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SECTION 1 : INTRODUCTION

In recent years, mathematical models have been constructed in the
study of environmental problems. These models have been achieved on the
basis of analogies with statistical mechanical techniques. The methods
used in both urban studies and statistical mechanics have been unified by
the concepts of information theory. The underlying unification is analysed

by Wilson [8].

Models, derived from the maximisation of an entropy function, can
be constructed to study, say, a transport system, residential location,
and commodity flows in a specified region. Similar models can be built
in a linear programming framework, and it has been shown by Wilson and Senior
[12], that the linear progra:hing model is the limit éf the entropy maximi-
sing model as certain paramefers tend to infinity, Wilson and Senior [5]
proved this hypothesis true ‘:for the residential iocation case using data for

the City of Leeds.

In Section 2 of this dissertation the canonical ensemble method for
analysing systems of particles in statistical meéﬂ_'ahics is illustrated.
Information Theory and its role in statistical mechanics and mathematical
modelling of urban systems is outlined in Section 3. A case study made
of urban transport flows following, in the main, the work of Wilson [9] is
discussed in Section 4, Section 5 is a review of the other areas in urban
studies where the methods of statistical mechanics may be applied. Some

concluding observations are made in Section 6.
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2,  THE CANONICAL ENSEMBLE METHOD

Consider a thermodynamic assembly consisting of N localized and
Independent systems. Specify the states of the assembly by n, and let each

state have permissible energies € . Then

In; = N, (1)
i

and Inje = E, i=1,2,3,..., (2)

where E is the total energy of the N systems.

Suppose we are to predict the number of systems that have specified
encrgies on the basis of the information contained in equations (1) and (2).
This task would not be possible unless we had knowledge of the precise
positions and velocities of the systems under consideration. -We can, however,
following Tolman [7], deduce from the given-data what the most probable

distribution of the energies of the different states of the assembly are.

We start by evaluating Q , the number of distinguishable states of
the assembly, assuming that:all the states of the:assembly are equally
probable. The number of different states of the assembly corresponding to: a

given set of numbers {n;} is t , where

L )

50 ‘that N1
Q = z m— . (#)
: (all possible 1|
sets of values

{ni} )

ince, when N is large (v 1023), as is the case in thermodynamic assemblies,
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only the largest term in (4) makes an effective contribution to Q, it is
sufficient to obtain the greatest value of t for any permissible values
of {nj} . This is achieved by finding those n;'s that maximise t sub-

ject to (1) and (2).

We thus form the Lagrangian Z , such that

Z = Int + a(En; ~-N) + 8(Zn; e - E), (5)
i i

vhere o and B are the Lagrange ﬁultlpliers assoclated with equations
(1) and (2) respectively. In equation (5), it is more convenient to
~~vimise In t rather than t, and then it is possible to use Stirling's
approximation

In®¥ = NInN-N., (6)
In fact, in maximising In t rather than t, no generality is lost since
In t, being a monotonic function, attains its maximum at the point at

which t Js maximym.

The n;'s which maximise Z are the solutions of

Y4
L., )
Note that

) 3

wing Stirling's approximation (6). Equation (7) may then be written as

g%f' = -Inn; + o + B e =0,
]



Q+B€i

;= . (8)

n‘ e

Equations (8) give the most probable distribution of the numbers n,
satisfying (1) and (2). That is the assembly is more likely to be found in
a state corresponding to the distribution numbers given in (8) than in any

ther state, given that the states of the assembly are equally probable.

In the above illustration, a deductive prediction, given by (8), has
been made about a system whose data {(1), (2)} is incomplete. In other
words, with the given information only, the most reasonable predictions have
een made as to what states of the assembly are most likely to occur. Such
statistical mechanical predictions contain an element of uncertainty, and
are based on inductive reasoning. Since the formalism for inductive
reasoning is probability theory, it follows that probability theory plays
a major role in statistical mechanics. This is manifest by the fact that,
jiven a system, statistical mechanics gives the probability distribution of

the most likely outcome of occurrences in the specified systems.
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3. INFORMATION THEORY

We noted above that statistical mechanical probability distributions
contain an element of uncertainty. Shannon and Weaver [6] propounded a
theory, called Information Theory, that gives the quantitative measure of the
missing information in a probability distribution. Below, the Theory is
outlined and its role in statistical mechanics investigated. Later, the use
of Information Theory in the formulation of mathematical models for the

solutions of environmental probalems is illustrated.

