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INTRODUCTION

T e

In this paper we will be considering two measures on some
measure space (X, A). For meneral p» > o we can consider the two’

rorms ||f]]p,u and }|f||p,v. We are interested in conditions

on u and v that make ||f||p,u = |]f]]p,v for all £ in some
class of functions, i.e. when there exist positive constants k0

and kp such that

el < Helpu ¢ x, 1lelp,y (1)

In chapter I we will eive necessary and sufficient condition

for (1) +to hold for all measurable functions on an arbitrary measure
space (X, A). The techniques used in this will be standard
tacminues in reasurc theory amd intesration theory.

In Chapter II we will restrict ourselves to the real line
with the Brel sigma field; The class of functions we are interested

in is Ep(T), entire functions of exponential type T whose

restrictions to R are in LP(R,dX). Ve will give conditions on

u and v that make (1) hold for all feER(T).

The present work is larcely an extension of LIN's work in [(2].
He analyzed the p = 2 case in N dimensions. We will consider

arbitrary p (o0 < p < ®) 1n the one dimensional case. Although we

kave not done so here, there are N dimensional versions of all of
Our results,

When p + 2 we no longer have a Hilbert space and when
0<p<1l, we are not even in a Bnach space. The techniques used
2o back to Plwcherel and Polya in [4] . Methods from functional

analysis, complex analysis and real analysis will be used.



These types of problems are of interest in functional analysis
d in rrediction theory. In the former one is interested in classify
spaces of functions and seeine when they have equivalent j!@g@rﬁiﬁsg

In the latter there are spectral represcntation theorems that allow

one to phrase prediction problems in some functi~n space (see 3™

for one example). The techniques and questions of each field arc used

to answer and motivate seemingly different problems in the other

field.
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CHAPTER I

EQUIVALENT NORMS ON LP  SPACES

In this chapter, we shall answer the question "When is
Helloou = [1£]]p,v ? for all measureble functions £, u and v

will be two measures on the same measure space (X A). Before

answering the above question, we sive the basic definitions.

DEFINITION 1.1 Let o0 <p <, The set LPp) is the set -

of complex valued measurable functions f mapping "X=+cC "such that

5 e[ Pap<e Similary LP(v) 1is those functions for which
X

I |elPaven . The IP(u) mormof £ is ||fl|p,u = (£]r|Pain)}/P,
X . X

£ ¢IPu) . A similer definition gives the LP(v) norm ||f]|p,v.
Lp(u)CLp(\)) means that every f e L) also belonss to ILP(v).

Thus every f ¢ Lpf"'"'ﬁf') is also in Lp(%) » i.e. it has finite

I°(v) morm.  IP(u) = TP(v) irr IP(}) €IP(v) and IP(u)> IP(v).

Note  To save writing, we will sometimes write ||f||p,u =4+ o

to mean f Q:?Lp(u').

When p =+ ®, the definition 1.1 will change slichtly.

DEFINITION 1.1*  L7(u) 1 tnespace of essentially howded funetions £

The Lw(ii) norm of f 1is

el = ess g{tg(lf(x)l = inf {c|u{|f]>e} = o}

.
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Suppose we restrict two measures in sucha way thot -

u(A) < b W2) for all AeA where % > o. The spaces L7(v) and

P(w), 1lellpu and |l£]|p,v and g‘g' are related in the
fellowing way.
THEOREM 1,2 The followine are equivalent
(a) u(A) bw(A) for all A € A,
1/'9
(b) Foreny o<p<w, |lt/lp,usd Plif]lp,v and
thus Lp(\))vC LP(u)
ay 5
(c) iv <b a.e ]
Proof We will show that (a) => (b) => (a) => (c) => (a)
(a) => @®) . N
et u(A) < bvu(A) forall Ae A and fix ve(0,),
Step 1 Let f be a simple function in IP(v). Then |f]P 1is

4

. n .
a simple function in IP(v), 8o |[f]P? = 2‘ ale ;

where 25 20, A, Ay e A~ are disjoint sets in A and

1A is an indicator function. Then f lflpdp El aJp(A .)
J

By (a)

n .
T a.,u(A.) <b E ay v(A)
j=1 4 j=1

Thus

fyle1Pan < b f 1o Pay

Taking p.th roots shows

. /
[£llpu < b o [1£]1p,v
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MNon N egative

- Step 2. By step 1, if s isa Asimple function
.szdu <h J’Xsdv .
Then
sup { fosdu:t o <s < |f|P < sup {0 Jy8dv t 0 <5 < [e]®P 2
M
<s < [P}

= 1 { fsdv: 0o
DSUD{X <

So by definition of the interrals

roePan < v s efPav
X X

VA
Then ||f]lp,u sb ° |If]]p,v.

