ F}

Therefore,

1. ΓΦC = {c : R→M/f ◦ c ∈ C∞(R,R), for all f ∈ ΦC}

2. ΦΓF = {f : M → R/f ◦ c ∈ C∞(R,R), for all c ∈ ΓF}.
Definition 2.3.2. The pair (ΓF ,ΦΓF) is called the Frölicher structure generated by F and
the pair (ΓΦC,ΦC) is the Frölicher structure generated by C.
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The following lemma states that the operations Γ and Φ are inclusion-reversing.
Lemma 2.3.3. ([34]) Let C1, C2 be subsets of MR and F1, F2 subsets of RM . We have

1. If C1 ⊆ C2 then ΦC2 ⊆ ΦC1,

2. If F1 ⊆ F2 then ΓF2 ⊆ ΓF1.

Proof.

1. Let f ∈ ΦC2. We have by definition 2.0.4 that f ◦ c ∈ C∞(R,R) for all c ∈ C2. In
particular, f ◦ c ∈ C∞(R,R) for all c ∈ C1 since C1 ⊆ C2. Thus, f ∈ ΦC1.

2. Let c ∈ ΓF2. Then by definition 2.0.4, f ◦ c ∈ C∞(R,R) for all f ∈ F2. Since F1 ⊆ F2,
we have particularly f ◦ c ∈ C∞(R,R) for all f ∈ F1. That is c ∈ ΓF1.

Remark 2.3.1. From the Lemma 2.3, one can observe that the functors Γ and Φ are order
reversing . As a consequence a small set generates a richer Frölicher structure.
Proposition 2.3.1. ([34]) Let M be a set. Let F0 be a subset of RM and C0 a subset of
MR. Then

1. F0 ⊆ ΦΓF0

2. C0 ⊆ ΓΦC0

Proof. (see [34])
Proposition 2.3.2. The following identities hold for the functors Φ and Γ :

1. ΓΦΓ = Γ

2. ΦΓΦ = Φ

Proof.

1. Let F0 be a subset of RM . From Proposition 2.3.1 (1), it yields F0 ⊆ ΦΓF0. Applying
Lemma 2.3.3 to F0 ⊆ ΦΓF0, we obtain ΓΦΓF0 ⊆ ΦΓF0. Since ΓF0 is a subset of MR,
proposition 2.3.3 (2) gives ΓF0 ⊆ ΓΦΓF0. From the two inclusions ΓΦΓF0 ⊆ ΓF0 and
ΓF0 ⊆ ΓΦΓF0, it follows that ΓΦΓF0 = ΓF0 for any subset F0 of RM . Thus, ΓΦΓ = Γ.
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2. Similarly, let C0 be a subset of MR. From proposition 2.3.1 (2), we obtain C0 ⊆ ΓΦC0.
By lemma 2.3.3 (1), it follows from C0 ⊆ ΓΦC0 that ΦΓΦC0 ⊆ ΦC0. By definition
2.0.4 , ΦC0 is a subset of RM . Then proposition 2.3.1 (1) gives ΦC0 ⊆ ΦΓΦC0. The
two inclusions ΦΓΦC0 ⊆ ΦC0 and ΦC0 ⊆ ΦΓΦC0 imply that ΦΓΦC0 = ΦC0 for any
subset C0 of MR. Thus, ΦΓΦ = Φ.

Remark 2.3.2. We can interpret proposition 2.3 as that, one is able to obtain more than
one Frölicher structure on a set. But the Frölicher structure generated by a fixed set F0 or
C0 is unique.

2.4 Topological properties of Frölicher spaces

For some reasons as from its structure which is a pair of input and output mappings, a
Frölicher space (M, CM ,FM) carries two natural topologies induced by functions and curves
as follows:
Definition 2.4.1. 1. τF = {O ⊂ M : O = ∪f∈Ff−1(I); I ∈ τR} which is a functional

topology or initial topology on M . More generally (see [5]) it is the topology induced
by functions which is the collection of all subsets O that are pre-images f−1(V ), for
f ∈ FM , of open sets V of the standard topology ΓR of R.

2. τC = {U ⊆M : c−1(U) ∈ τR; c ∈ C} which is a curvaceous topology or final topology on
M . Equivalently (see [5])

We note that since the composite of each function with each curve is a C∞ real function,
it is noticed that the functional topology is the weakest one in which all maps are continu-
ous. Furthermore, smooth maps in general , smooth curves and functions in particular are
continuous irrespective of topologies.
Proposition 2.4.1. ([4]) τF ⊆ τC is the weakest topology on M such that all functions and
curves are continuous.

Proof. Fix O in τF , that is O = ∪f∈Ff−1(I) such that I ∈ τR.

Now c−1(O) = c−1(∪f∈Ff−1)

= ∪f∈F(c−1(f−1(I))

= ∪f∈F(f ◦ c)−1(I).