In finding an expression for the quantitative measure of the missing
information in a probability distribution, we begin by considering the
properties a measure of information content of a probability assignment
should satisfy, and then derive the unique expression for it. This is
achieved by following the Uniqueness Theorem approach. The Uniqueness Theorem
gives the expression of the information content of a probability assignmest
given the prior probabilities. The derived expression of information content
is then used to find an expression for the quantitative measure of the missing
information in a probability distribution. Hobson's approach [&] will be

followed.

information
It is desirable at this point to quantify what is meant by

Yinformation''. This is done by giving two examples.

Example 1:~
Consider a die with six sides. Let Case (a) be the reduction in the

number of equally likely sides from 6 to 3, and Case (b) be the reduction in
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the number of equally likely sides from 6 to 5. Then we say that the
reduction in Case (a) contains more information than the reduction in

Case (b).

Example 2:-

Suppose that we want to predict the number of spots showfnglon the
next trial in a die-throwing experiment, given only that the die has six
sides with i spots on the ith side, and that the average number of
spots obtained in a previous long series of throws was 3.5, say. That
is, for the events f, , we seek a probability assignment P({f;}) = P; »

(1=1,2, ... 6). Since the p; are probabilities,

Ep, =1, (9)

and tip, = 3.5, (10)

since the average throw is 3.5 .
A probability assignment that fits (9) and (10) is
= l = .-].- = = = = 0 (]])

but this assignment seems to assume arbitrarily that fl, fz’ fé, fs .
cannot occur, whereas the data does not imply this. Thus, (11) contains

more information than is actually given by the data.

Iinformation Content

Let  1(P; PO) = 1(p,, Ppseees Py 3 Pf, pg.---, pf,’) (12)

represent the information content in the probability assignment P relative



to the initial probability assignment p° , Where

PULgN) = p, , (13)
and PPUg) = p) , 1 = 1,2, .., 0 (14)
for the set of events g, ona finite sample space S. In seeking a
function of the form (12), defined for the probability assignments P and

P° on the finite sample space S, it Is reasonable to postulate the

properties such a function should satisfy, and then derive the desired

function.

Properties of 1(P; PO)

(@ ey pyseea Py s Y L PY Leee, BY) (15)

is a continuous function; that is, smaill changes in P and P? do not

appreciably change the information.

(b) L CHPPP Pjreses Ppavees P s pg,---. pg.-.-. pz.--- pﬁ)

l(pl,..., Preees Pjoeses Py s pg...., pz,..., pg.... pﬁ) ,» (16)

(c) 1p; P) = o0, (7

which means that no information is obtained if the final and prior probabi-

lities are the same

(d) for any integers n and n, for which ng 2 n
1 ]
'(‘ﬁ'"-‘:'ﬁ'o O0yeeey, 0 ; ;I“go---’ Fl":;)

Is an increasing function of ng and a decreasing function of n.
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0 0 0 0
(e) I(pl,..., Prs Pp oy q2evos Py Prscces Ppo Proy gseees Pp )

0 0
P P P Py
=I(q1’ q25 q({a Q%) + q I(a-l.)u-o,a'?‘ H '-'(l;'.!toc""‘a" )
- 1 1 1 q; q,
1 S P P
+
+ q, I (rq"' seees En- ; ro U : R
2 Y %

Postulate (16) implies that the manner in which the outcomes are labelled
does not affect the information, mnd postulate (19) is known as the compo-

sition rule.

Divide the sample space S into two disjoint subspaces S1 and S2 .

Then S1 and S, are events having final probabilities, say,

9 = Py teeerp and Q) = Prp teet Py

0 = 0 0 o _ 0 0
Q = 9 *...t P and q, Prey ¥oo-* Py -

From Probability theory, it is known that the conditional probability of

an event B given the probability of an event A, P(B|A), is given by

pely = ZERS L pw) >0,

so that the final probabilities of Ei , given that gi € S1 are

PULe) N 8)  PUED by
PUEHS) = —Fm— = =36 " §

(19)
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Also, the prior probabilities of Ei" given that £, € S, are

P°({Ei}i$) =

t-'P-o ‘ H.'UO

Similarly, the final and prior probabilities of Ei given S, are

P.
P({g;}]s,) = El .

2
0
0 Pi
1
respectively.

Information about the outcome may be given either by specifying

the probabilities Pis Ppoeee P directly, that is, diagramatically,

Diagramatic representation of the probability

Figure 1,
assignment Pys pz;... P, -

or by specifying the probabilities q,, 9, of the sub-spaces 5,5 8,

o , . P
and then giving the conditional probabilities al-, al- within these
1 2
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sub-spaces, which may be diagramatically represented as

Figure 2.

ay El
3
?}' -
51 /// pzlq‘ £
P .
- "o
-~ - T \f‘r/q’l )
/

2
\.ﬁ,
“"\«-\»..\ ?Et}/qz n |
R} p -~ 61«1—2
N Y
N
\\ .
~
F’n

An alternative representation of the probability
assignment shown in Figure 1.