By step (1) and (2) combiued show that (2), => (b)

Step 3 ' Ve show that (b) => (a)

. 1
Fix o <p<® and suppose ||f]|]p,u <D P [1£]lp,v. Then we

ghow that p(A) < bu(A) forall Ae A . TLet f = 1,, Ae /. Then
w(A) = fo1.an = ||e]IP < 112 = b fiadv = byl
u(a) Sy 1,3 ¥ R Helly A v(4)

Hence () => @)

Step 4 We show (a) => (c)

Suppose  u(A) <b(A) forall AeA, Then wWA) = o => ij(L”;) = 0

. an oo an
Thus upu<<v => 7 exists and u(A) = anvd\).
Using (a)
! dv = u(A) <bv(A) = S bdv for all A e A.
N A

A
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Since this is true for every A e/, we must have

T < a.e, [ﬂ], which is (&c)

Step 5 To show (c) >  (a)

Suppose ('c')”(%asb a.e. [l

Integrate with respect to any set A e A

au

( = f FAdv<Tbdv = b Sfdv = b w(r).
u(a) F) A A

A

This completes the proof.

We now have the followine necessary and sufficient conditions

on two measures u and v  so tlt ||f]|p,u = ||f]]p,v.

THEORFM " 1.3 Let” a, b be positive real numbers. The

following are equivalent

(2) av(k) <u(d) £bv(A) forall Ace A
VA 1/,
(v) For any o< p<ow, a Hf”P:V s ”fl IP,U <bh ”f”p:\’

and thus IP(n) = 1P(v)

(c) a 5 gu('x) <b ca.e  [v] (or equivalently a.e [u])

Prouf Use theorem 1.2 twice.

The L~ case is slichtly different.,



THEOREM 1.,2% The followine are equivalent

(2) <<y

o0

(b) Pl e, u < [£l]e,v , thus L7(W) < 17(n)

Proof To show that (a) => (%)

i

Let ¢ = |i{f|l®,v  => forall e >o0

vix: [ex)se+el = o

= u{x: [£(x)>c + & Y=o forall e > o since u << v,

m

This mean that |lf|le,u<c = [|fllo,v . To see that

-

() = (a), we assume Helle,v < Hello,u.  We show that any sct

of v measure ¢ has U measure o, Let A have pesitive

& £ 3
u measure, then ||1,]le,n = 1. But then

Higleoov 2 [11gl e, = 1. Thus  v(a)>o.

Thus p(A) > o implies v(4) > o : the contrapositive shows u < < v.

The amalor of Theorem 1.3 ig the followine

THREOREM 1.3%  The following are equivalent

(a) v<«< ﬁ and p < < v

3) el e,v = Helleoyp 5 thus L(0) = 17(v)

Proof Use Theorem 1.2% twice.

FYAMPAE 1.4 Consider (R,8), the real line with Rorel Sima field.

et w(dx) = u(x)dx, v(Ax) = vix)x where u(x) and v(x) are

B - measurable non nesative functions and dx is Lehesgue measure,
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w(a) = s, u(xMx

v(d) fA v(x)dx

for a1l A e B, Let o< a<b <», Then a\)(X)Sﬁ(X)gb\)('x‘)

1/ 1/
8 .cedx if and only if a P |lf||p,v <]lf]lou < P |f]lpv

for all measurable function f.

Proof ( =>) Suvose a v(x) < ﬁ(k) < bv(x) a.e. 4dx

Then for any A e A

-
a

£y

f/\ a vx)x < j',x ﬁ(x)dx < f b'v(x)dx

=> av(d) < U(A)S‘Q\)(A) AeB, Theorem 1.3 egives the

- »

the result.