Therefore O ∈ τC and thus, τF ⊆ τC.
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But f ◦ c is C∞, so continuous. I is open in R, and I ∈ τR.
Lemma 2.4.1. If ϕ : M → N is F -smooth, then it is continuous in both τF and τC.

2.5 Tangent spaces of Frölicher spaces

We recall that given a Frölicher space (X,CX ,FX), FX consists of all smooth maps X → R,
where R is the canonical Euclidean Frölicher space. Since FRL is Cartesian closed (see [10],
[14]), the collection FX of structure functions of the Frölicher space X can be made into a
Frölicher space, in a way that if CX,R is the set of structure curves : R→ FX , then c ∈ CX,R
provided that there exists a smooth map c̃ : R×X → R, given by c̃(t, x) = c(t)(x). Now let
DX denote the set of all smooth maps v : FX → X with properties that v is linear and

v(f.g) = f(p)v(g) + g(p)v(f).

i.e. v is a derivation at p ∈ X, then regarding DX as a Frölicher subspace of FRL(FX ,R),
we have that;

Definition 2.5.1. (see [9], [10], [29])

1. The tangent bundle TX on X is the Frölicher subspace of X × DX consisting of all
pairs (p, v) such that v is a derivation at p.

2. The set TpX of all derivations to the space X at p is linear over R and is called the
tangent space to X at p.

3. Fix c ∈ CX , and suppose that c(t0) = p for some t0 ∈ R and we let a map vc : FX → R
be a derivation defined by

vc(f) = lim
t→t0

(f ◦ c)(t)− (f ◦ c)(t0)

t− t0

If we set TCpX = {vc : c ∈ CX : c(t0) = p}, then TCpX is called the tangent cone to
X at p.

4. The tangent cone bundle TCX on the Frölicher space X is the Frölicher subspace of
X × FRL(FX ,R) consisting of all pairs (p, vc) such that there exists a t0 ∈ R with
c(t0) = p and vc is the derivation given in the equation above.
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Equivalently (see [33], [10], [5], [21]) we have that;
Definition 2.5.2. The tangent bundle TX ( tangent cone bundle TCX) on X is the Frölicher
subspace of X ×DX (resp.,X ×DX,c) consisting of all (p, D) such that D is a derivation at
p. The projection map π : TX → X (

∏
: TXC → X) is the smooth map sending (p,D) to

p. A vector field on X is (most properly) a section of
∏

or (more generally) π.
Lemma 2.5.1. Let ϕ : X → Y be a map of Frölicher spaces X and Y . Then the following
canonical mappings are smooth:

1. ϕ̃ : FY → FX , ϕ̃(β) = β ◦ ϕ,

2. χ : FRL(X, Y )→ FRL(FY ,FX), χ(f) = f̃ , f̃(β) = β ◦ f .

Proof (see [14])
Lemma 2.5.2. Let ϕ : X → Y be a smooth map of Frölicher smooth spaces X and Y . Then
for all x ∈ X, the associated tangent mapping ϕ ∗ x : Tϕ(∗)Y is smooth.

Proof (see [14])
Example 2.5.3. The rationals as Frölicher subspace of R have trivial tangent spaces to their
tangent cones: since contours must have constant values, the tangent cones must be trivial.
Let q ∈ Q. The function f : Q→ R such that f(q) = 1 and f(r) = 0 if r 6= q belongs to FQ.
Since f 2 = f , one can show that, for any derivation D at q, D(f) = 0. Let g ∈ FQ and g’ =
fg. Then, D(g’)= f(g)D(g). Since g(q)g′ = (g′)2, D(g’) = 0 and thus D(g) = 0. Hence, the
tangent space at q is trivial.
Example 2.5.4. Except at (0,0) the Frölicher curve c above has a one-dimensional tangent
space (= tangent cone). At (0, 0) the tangent is trivial (as in 2.0.0.6).
Example 2.5.5. Let B be the Frölicher subspace of R2 defined by xy = 0. The tangent cone
to B agrees with the tangent space and is one-dimensional except at (0, 0) where the tangent
cone is B and the space is R2. A scalar on B is a function f : B → R such that f is smooth
on the x- and y-axes, respectively.
Example 2.5.6. Q as a differential subspace of R has scalars f : Q → R which are locally
in the usual topology the restrictions of locally smooth functions on R. Thus, the tangent
space to a point q ∈ Q is the same as the tangent space when q is regarded as a point of R
and one-dimensional.
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2.6 Frölicher Lie groups

In their works ’On the Way to Frölicher Lie Groups’, Ntumba P. and Batubenge A. (see[29],
p. 81-90) have investigated and shown what follows.
Definition 2.6.1. Assume that G is a group with identity element e. A triple (G,C,F) is
called a Frölicher Lie group if:

• (G,C,F) is a Frölicher space

• the mapping σ : G×G→ G given by

σ(x, y) = xy−1

is smooth.