Equation (19) asserts that the amount of information represented

in the schemes of Figures 1 and 2 are equal, and that the right hand

side of (19) is a reasonable expression for the information in Figure 2.
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The Uniqueness Theorem

Let I(pl. Pys-ee P, pg, pg,.,, pg) be a function defined
for any pair of probability assignments P, P® on a finite sample space
s = {g,, Epsenes En} for any n. If this function satisfies
postulates (a), (b), (c), (d) and (e), then

0
I(Pys PpoevesPy 5 Pls PpyeeesPl) = Ip; In (20)

S|

The reader is referred to Hobson [4] for a proof of the Unique-

ness Theorem.
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Uncertainty or Missing Information

The expression for the information content given by (20) will be
used to derive an expression for the missing information in a prcbability
assignment. It is the expression that we shall derive that will be made

use of in our study of mathematical models of environmental studies.

Let the probability assignment corresponding to the maximum
knowledge which can be obtained about the outcome of an event be denoted by pm‘.
hen I(pm;po) is the maximuwn information obtainable relative to the prior
probabilities P® . If one's actual state of knowledge is described by
the probability assignment P, then the missing information needed to

attain the state PT is

s = I1¢P"; P - 1(P; P9 . (21)
m
m Pj Py
Therefore S = LPp In — - Ip. In — , (22)
i (o] i 1 o]
P, P;
using (20). In (22),
m _ .m
P({Ei}) = P;
) _ 0
and P ({Ki}) = p; -
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We shall apply the concepts of information theory to situations

where the sample space is a finite set, say, El, 62""’53 , and p°

and P® are given by

PPUED = 2, G=1,2,...,m, (23)
p‘“({ai}) = 8, , (i=1,2,...,0;k fixed). (24)

Then (22) with equations (23) and (24) imply

Equation (25) is our expression for the missing information or uncertainty

in the probability assignment P.

Jaynes' Principle for countable sample spaces

"Let S = {g, §&,...1} be a set of possible

outcomes in some experiment, and assume that
the prior description of the experiment is symmetric with respect to the

g If data D is then given concerning the experiment, the probability
assignment P = (Pi’ P,>.++ ) which represents D must maximise the
uncertainty (25) with respect to all P satisfying D." [4]

What Jaynes' Principle implies is that the unique probability
assignment P that contains the given data and does not arbitrarily

assume anything more than the given data, is that assignment which maxi-

. mises the uncertainty function (25), provided that the prior probabilities

are symmetrical. Our prior probabilities, given by equation (23), are

symmetrical, and so Jaynes' Princip}e may be applied.
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4, TRIP DISTRIBUTION : An Application of Information Theory

The term In t in equation (5) is normally referred to as entropy
in statistical mechanics [6] whereas the information theorist's definition
of entropy is given by (25). 1In view of the discussion in the previous
section, we derive an expression for the most probable trip distribution

(see below) in a specified region.

Trip Distribution Defined

Suppose a region is divided into N mutually exclusive zones
called origins, For a single trip purpose, say shopping, 0i is the
total number of trips observed to emanaté from origin i during some
finite period of time. Let there be M mutually exclusive places
called destina;ions, and let Dj be the total number of trip destinations
at  j . Denote by T.. , the number of trips from origin i to

1]

destination j , cij R the total value of all resources used in the

trip appearing in the traveller's accounts, and T the total number of

trips. The quantities of interest are tabulated below.
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Destinations
; M
;
1 1 2 * [ ] . M j=1 lJ
o 1 PR PO S
b o
i 2 Ty Ty o o . Ty | O,
g [ L ] L] L) -
i * Ld - 3 3
n . . * - »
s N T T T 0
N1 N - w N
Yo D D T= % 0 % b
TRt e 2 0 Dy “ym it 55 U

Figure 3. Trip Distribution Table.

The key assumption in our derivation of the most probable trip dis-
tribution is that all states of the system, as depicted in Figure 3, are
equally probable. It is then possible to apply Jaynes' Principle which was

stated in Section 3.

Define pij such that

T..
_ i
Pij = T- - (26)
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Then, equation. (25) becomes

§ = -3 3 P;; In pij . (27)

3
ij "3

The constraint equations to be satisfied are, from Figure 3,

;;Tij = 0, (3_8)
and {Tij = Dj. (29)

A third constraint has to be satisfied:
LIT:: c = C 30

where C is the total expenditure in the system.