1/ . 1/
Conversely, if a P l|r||p,v < Hetlp,e < v P |le]lo,v, then

by theorem 1.3

a S‘du\()x) <hH v -a.c, (and p -a.e)
a < u(x) <b dx-a.e. x where v(x)>o
- \_m - s, 2

Hence a v(x) Su(x) <bvx) dx-a.e where v(x)>o0. Since
wx) = o for dx-a.e x when w(x) = 0, this last inequality

holds dx - a.e




EXAMPLE 1,5 This example shows that even on

Lp(ﬂ n P ), the u-norms and v-norms are not comparable in

general.

2
Let 'Lp('v') = Ll(\)) vhere v(dx) = % dx,

,p(ﬁ) = Ll(dx) and
= ayn)
Then [l£_[11,dx = 2n, so £ e Ll(ax)
2 2

it

Also fk‘nnl,\) ‘[-n e T dx £ g eXdx = ,

1
80 el
£ e ().

Therefore f € Ll(dx )4 Ll('\)). >

But
mit %l v rimie o

n+e TIF ] T n+ew 7
n'il,v

= +oo,

-l

So there is mo constant b such that ||f]|1,dx < bl l£] L, v,

EXAMPLE 1.6 (a) Iet v be counting measuwre on 2,
1/p . /5
Then @ Hello,v < Llellou < b [£llp,v for all measurable

f 1f and only if u 4is also supported on Z and a $ wn) < ».
(b) More generally, if v 1is supported on Z, then
Hello,w = [Ie]lp,u for all measurable £ iff u is

supported on Z and vi{n} =ji{n} for all .
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CHAPTER 1TII

CEQUIVALENT NCRMS ON  ER(T)

In this chapter, we will restrict ourselves to measures on the resl
1line and find conditions on u and v vwhich suarantecs

Hellou = |iellov for all f in a special class of functioms,
The class we are goine to work with is E°(T). We now give some

pasic definiticn and properties.

SECTION 1

To reduce the number of symbols, we will use the followine conventions.

-

We will be working on the real line PR, with Borel set- B and

Lebesgue measure will, again be denoted by dx.

L3 t 3

(a) If an integral is over the entire real line, then instead of
writing fp |£|Fan , we will leave out the R and write

rlePau .

N doubly mfinite
(b) Likewise if we are summing overa 1l the elements in a ,\series,

then we will leave out the bounds, i.e. I 2, will mean

()
K=o ®n

(¢) ILebesgue measure will be used frequently and the 1P norm with

respect to Lebesgue measure will be denoted by ||f||p, as an
abbreviation for |[|f]|p,dx .
oy h h
(a) Inx) = [x- =, X+ 5) = interval centred at x of

lenpth h. Note that '{I(h,nhgll is a disjoint collection of

intervals of length *h whose union is R,




(e) For a fixed function f and fixed h> , we will let

£, = inf [£(t)]

F. = sup [ e%(t)]

n .

teI(h,nh)
We make the same definitions for f° : £~ = inf [£2(t)]
n teI(h,nh)
and F_“= sup l£7(£).
n
teI(h,nh)

From basic definitions, if u is any measure and I is any interwval,

then for any measureable function f,

ine- [£6)P (1) < splefPan < sup [2(0)|P u(D).
xel xel

In particular, summing over the collection {1(n,nn)}"
- Nn= =0

5 £

z£2 w(1(h,n0)) < f]¢|Pau < ZF u(I(h,nh)) (2.1)

DUFINITION 2.1 1n(T) will be the set of entire functions

of exponential type T, +that is all entdire (analytic on the whole

complex plane) functions f(z) which satisfy

(T + ¢)|z]

[f(z)] < ke for some constant k>o and all e>o.

We will actually be concerned with the restriction of f(z) to the
real line, but the facf' that all these functions are rnlytie on the

complex plane will be used at certain points. For convenience we will
talk about functions f(x) defined on the real line being in T('T),
rather tlan use the difficult phrasing ©f(x) is the restriction of
the analytic function f(z) in E(T)". The set of all functions in

T™(T) whose restriction to R are pth powers - jntogratile-mith

respect
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If we think of these

to Lebesgue measure will be called
functions being defined just on R in the above way, then TF(T)
is just the intersection of T(T) and I°(R,dx). By Hf”p,p

- 1/
we mean (f[f(ic)lpdu(x)) P i, the integral is over just
the real line R,

DEFINITION 2.2 A real valued function g(z) defined on the

S

complex plane is sublnrmonic if it satisfies the inequality

1 21 ib -
g(zo) < “?ﬁzg g(zo +1r e )d6 for some "f>o.a'y\a{ all =, (_:C‘
Corment If g 1is analytic function, then |g|® ic subhawenie

for p>o . See page 329 of [5]

IMMA 2.3 If f is entire, then for any r>c,p>0
Ie(x + iy)|P < X sr [£(u+iv)|® dudv

Tr D(x + iy, r)

where D(x*ly,r) is the disk centred at x+iy with radius r.