In this mapping σ, we are assuming that the space G × G is equipped with the product
structure.
Lemma 2.6.1. The condition that the map σ : G × G → G, σ(x, y) = xy−1, be smooth is
equivalent to requiring that the product map µ : G×G→ G and the inversion map i : G→ G,
given respectively by

µ(x, y) = xy, i(x) = x−1,

be smooth maps.

Proof. . Clearly, i = σ(e,−), where e is the identity element of G. Let c ∈ C, and f ∈ F ;
then for t ∈ R, one has

f ◦ i ◦ c(t) = f ◦ σ(e, c(t))

Since the map e : R→ G, e(t) = e for all t ∈ R, is a curve into G, it follows that f ◦σ(e,−) :

R→ R is smooth. Therefore, i is smooth.

Now, consider the map Id × i : G × G → G × G, where Id : G → G is the identity map.
Since µ = σId× i, it follows that µ is smooth.

Conversely, assume that µ and i are smooth. Since σ = µ◦Id× i, it follows that σ is smooth.

Now if G and H are Frölicher Lie groups, an F-map ϕ : G→ H is a smooth map of Frölicher
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Lie group provided ϕ is a homomorphism of groups.
Proposition 2.6.1. The category FrLiG of Frölicher Lie groups has initial and final struc-
tures to the forgetful functor U : FrLiG→ Grp.

Proof (see [29])
Example 2.6.2. Let G be an arbitrary group, and let F0 denote the collection of all constant
real-valued functions on G. Since F0 is contained in F for every Frölicher structure (C,F)

on G, it follows that the set ΓF0 of curves consists of all functions R→ G, and ΦΓF0 = F0.
Hence the triple (G,ΓF0,ΦΓF0) is a Frölicher Lie group.
Example 2.6.3. Let F0 = RG, where G is a group. It is clear that the Frölicher structure
generated by F0 on G is the pair (C,F), where F = F0 and C consists of all constant maps
R→ G. It is equally evident that the collection of structure functions on G×G is the set of
all real-valued functions on G×G. Since any curve c : R→ G×G is of the form c = (c1, c2),
where c1 and c2 are curves on G, it follows that σ ◦ c : R→ G is smooth. Consequently σ is
smooth, and thus the Frölicher space G is a Frölicher Lie group.
Example 2.6.4. Finite dimensional smooth manifolds form an important class of Frölicher
spaces where if X is such a manifold, then CX is the set of all smooth maps R→ X and FX
consists of all smooth maps X → R. Moreover, if a smooth manifold X is a Lie group, then
the triple (X,CX ,FX) is a Frölicher Lie group.

2.7 Left invariant vector fields on Frölicher Lie groups

The purpose of this section is to reformulate results presented in Lie groups and differential
spaces and associate them with Frölicher spaces. This endeavor emanates from the close
relationship that links differential spaces (in the sense of Sikorski) to Frölicher spaces.
Definition 2.7.1. ([28], [5]) For any g ∈ G, notations Lg and Rg are defined as mappings
G→ G such that

• Lg(h) = gh,

• Rg(h) = hg,

for h ∈ G, and are called left and right translations respectively.
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Lemma 2.7.1. Let η ∈ TeG and let α be a smooth function on G. Then the function
f : G→ R, given by

f(g) = η(α ◦ Lg),

is a smooth function.

Proof Let λ : G→ C∞(G,R) be a map given by

λ(g) = α ◦ Lg,

for all g ∈ G. If c : R→ G is a curve into G, then

(λ ◦ c)(t)(g) = α ◦ µ(c(t), g).

Next define the map ĉ : R×G→ R by setting

ĉ(t, g) = α ◦ µ(c(t), g).

It is clear that ĉ is smooth as a curve on C∞(G,R). Hence λ is smooth. Since tangent
vectors are smooth mappings, it follows that the function f is smooth.
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3. INFINITE CARTESIAN PRODUCTS
OF SMOOTH SPACES

3.1 Products of differential spaces and of Frölicher spaces

In this discussion we will make reference to the discussion of Cartesian products of differential
spaces and differential groups in sections 1.6 and 1.9.
Definition 3.1.1. ([25], [27],[30]) Let (M,C) and (N,D) be differential spaces. By C ×D
we denote the differential structure on M ×N generated by the set

{α ◦ prM : α ∈ C} ∪ {β ◦ prN : β ∈ D},

where prM : M ×N −→M and prN : M ×N −→ N are canonical projections on M and N ,
respectively. The pair (M ×N,C ×D) is called the Cartesian product of differential spaces
(M,C) and (N,D).

Now for differential groups in particular, an arbitrary Cartesian product G = ×i∈IGi has dif-
ferential structure denoted by F (G) generated by the set ∪i∈Ipr∗i (F (Gi)) where pr∗i (F (Gi))

is the differential structure generated on each differential group Gi, for an indexed family
(Gi)i∈I of differential groups. Then the infinite product of differential groups is written as
(G,F (G)), where F (G) = ×iFi .

For Frölicher spaces, the smooth structure consists of a pair of structure curves and structure
functions, and the above translates as follows.

Let (M, CM ,FM) and (N, CN ,FN) be Frölicher spaces such that the structure CM is generated
by a set F0 of functions α : M −→ R and CN is generated by a set G0 of functions β : N −→ R.
To get a Frölicher structure on the Cartesian product M ×N we
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1. First form the generating set, that is,

F0 = {α ◦ prM ;α ∈ FM} ∪ {β ◦ prN ; β ∈ FN}.

2. Next, generate structure curves for the product. That is,

ΓF0 = {c : R −→M ×N ; f ◦ c ∈ C∞(R,R)},

with f being of the form f = α◦prM or f = β◦prN . Since we required f ◦c ∈ C∞(R,R),
and a path into M × N is c = (c1, c2), where c1 : R −→ M and c2 : R −→ N , then
the requirement f ◦ c ∈ C∞(R,R) implies that both components f ◦ c1 and f ◦ c2 be
C∞(R,R) which forces c1 ∈ CM and c2 ∈ CN . One concludes that

CM×N = CM × CN .

3. Form the set of structure functions by setting

ΦΓF0 = {h : M ×N −→ R; h ◦ c ∈ C∞(R,R) for all c ∈ CM×N}.

Since a function h : M × N −→ R need not be of the form (h1, h2), there is no
possible characterization of the set of structure functions on M × N considered as
Frölicher spaces, and particularly for Frölicher Lie groups.

Following this difference between Frölicher structure (CM ,FM) and Sikorski differential struc-
ture F , the (infinite) product of Frölicher Lie groups will not be dealt with as the one on
differential groups. A way out for a similar study (similar results) will be that of considering
a class of differential groups made of differential spaces whose set of structure functions is
reflexive. That is, ΦΓF = F , where F is generated by a set F0 of some real-valued functions.
We shall refer to these spaces as pre-Frölicher spaces in the sense of A. Batubenge (see [6]).

Suppose that one is given a collection {(Xi,Fi)}i∈I of differential spaces or a collection
{(Xi, Ci,Fi)}i∈I of Frölicher spaces. Let

∏
i∈I Xi be the set product of the sets {Xi}i∈I and

πj :
∏

i∈I Xi → Xj for j ∈ I denote the projection map. The initial structure on P =
∏

i∈I Xi
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in both the sense of Sikorski and Frölicher is generated by the set

F∗P =
⋃
i∈I

{fi ◦ πi|fi ∈ Fi, i ∈ I}.

In the Sikorski sense one obtains
∑
F∗P as the initial structure on P, whereas in the Frölicher

sense one obtains
CP = {c : R→ P| if fi ∈ Fi, i ∈ I},

FP = ΦΓF∗P.

Here,the requirement that each component of C is a smooth map is most useful.
Example 3.1.2. Let RN

⊕ denote the Frölicher space and thus differential space whose un-
derlying set is RN and whose Frölicher space structure is generated by the set C0 of curves
which is equal to

{(xi(t))i∈N ∈ CRN | except for finitely many i, xi(t) is identically 0}.

Let α : R → R be a smooth function such that α(t) = t if −3
4
≤ t ≤ 3

4
and |α(t)| ≤ 1

otherwise. It is clear that the function l : RN
⊕ → R defined by setting

l((xi)i∈N) =
∞∑
i=1

1

2i
α(xi)

is a scalar on RN
⊕ .

3.2 Infinite Cartesian product of differential groups

We now define the Cartesian product of differential groups which is one of the main objectives
of this research.
Definition 3.2.1. [30] Let (Gi)i∈I be an indexed family of differential groups. Let G =

×i∈IGi be their Cartesian product. For j ∈ I, we denote by prj : ×i∈IGi → Gj the natural
projection.
Let F (G) be the differential structure on G generated by the set

⋃
i∈I pr

∗
i (F (Gi)). One can

easily prove that (G,F (G)) is a differential group. (G,F (G)) is called the Cartesian product
of differential groups (Gi, F (Gi)), i ∈ I.

For j ∈ I we put G(j̃) = ×Gi
i∈I−{j}

. For q ∈ G(j). Let Jq : Gj → G be the imbedding defined
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by
Jq(s) = (q, s) for s ∈ Gj,

where

(q, s) =

qi for i ∈ I

s for i = j

We see that

• prj ◦ Jq = idG,

• (pri ◦ Jq)(s) = qi for any s ∈ Gj if i 6= j

It follows therefore, that Jq is a smooth mapping.
Proposition 3.2.1. For any g ∈ G the mapping E : TgGi → ×i∈ITgiGi defined by

E(w) = (pri∗gw)i∈I for w ∈ TgG

is an isomorphism.

Now for a vector w ∈ TgG put

wi = (jg(i) ◦ pri)∗gw for i ∈ I,

where g(i) ∈ G(i) is defined by g(i) = g|(I − {i}). Of course wi ∈ TgG for i ∈ I and

wi(α ◦ prj) = 0 for α ∈ F (Gj) and j 6= i.

where wi is called the i-th component of w.