Proof Since f 1is entire, Iflp is &bmmﬁic' everywhere,

so for s<r

[f(x + )P < 2_]_ ggﬁllf(x + iy + sel’g)(pde

s 2m
If we integrate the above inequality with respect to sds from otor,
frfv..p 1 v 2n
J s[f(x + iy)|Pas < >={ (éfo [(x + 1y + seie)’pd'e)db
Thus

2 .
.13-2- [£(x + 13)|P < -%Fé‘r(s"fj"lvf(x + 1y + ‘sem)'lpd’é)ds




m 1

. 2
Divide by ;_ and use Fubini's theorem.

r .
I£(x + 17)]P < ---1---2 fiwf’f(x + iy + sele)!psdsde.
0

Tr

The intesration ahove 1is over the disk D centred at x+iy

of radius v, which by ehance of coordinates gives the result,: -
LAt 2.4 (Plancherel - Polyn) If f e w'(T) then

fojm [£(x + 1y)|Pax < epT]y[ f:o [£0¢) | Pax .

Proof Sec the Theorem 1,6, Pare 93 of [6].

LA 2.5 (Plameherel - Poly) Ir ¢ e E(T) then

e D) @ Ir]fo <o (o) ]2llp,  where

(42 +2) (P 1) Vp

¢, (p)
1 n(p + 1)p+l - N

Proof See Problem 7, pare 99 of [6] . Choosine
S = (p+1)/pT 1n that problem will yield the desired result,:

LEMMA 2.6 Let X1» X, be points in some real interval 1 of

lenath h > 0o and let £ be g complex valued differentiable

function on T,
(a) 17 0<pP<l, +then

£GP - Je(e)]® < WP sup [ 15)]7

(b) 1F 1&p<eo, then

[£(x)]P - [£(x)P < ph sup [2(£)° oup | 1)) .
tel sel
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Proof (&) (o <pgl) If o<b<a, then
aP-e (b +(a ~bd))P ¢dF ¢ (2 - b)P

= aP -%° ¢ (a ~b)P
It ez )P < [£8(x,)IP, then (a) is triviel.

Otherwise we use the preceeding inequality to see that
12GE)IP - e )P < | 120 = 12,117
< | ox) - £(x,)P

| h sup je7(t)] IP
tel

= b’ sup |£(1)]P
tel :
(b) (p>1) 1f ¢| r(xl)]P < |f(x~‘~2)|p then (b) is trivial,
80 agsume lf(xl)-lp > lf(x’z)lp . Then
d
| £(x)I® - [e(x)|P < n sup IST [£]P(¢)]

‘b sup(pl£(+) P2 et)] Y
teI

np sup | £(t)|PLeupte(s)fy
“tel sel

IA
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SECTION 2

This Sectior deals with measures that are related to Lebesgue measure
in the fol¥owing sense,

DEFINITION 2.7 Let h> ., Two measures u and v on R

are h-equivalent if u(I(x,h)) = W I(x,b)) for all XeR,

(i.e. there cxfgt a,b>0  such thet
a v(I(x,h)) € u(I(x,h)) < bw(I(x,h)).

Note u and v are equivalent in the sense of chaptér I if and
SinniGy Imegualif ho lofs all éborel sefs

X
only if . S 8 W

-

The main result of this Section is theorem 2.12 which says that

if u 1s h-equivalent to Lebespue measuge, then HfHD = Hfl]p i
X rt

for all f € E°(T) when D, hand T satisfy a certain condition,

We will prove Theorem 2,12 through a series of smaller results: -

which we now begin,

'PROPOSITION * 2.8 Let z, x + iyn be a sequence of complex -

v

Numbers such that lzn -7 h foralln$ j and

J!
pT(M + g-)

| Im (Zp) | <M. Then z:"!f(zn)lp g Ble L) Fope(x)|Pax

Z
MTPTh

for all f ¢ EP(T).