Now, a vector v ∈ TgG is said to be parallel to (Gj, F (Gj)) if v(α ◦ prj) = 0 for α ∈ F (Gi)

and i 6= j. Clearly the i-th component wi of any w ∈ TgG is parallel to (Gi, F (Gi)). It is
easy to see that Jg(ĵ)∗gj is the subspace of all vectors in TgG parallel to (Gj, F (Gj)). The
mapping Jg(ĵ)∗gj : TgjGgj → TgG is an isomorphism onto its image.
Definition 3.2.2. [30] Let H be the set of all vector fields on the product group G denoted
byH(G). We say that a vector field Z ∈ H(G) is said to be parallel to (Gj, F (Gj)) if Z(g) is
parallel to (Gj, F (Gj)) for every g ∈ G.
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4. INFINITE PRODUCTS OF
DF-FRÖLICHER LIE GROUPS

As stated earlier, we recall that it is easier to work on products of differential spaces than on
products of Frölicher spaces, because the smooth functions on these products in DSP are the
coordinate functions on the factors. In this section we introduce a class of Sikorski spaces,
called pre-Frölicher spaces, on which the process of yielding a Frölicher structure on the
same set is smooth functions preserving. If we let M to be a non empty set and D to be the
differential structure on M , then the differential structure D induces a Frölicher structure.
In addition we also point out that a differential space can be made into a Frölicher space by
performing the operations ΓD followed by by ΦΓD. It is noted that the structure functions
in ΦΓD are not always the same. Special attention will be given to the generating set G for D
and the resulting Frölicher one. Now if the same generators produce a differential structure
D that coincides with the set of Frölicher functions F in the smooth structure (C,F), then
(M,D) will be called a pre-Frölicher space. Thus given a Frölicher space, there is a natural
way to construct a differential space out of it. The work on pre-Frölicher spaces was done
by Batubenge A (see [2], also [22] ). This subcategory turns out to be isomorphic to the full
subcategory of Frölicher spaces.

4.1 Frölicher space and reflexivity

Definition 4.1.1. Let F be differential structure on the set X. We say that F is reflexive
if ΦΓF = F .

This section is important in that it will help us understand the definition of DF-spaces. The
works in this section were a joint project of Batubenge A., Patrick Iglesias Z. and Yael k.
(see [3], [37], [38], [39]).
Theorem 4.1.0.8 (Reflexive Theorem). ([3]) There is a natural isomorphism of categories
of Frölicher spaces to reflexive differential spaces.

Furthermore (see [37]) if we Let Ξ to be the forgetful functor from Frölicher spaces to
differential spaces : Ξ(X,C,F) = (X,F), and Ξ takes maps to themselves.
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We now state the following theorem:
Proposition 4.1.1 (Frölicher Stability). Let X be a set, and let F0 be a family of functions
on X, C0 be a family of curves into X.

1. Let C = ΓF0 and F = ΦΓF0. Then X equipped with C and F is a Frölicher space.

2. F = ΦC0 and C = ΓΦC0 Ṫhen X equipped with C and F is a Frölicher space.

Proof. (see [37], pages 26-27).
Proposition 4.1.2. ([24]) The forgetful functor Λ : FRL → DSP sending (X,C,F) →
(X,F) preserves final structures.

In his works "Frölicher versus differential spaces: a prelude to cosmolgy", Cherenack P. (see
[10]) has pointed out that given a Frölicher space (M,C,F), then (M,F) is a differential
space. This differential structre F is Sikorski. Conversely given differential space (M,D), the
differential structure D induces a Frölicher structure. However, it is a property of Frölicher
spaces that this Sikorski structure D considered as generating set will be a subset of the set of
all Frölicher structure functions. Thus we have the inclusion D ⊆ ΦΓD. In this dissertation
we show the case when the differential struture D equals the set of structure functions for
the Frölicher structure generated on M by D. We mention here again that the result comes
about due to reflexivity. We recall the theorem 4’.0.1.1 by Cherenack P. (see [10], p 393)
which was his first comparison study on Frölicher and differential spaces. It is observed that
in this study Cherenack did not take into account the generating process for the structures
obtained on the underlying set.
Lemma 4.1.1. ([2] and [10] ) The category FRL is a full subcategory of DSP.

Using a differential structure D of a D-object one can generate a uniqueM-structure, from
which the inclusion (1) above becomes D ⊆ ΦΓD. We employ the following notation.
We use M̂ to denote the D-object (M,DM), ΥM̂ the resultingM-object (M,ΓDM ,ΦΓDM),
ΓDi := ΥCi the set of smooth curves generated by the differential structureD, and ΦΓDi := ΥFi
the set of Frölicher smooth functions obtained from D.
Lemma 4.1.2. The association of a Frölicher space ΥM̂ to a differential space M̂ induces
a functor Υ : DSP −→ FRL.

Proof. (see [10], p. 402)
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Furthermore, Batubenge A.(see [6]) in his works ’A Survey On Frölicher Spaces’has shown
the following results:
Lemma 4.1.3. Let ϕ : (M1,DM1) −→ (M2,DM2) be a D-morphism, then ϕ is an M-
morphism of ΥM̂1 into ΥM̂2.

Proof. Observe first that DM1 ⊆ ΥF1 and DM2 ⊆ ΥF2 by Equation of Lemma 4.1. Now,
since ϕ is D-smooth, then for all g ∈ DM2 one has g ◦ϕ ∈ DM1 . It follows that g ◦ϕ ∈ ΥF1.
That is, ϕ is anM-morphism.
Theorem 4.1.0.9. Let ϕ : (M,DM) −→ (N,DN) be a D-isomorphism, then ϕ is an M-
isomorphism of ΥM̂ onto ΥN̂ .

Proof. From Lemma 4.1.3 above, ϕ is smooth in both categories. Hence, in DSP we have
ϕ∗DN = DM . Now, ϕ is a diffeomorphism as a map of differential spaces by assumption,
then the inverse ϕ−1 exists. It remains to be shown that it is both anM-morphism and a
D-morphism. It is enough to show this on the associated M-objects, i.e. either ϕ−1 maps
ΥC2 into ΥC1 or, equivalently, it pulls back ΥF1 into ΥF2.
Let f ∈ (ϕ−1)∗ΥF1. That is, f = h ◦ ϕ−1 for some h ∈ ΥF1. Now let c ∈ Υ(ϕ∗C1) so that
ϕ ◦ c = γ, where γ ∈ ΥC2. Hence,

h ◦ ϕ−1 ◦ γ = h ◦ ϕ−1 ◦ ϕ ◦ c = h ◦ c ∈ C∞(R,R).

Since γ ∈ ΥC2, then h ◦ ϕ−1 = f ∈ ΥF2. Hence (ϕ−1)∗ΥF1 ⊆ ΥF2, which shows the
smoothness of ϕ−1. Thus, ϕ is anM-isomorphism, i.e. a diffeomorphism of Frölicher space.
Now we are able to prove the reverse inclusion ΥF2 ⊆ (ϕ−1)∗ΥF1. Let f ∈ ΥF2. By the
smoothness of ϕ, one has f◦ϕ ∈ ΥF1. Since ϕ−1 is smooth, one has (f◦ϕ)◦ϕ−1 ∈ (ϕ−1)∗ΥF1.
That is, f ∈ (ϕ−1)∗ΥF1. Thus, (ϕ−1)∗ΥF2 = ΥF1.

4.2 Pre-Frölicher and DF-spaces

From differential geometry view point, differential spaces and Frölicher spaces generalise the
calculus on a smooth manifold. We focus on two important aspects.

Firstly we state that all smooth manifolds are both Frölicher spaces and Sikorski differential
spaces. Furthermore, their smooth maps are both Frölicher and Sikorski smooth maps. We
state, therefore, the following important theorem by Paul Cherenack, (see [10]):
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Theorem 4.2.0.10. Let (X, C,F) be a Frölicher space. Then (X,F) is a differential space.

Proof. We use the notion in the definition of differential space. Let c : R → X be a
contour. As hi ◦ c is smooth, so that g|Ui ◦ c|c−1(ui). Since the sets c−1(Ui) for i ∈ K cover
R, g ◦ c must be smooth. But, since (X, C,F) is a Frölicher space, then g ∈ F .

Suppose that c is again a contour. Since fi ◦ c, i = 1, ..., n, is smooth, the composite
(f1, f2, ...fn) ◦ c is smooth. But then g ◦ (f1, f2..., fn) ◦ c is smooth. This implies that
g ◦ (f1, f2..., fn) belongs to F .

It is noted by Batubenge (see [1], [29] , [6]) that the definition of a Frölicher smooth structure
need not refer to any topology, contrary to the definition of a Sikorski differential strucuture.
The topologies naturally induced (by smooth curves and smooth functions) depend on the
structure, the inconvenience of this dependence being that one ends up having discrete
structures and topologies on dense subspaces. On the other hand, unlike smooth manifolds
that are modeled on Euclidean spaces, the topology is part of the defining axioms for a
Sikorski structure, which probably implies good behavior on dense subsets. A typical example
is provided by the Sikorski smooth space of rationals.
A further advantage is that it is easier to work on products of differential spaces than on the
product of Frölicher spaces, since smooth functions on these products differential spaces are
the coordinate functions on the factors.
It must be noted that the comparison between differential spaces and Frölicher spaces raises
a two-part key question, which we consider in these works.

1. First, consider that we are given a Frölicher space (M, C,F). If we ’forget’ the smooth
curves in the structure (ΓF ,ΦΓF) (of course, we do not do this in reality since there
would not be a Frölicher structure without these curves), then F is a Sikorski differ-
ential structure. The first question is, therefore: Is it true that ΦΓF is the original set
F? Of course this is clearly true by the compatibility condition satisfied by C and F
on M .