PROOF: et D be the disk of radius- %centred at Z. By

Lemma 2.3 with radius r = ;-
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lf(zn'lp < A S e(u + iv)[pdudv
© m?® D

n

Thus

2] £z )P < 2 1 s |e(u + 1v)|P audy
h? D:

n
since the D are disjoint and UDné{]Im(u +1iv)| sm+ g-}
h
M+
) lf(zn)lp <4 2 £ 1e(u + iv)|Paudy
2 .
Th i
2
By Lemma 2.4
- h
. M+
<A f 7 (Gl o) Pa)av
© Nh? b 0 .
-
h - *
o M
= --§-_m( fo+§ epTVdv) I If‘(i’l‘)lpdu
Th? ~o

R 8(epT(M+§- )1)

I2 0 1£(u)|Pau,
TPTh?

-0

COROLLARY 2.9 (a) 1If X, 1s a sequence of real numbers

such that ['xn-le >h for n#$j, then

2 e(x)l? < oy £2]e(x)]Pax
for a1l £¢ ), mare oy = oy(mnm) - KT )

Iph?T
(b) For any real x,

le(x)® < pr ang for all £ ¢ EP(T).
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PROOF  (a) Take M = 0 in Proposition 2.8
(b) The constant in (a) is minimized when phT = 3,188,

Define h = 3%?[,8_ and then usine (a)

D 8(01.594 - 1)DT {'oo

()P < zle(xmn)|P ¢ S0 1= 1] Pax -
m(3.118)?
<orle]]® .
o112
COROLLARY 2.10 Let h>o, then for all £ g BP(T)
b sup lf(t}lp <2 czflf(x)[pdx.
n= o t € I(h,nh)
PROOF Let %, be the point in I(h,nh) where
F_ = sup" If(t)l’ is achieved. If I(h,nh) 'and
© -t e I(h,nh) *

I(h, jh) are not adjacent, then !tn - til > h, so if

)

n and j are both even (or both odd), then ltnatjf > h,

Now write Z = E QO where E = eovén integers and 0 = odd integers.

Thus o D
2P YT
L¥, Zlf(tn;l

= I f )P+ z |e(g 1P
nekE B neg) n

By Corollary 2.9 (a)

N

c, r1elPax + czf{flpdx

it

2¢, f]f|Fax.

This completes the proof.
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For our next result, we will require t'mt p and hT have a certnin

relationship, For convenience in stating the result, we define °

P " BhT
16 e (p) 1. %i.
— = (P e ¢ - 1) o<pe1
a = a(p,hT) =| T (2.2)
b} \ phTJ
160, (p) S
(e -1) l<p<eo

n

b

Yhere ¢, is the constent in lemm 2.5 Note that o > o and

“~

for fixed p, o(p,.) is an increasing function of hT. Since

\d(p,o) = o, d(p, hT) < 1 Bhenever T is less than some value.

PROPOSII_ION 2,11 Let " p, h,T he such that o < 1. Then

h : D 1
s|f|Pax < = I inf [£(t)]® for all re EP(T).
- teI(h,nh)
Proof Using the symbols £, and F = defined in convention (e)

of section (2.1)

seffax = 5 s |£]Pax
I(h,nh)
S hzpl
n
= hz [P+ P - e P
n n
=h 2P +nn g P o gP) (2.3)
n n
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Case 1 : o<p<l. Bylemma 2.6 (2)

P D P - P
g (FP -2 <v° £ F]
By Lemma 2.5, f“e EX(T) and corollary 2.10 shows
< hp2c9 Iig? i Pax
By the other part of Lerma 2.5

< hch2 ci ¥ r|e|Pax

Multiply by h and substitutc in (2.3) yields
rieffax snze P+ oo riefPax. , |
subtracting the last term from hoth sides and dividine by 1 - o

-

gives the result.