2. Now, let (M,D) be a differential space. The differential structure D induces a Frölicher
structure (ΓF ,ΦΓF). However, it is a property of Frölicher spaces that this Sikorski
structure D considered as generating set will be a subset of the set of all Frölicher
structure functions. That is, we have the inclusion D ⊆ ΦΓD. The second question,
therefore, is: In which case does the differential structure D equal the set of struc-
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ture functions for the Frölicher structure generated on M by D? Of course the strict
inclusion yields undesirable situations, where a well behaved Sikorski structure can
generate a discrete Frölicher structure. Thus, the topology and geometry that follow
will be different.

Proposition 4.2.1. ([6]) Let (M,D) be a differential space, and ΥM̂ its associated Frölicher
space with structure function given by D = ΦΓD. Then ΓD is not a collection of constant
curves.

Proof. First, note that in this case the generating set D is a differential structure, which
is in turn generated by an arbitrary collection of real-valued functions F0 = {α0, ..., αk} on
M . So the condition

D = ΦΓD

reads

Gen{α0, ..., αk} = ΦΓGen{α0, ..., αk}.

In other words we consider the differential and Frölicher structures induced by the same
generators. Hence, the fact that smooth functions induced by the function Φ are not exactly
those in D depends on the set of curves ΓF . From the above argument, if we assume that ΓD
is a collection of constant curves, then the associated Frölicher structure is discrete (without
loss of generality, refer to the case of Q), which implies that D 6= ΦΓD.
Definition 4.2.1. [6] A pre- Frölicher space is a differential space (M,D) with structure
D such that D = ΦΓF0, where (M,ΓF0,ΦΓF0) is the associated Frölicher space so-called
DF-space and F0 a generating set.

The diagram below explains that such a class of differential spaces exists, and serves to

53



illustrate the definition above.

(M,ΓF0,ΦΓF0)

U

%%

(M,ΦΓF0)

Υ

88

= (M,D)

Υ

ee

ΓF0

Φ

OO

D

OO

F0

Γ

ff

sc+loc

88

We refer again to the case M = Q, and clearly show that it is not a pre-Frölicher space. For,
let F0 = {idQ} be the generating set. A D-structure is given by taking

sc{idQ} = {ω|Q; ω ∈ C∞(R,R)}.

If we further examine the locality property, it turns out that the structure D, say, is given
by all smooth real-valued functions defined on Q. That is, sc{idQ} = C∞(Q,R). However,
the Frölicher structure generated by {idQ} on Q is the (C,F), where C is a set of constant
functions from R to Q and F is simply the set of all functions f : Q −→ R. Clearly D in
DSP is a subset of F in FRL for the same generating set considered on the same underlying
set Q. So, on the M-space Q generated by {id} the forgetful functor U : FRL −→ DSP gives
a trivial differential space, which is not the one generated by the same set {id} on Q.

Lemma 4.2.1. ([6],[1]) Let (M1,D1) and (M2,D2) be differential spaces. If (M1,D1) is a
pre- Frölicher space and ϕ : (M1,D1) −→ (M2,D2) is a diffeomorphism of differential spaces,
then (M2,D2) is a pre-Frölicher space.

Proof. Let us denote the associate Frölicher structures as (ΥCi,ΥFi) (i = 1, 2). From
theorem 4.1.0.9 above and using the subsequent notations, the diffeomorphism

ϕ : (M1,D1) −→ (M2,D2)
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between differential spaces is a diffeomorphism of the associated Frölicher spaces (M1,ΥC1,ΥF1)

and (M2,ΥC2,ΥF2). Assume that (M1,D1) is a pre-Frölicher space. That is, ΥF1 = D1. We
need to show that ΥF2 = D2. From the assumption, we have

(ϕ−1)
∗
ΥF1 = (ϕ−1)

∗D1.

Then (ϕ−1)
∗
(ΥF1) = D2 according to the first equality in 4.1.0.9. Also, (ϕ−1)

∗
(ΥF1) = ΥF2

as shown in the last identity of 4.1.0.9. Hence, ΥF2 = D2 as required.
Proposition 4.2.2. ([1],[6]) Let M be a set and N be a pre-Frölicher space. Let (CN ,FN)

be the Frölicher structure induced on M by means of maps fi : M −→ N, i ∈ I where I is a
set of indices. Assume that the map ϕ : M −→ N I , given by ϕ(x) = (fi(x))I , is one-to-one.
Then ϕ is a Frölicher diffeomorphism onto the subspace ϕ(M) of N I .