Case 2 : 1 <p< oo, BylLemra 2.6 (%)

R

2 D - Pl _.
20%1 -f, J<ph LF, F

Let q be such that 1.1 . 1. The sequence {n } = {F p-l}
P q n n
B
is in £ because e 'Y =3 1s !P‘l I &

and by Corollory 2,10 this is
$ 2, S1fPax <,
Also by Lemma 2,5 and Corcllary 2.10
Il ="{F* }er"
n n

Using Holder's inequality on £9 ana 2P

A

1/ 1/
Pl ps n-1.3y"q RN N o
ph ZF 7 F7o < ph(2(F "7)Y) (z(e; )

o/ - Dl’/p
po(F, Py Tzt )P)

1A
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By Corollary 2.10

1/ VA
< ph (20, f]e]Pax) 2o, fler]fax)

By Lemma 2.5

1/p

1A

1/
2ph02(f]f‘|pdx) 1 clT(f!ffpd.x)

"

2phe. e, T f]£]Pax

1%2
multiplying by h and continuine from (2.3) «aives

rie]Pax < n zf; ° + o f]e]Pax

Hence flflpd:{ PPN fp, finishing the proof.
n

= 1~

L ®

Corollary 2.10 and Proposition 2.11 are key Impredismts In the

following theorem.

. be
THEOREM 2.12 Tet u smd h-equivalent to Lebesgue measure and

let p, h and T be such that a<l. Tren |[f]lp = |lfl{p,u
for all f£eE™(T).

Proof : Since u 1is h-equivalent to Lebesque measure there exist

positive a and b such that for all x ,

ah < u (I(hx)) < bh Lo (2.4)

By proposition 2.11 (Using convention (e) of scetion 2.1)

.
flf‘lpdx St ¢ fnph where o<a<l




By (2.4) B

< %ﬁ}mzfﬁp u (I(h,nh))
By (2.1)

1 D

1/])

Taking c¢, = (a(l-a)) we have

3

¢5 Helle < el u.
To get the other inequality, we have by (2.1)

rlelPan g 1 ¥ P W{I(h,nh))

By (2.4)
<hb i P
n

By Corollary 2.10

< 2hhe, r£)Pax

1/
Taking c, = (2hbc2) P yields

HEHP’]' < 04”pr . ©

Note Theorem 1.3 showed that when u is equivalent to Lebesiue

measare (l.e, take dv = dx),

1/ N . 1/
& Pllelle < fleltou < b U el]o

for all f ¢ Lp(Rj dx). The proceedins theorem shows that if 11 is

h-equivalent to Lebesoue measure and T is sufficiently small, then

1/

1/
a F1.a) P

1/p(

| 1/,
Hellp < Hletlpu sb Tene,) Vel lo.

for all feEp(T). The first theorom helds for: a amaller class of

meagures, but for a larser class of functions than the second theorem,




When p = 2, the Paley-Wiener Theorer [6] shows that every

f € E?(I1) 1is the Fourier transform of some & e L2([-m,n],dx).

Using Plancerel's theorem on f = @ shows that

rr(a)? o= S o] %ax.
The following application of theorer 2.12 eives a similar result when |
Pt 2.

COROLLARY 2.13 TLet p and T be such that ofp,T)1.

Then for all f ¢ Ep(T)
(1 - a(p,1) 7 If|"ax <3 |£#(n)[P < 2¢,(n,1,1) /£ ax

Proof Let py be counting measure on Z. Then u is

l-equivalent to Lebesgue measure (with a =h = 1) and theorem

2.12 establishes the corollary.

-

We note that a sharper condition and a &harper conclusion are

possible in Corollary 2.13 (see section 31 and 33 of [ 41. )
However, some condition on the product hT not petting large (in our
case o < 1) is necessary. For any pro, any € > o take some

b€ (), Define (z) = o(z) sinlﬂzee Par+e) . Then

f(n) = 0 for =211 n, the middle term in the corollary is zero

whereas the outer terms are clearly positive.




Ye will now generalize Theorem 2,12 to measures that arc

comparable near infinity. We shall see that the tail behaviovr -
its2lf ir enoush to give equivalent norms. The following definition

will allew us to state our main theorem.

DEFINITION 2.14 Two measures ﬂ and v are tail h-equivalent -
If w(I(h,x)) = w(I(k,x)) for all |x| sufficiently larse, i.e. therc

exists %, a,b>  such that

a v(I(h,%)) < w(I(hx)) < WXI(k,x)) for all |x|:k.

4 and v are tail equivalent if they are h~tail equivalent for every

h>o. . .

THEOREM 2.15 Let 1 be a measure on 1 that is finite on

bounded sets and tail h- 2quivalent to Lcbessue measure. If

p and T are such that o(p,hT)<l, then
ellp = [Ie]p,u for a1l £ e EP(T).

Proof Let T.>T be such that éﬂo = u(p}ﬂziﬁﬂbi

Let N be large enourh so that |n| > N  implies

ah < u(I(h,nh)) < bh - ( 2.5)

Set K = {|x] S’\Ih—}z'l-}.
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Step 1 For f ¢ Epf('r‘o )
HlelPax < o 61 |2[Pax + L f|efPay).
‘ I:oc_o' K 2
To see this use d,.)<1 and proposition 2.11
rle)Pax < I-—--h 7P
-a.
N .
_1._.. (2 P+ 5 Ty
% ]n]<‘J n ln]_>_N a
By (2 .
s'i-l—_( s £Phasl y fpu(r(hnh)))
""ao : 'nl<N n a )= =0 n ?

By the reasoning in (2.1)

-

I:i-(fK |£]Pax + %—flflpdii).
n :

LS

t

Step 2.  If there exists 2 oeTT) such that  ||g|lp,u = 0
and ”E’”p >0, then there exists a sequence £, in Ep(To')

such st ||z ||p,u = o eyl = 1 ana e, - ellp 22
%henever n 4 k,

To see this, Let T, = T, -T. Let e, be any Tinearly

independent sequence in EP (TI) and define hn

is in and

Al s

a g

EP(T. )
0

e
n

g € BE(T) and e, € F(Tl) implies e

bounded on R (by corollary 2.9

condition that ||g|lp,u = o

hence 131

&7

= eo. The scquence

are entire so e r is entire,’

E(T +T) E(TO) and o is

9 (b)) so epeLf(B dx). The -

implies that g = O.ub-.-ﬂ.e. and

O ﬁ-a.e‘




Define
gl = ——
Hi | lp
By definition [lggllp = 1 and since h = oy - a.e,
571 =0 u ~a.,c and thus Hrrlffn,u = 0. For n32, hdvetively
define h ;1
I~ n
\ Zn = = T
[ -h |]p
~
Where hn.is a best ||.||p ~ approximation to h in
M = span {‘?1'5""‘5“;2‘1.}' (such finite dimensional best approximations
exists even when o<p<i.) By dcfinition Hp‘n“D = 1. Since
| - r | s
gj = ou-ae.and - h'eM, we mve . B = Ou-ace.
Combined with hn = 0O W ~-a.e, this shows & = 0ou -a.,e,

t )

Therefore Hgnf lpu = "o Finally, for k<n Hg”1 - f;k! ’p?'] since

fr, vas choosen to be at least one unit from M L and f € Mn for k<n,

' Step_ 3 For fixed T > o0, p >0 +the wnit sphere

S = '{fe E%1): l1£]]p = 1} s precompact in the topolosy of

uniform convergence on compact subsets of C.

By Theorem 12, Cwmpter 5 of [1} S is precompact (normat)
in this topology iff S is loeally bounded. ILet F be a compact

subset of C and lett M = gupl |Im(z)| : z e F}. Taking h =2

in proposition 2.8 shows

. . pt(M+1)
EENL - iR D RyIP

Since ||f|lp = 1 for all fe g

[£(z)] < constant (p, T, M)



uifoymly for z e F and fe 8, Thus S is loecally hounded and

hence normal.

Step 4 Hel .'P;ﬁ = 0 for pge FT) iff g = 0. Suppose
only i : : D .
the Alf mrt is not true,then there existe a g e B(T) with
el lpsﬁ- = 0 and ||g|lp > 0. By step 2, there exists a - sequence
7, I (1) suwehtmt |lgllp =1, llgllpu = 0 and
H'gn - crkl [PZ 1 for n % k. By Step 3 there is a subsequence of

'{gﬁ} that converges wniformly on ccmpact subsets. By relabeling

the ‘subsequence. we can assume that "{;ztﬁ} itself converges in that

topology. Using stepl on f = T Ty shows =

D 1 T SO S § - o
Since p:n - gk = 0 u - A.Ce
L ‘ )P
< I-:G_B fK"gn - gk) dx.

Since ‘{fﬂn} converges uniformly on compact subsets, Ip,'n - B | can
be made arbitrarily small on compact K. This shows that the last -
integral and hence [ |g, - gi:)pdx cen be mede arbitrary small' for

n and k sufficiently large. But this contradicts Hgn —g’j’{!'{rp?.-l.