Proof. First, note that for ϕ to be one-to-one it is enough that one of the functions
fi separates points on M . Since ϕ is surjective onto ϕ(M), then it is bijective. Now, let
c : R −→M be a curve on M . Then ϕ ◦ c(t) = (fi ◦ c(t))I for all t ∈ R. Since the structure
on N I is generated by the family {g ◦ πi : g ∈ FN , i ∈ I}, it follows that ϕ ◦ c : R −→ ϕ(M)

is a smooth curve on ϕ(M). Hence ϕ is smooth.
Next, let (xi)I ∈ ϕ(M). It is clear that

g ◦ fi ◦ ϕ−1(xi)I) = g ◦ πi ◦ ϕ ◦ ϕ−1((xi)I) = g ◦ πi((xi)I).

Thus, ϕ−1 is smooth, which ends the proof.

As a corollary we shall state under the same assumptions that if N = R, then we have a
Frölicher diffeomorphism ofM onto Rn. Notice that the diffeomorphism obtained under this
construction is not necessarily a homeomorphism since, as shown in [5.8], the topology on
the subset ϕ(M) ⊂ Rn can be different from the relative topology. However, since M is a
pre-Frölicher space, ϕ(M) is not dense in Rn and therefore, it follows from the argument that
ϕ provides a homeomorphism onto ϕ(M). Also, we may consider a pre-Frölicher space that
is locally diffeomorphic to Rn, then revert back and transfer necessary topological properties
inherited from Rn to an open set in τFM

.
Example 4.2.2. Let X = [0, π). Consider the map given on X by setting ϕ(x) = (−cos x,−1),
for all x ∈ X. The function −cos x is point-separating in X so that the map ϕ is an
F-diffeomorphism of [0, π) onto the interval J = ϕ[X] in R2, which is neither open, nor
closed. More generally, one can consider Y = [0,∞) and the map defined on Y by setting
ϕ(x) = (id(x), θ(x)) for all x ∈ Y , where θ(x) = 0.
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Example 4.2.3. Let us denote by G(f) the graph of f , then the set G(f) = {(x, |x|) : x ∈
R} ⊂ R2 is locally F-diffeomorphic to R2 at x = 0 (open discs B(r) are neighborhoods of
zero) and to R at every point away from the origin.
Definition 4.2.4. [6] A DF-space is a differential space (M,D) with the structure D such
that D = ΦΓF0, where (M,ΓF0,ΦΓF0) is the associated Frölicher space and F0 a generating
set.

The lemma below, the proof of which is due to A. Cap (see [8]) in the setting of Frölicher
spaces, plays a key role.
Lemma 4.2.2. Let M , N be DF-spaces. Let U ⊂ M be a τCM -open subset, f : M −→ N a
function. Then the following conditions are equivalent:

(1) For any c ∈ CM with c(R) ⊂ U the curve f ◦ c is smooth.

(2) For any c ∈ CM the curve f ◦ c : c−1(U) −→ N is smooth.

Proof. (see [6])

4.3 Product of DF-spaces

Unlike the class of DF-spaces is to the class of pre-Frölicher spaces, the class of DF-Frölicher
Lie groups is isomorphic to that of pre-Frölicher d-spaces. Therefore, they have same be-
haviour regarding their sets of smooth functions.
Definition 4.3.1. ([6]) A DF-space is said to be of constant dimension if, for a fixed positive
integer n, it is locally diffeomorphic to Rn at each point.
Definition 4.3.2. A pre-Frölicher space that is also a differential group is called pre-Frölicher
differential group.
Definition 4.3.3. A Frölicher space (G, CG,FG) which is both a DF-space and a Frölicher
Lie group is called a DF-Lie group.
Lemma 4.3.1. Let (Gi, Ci,Fi)i be an infinite collection of Frölicher Lie groups. Then the
infinite Cartesian product ΠIGI is a Frölicher Lie group with the smooth structure (C̄, F̄),
where c̄ ∈ C̄ is of the form c̄ = (ci)i∈I , with ci ∈ Ci.

The proof is a straightforward consequence of the property on the set of structure curves on
the product of general Frölicher spaces (see section 3.1). We have not been able to prove the
same result for the set of structure functions on the product of Frölicher spaces, although it

56



is true on the product of differential spaces. Nevertheless, it holds true for the product of
DF-spaces, and in particular, for DF-Lie groups.
Proof. (see section 3.1)
Theorem 4.3.0.11. Let (GI , CI ,FI)I be an infinite collection of DF-Lie groups. Then the
infinite Cartesian product ΠIGI is a Frölicher Lie group with the smooth structure (C̄, F̄),
where C̄ = ΠICI and F̄ = ΠIFI .

Proof. Again, the proof is a straightforward consequence of the fact that the class of
DF-spaces (Lie groups) is isomorphic to the class of those differential spaces (groups) with
underlying smooth space being pre-Frölicher.
Recall that every Frölicher space is a differential space (see Cherenack [10]). Moreover a
DF space is a differential space whose underlying space is a pre-Frölicher space. Since pre-
Frölicher spaces are differential spaces, then the product of GI has the product structure
ΠFI . Therefore we conclude from lemma 4.3.1 above that the structure on the product
(GI , CI ,FI) is the product (ΠCI ,ΠFI), which ends the proof.
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