Therefore HQ‘HP,U = 0 implies g = 0. The converse is cloar.

Step 5 There exists c,>0 such that f e EX(T) implies

-

Hellp < 05' |£]]pu.  If not, there exists a seguence g, in 201

suweh that |[g]lp = 1 and |lg_|lo,u>0. By Step 3 ana
relabeling if necessary, we can assume 8, converses to some funetion
g € EP(T) . By Fatou's Lemmn

lwﬂaﬁsg@% g, )12 = 0.
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Bystep 4 g = 0. Therefore G 0 uniformly on every
compact set.

Arply step 1 to P to show

v ... ) .
1 1 Pav 1 2

g, 1]

By what we showed above By ™ C uniformly on X, so that first
integral can be made arbitrarily amall by taking n large. Also

{z} was chosen so that e lp,u+0 a8 n -+ o, o the second

integral can be made arbitrarily small. DBut this contradicts the
fact that left hand eide is 1 by assumption. Hence some Cs must

exist. .

" Step 6 There oxists €c>0 such tint f e FP(T) implies

JEEPSIPRAIF: 1N
Ye elways have

12| P = fF_If‘lpdii + (fm[flpdﬁ where RK° 18 ~-the
- K
complement of K,
By the reasoning in (2.1)

< oup [£(x)IP w(k) + = FL u (I(h,nh))
xel K R Y B

Using Corcllary 2.9 (b) on the first term and (2.5) on the -

second term

spTu® |2+ z EP
nj>k

soTu(® || +on 17 FP

= 0




ey
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By Corcllary 2.10

<pTu(®) J£]ID + vh 20, |]2][®
- D <« R
o D
= (pP u(K) + 2bhe, ) HIHD
This completes the precf,
Corollary 2.16 7 If u. is tail equivalent to Lebesgue measurc

and finite on bounded scts, then for any T>0 ||f]|p,u = ||2]|n for

all ¢ e EP(T),

Proof Fizz p and T. Choose h small enough so that

oalp, WT)<L. Then u is h-cquivalent to Lebeszue measure and Theorem

-

- 2

2.15 applies,

An eagy epplication of this coroilery is when u is absolutely

continuous with respect to Lebesgue measure. We state the conditions

in the following.

Corollary 2.17 Let u Do absolutely continuous with resncet to

Lebespue weasure, i.e. Au(x) = ux)dx. Surncge there exist

4;,b,K>0 such that

(@) a <u(x) <b  for all x| > x and

(v) {a] (i <,

Then for eny T>o, ||r]imu=|]e][p for all £ ¢ EX(T).




We note that the conditons of corcllary 2.16 are wezker than those

in corollary 2.17 The Cantor measure on R (i.c., the Lehesrus -
iwhervi( ‘

Stieltjes measure generated hy the Cantor function) ispequivalont

to Iebesmue measure. We can modify it on a compact set and get'a

measure that ic tall ecquivalent to Lebesmgue measure and a restlt 1ike

(e}

ecorollary 2,17 will hcld.

Finally, it is clear that two measures that are tail related
to Lebegmue measure will sive equivalent norms. We state this

formally in the followins.

DRFINITION 2.18 Let M = {measures 1 on (R,B)fp is

ﬂ'h?-e'qﬁivalent‘ tq Lehesguc measure and u is finite on hounded
ES ®

sets}.

M = {measures u on ( R,2)tu is tail cquivalent to Lebescue measure

and Y 1is finite on bounded sets}.

Corcllary 2,19 (a) Ifﬁ and Vv -are in T-flh and T 1o suff

small, then ||f]|pu = ||f]lp,v  for all £ e TR(T).
(b) t# w and v are in M, then for any T>o ,

Hellpv = [1e]lp,u for all £ e FP(T),

Proof:  (2) By theorem 2.15, H‘“Hp,uz [1£llp and

Hellzv = Helle, se Uellpu = [if]ln,v. Wote that the
equivalence constants depend on u and v , thay are not

miform for 5,1,\) £ Mh .
(b) By corollary 2.16, ||l [p,ﬁ = ||£]]lp = |1£]|o,v.

Aradin the eongbants depend on u and v,
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