Using (26), equations (28), (29) and (30) may be written in the

form
0
gpij = F“' » (31)
Dy
PPy = 7 o (52)
C
fiPiyey = 1o (33)
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Following Jaynes' Principle, we proceed by maximising (27) subject

to (31), (32) and (33). We form the Lagrangian, L, in the usual way,

0,
1
L= -fipylnpy « 4 G - Fpyy)
s, @ 821 - Ip) + B - TIp. c.) (34)
j T icij T A T % B M

WAC)

where . ,
1 J

and f are Lagrange multipliers associated with

the constraint equations (31), (32) and (33). The pij's which maximise
L, and which therefore give rise to the most probable distribution of

trips, are the solutions of

e—— = 0 R 35
o (35)

and the constraint equations (31), (32) and (33).
Then

L . _lnp., - 1 - o, }j(z)

+Bc;5) =0 (36)

so that
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Put 1+, = Ai(l) to obtain

1 2
e-(Ai( ) + Aj( ) + cij) .

o
["H
"

Substitute (37) in (31) and (32):

1
z pij = e ) z e L e
3 i T
from which
_, (1)
. Ai _ Oi,, . 0i Ai say
oL@ e ) T
TIe J 1)
J
(2) 1)
-A, (A, + Bc..) D.
§ Pj; = J f e 17 = ,El ,
so that _
A, @ D, .
e = = Dj Bj s Say.

3

where, by equations (38) and (39),

37)

(38)

(39)
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A, = — , (40)
1 IO
re J 1
j
and B = ——— i . (41)
-7 +gc..)
T e 1 ij
1

Substituting (38) and (39) in (37) gives

R Oi -Bc. .

Pj; = A; B; Dj e 13,

j T ’ (42)
which is the required expression for the maximum probability distribution

of pij subject to the constraints (31), (32) and’(33). To qbtain an

estimate of the number of trips between zones i and j substitute (26)
in (42) to obtain

Tij = A Bj 0, Dj e . _ (43)

Equation (43) may be obtained by maximising 1n t , where

THTT - “4
ij 1
subject to (28), (29) and (30), This is the procedure often followed by

wilson [9], [11], and Wilson and Senior [5], [12]. The procedure

:v‘;L.\l S
¥ )
7
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followed in deriving (42), called the entropy maximising procedure, is
theoretically more preferable to the method often adopted by Wilson and
Senior, called the probability maximising procedure, because it is
independent of the choice of units for Tij . The procedure works with
pij which, as given by (26), is dimensionless. The advantage of the
entropy'maximising procedure over the probability maximising procedure

is better appreciated in the study of inter-regional commodity flows,

and in the study of energy flows in an urban space economy.

Gravity Models

It has been stated above that Wilson et al used the probability
maximising technique to obtain trip distribution models. For the -
specific case outlined above, the trip distribution model is given by

(43), where

Ai = -Bc. . ’ (45)
I B . e 1)
j J
and B; = 1 (46)
J ‘3Cij *
X Ai 01 e

The details of the derivatiom can be found in Wilson [9].
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It would be convenient to introduce the gravity model at this point,
Gravity models are a family of four sub-models concerned with trip genera-
tion, distribution, model split and assignment,'ﬁhere each sub-model is
appropriate to different circumstances. It follows that the model given
by equations (43), (45) and (46) may be referred to as the trip-distribution

gravity model.

In order to obtain a better understanding of the trip-distribution

model, the parameters that appear in the model are explained.

BalancingiFactors

Ay and Bj in the trip-distribution mo&el are called balancing
factors. This is because they modify the trip matrix (Figure 3) so that
(28) and (29) are satisfied. They are obtained by solving equations (45)
and (46) iteratively, v One would be interested to know whether the

iterative procedure converges to a unique solution. There are different

methods of iteration. Evans [3] has shown that the methods converge,

but uniqueness of the solutions varies with each method.

The interpreta;ion of A; and By 1is explained next. Referring
to 0 and D; as productions and attractions respectively, the model
represented by (43), (45) and (46) may be called the production-attraction
constrained model. This is because Tij is constrained to add up to an

independently given number of productions and attractions.
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Suppose 0j's are not independently given so that only (29) has to

be satisfied. Then the model can take the form

-Bc, .
Ty = B @M ope B, (47)

where B, = 1 (48)

-B¢C. . ’
w1
1

and Wi(l) represents an “emissiveness'" index of zone i. Substituting

(48) in (47) gives

W (D P04
1
T.. = D. . (49)
1] R N ¢
I W e
i 1

-Bc¢. .
wi(1) e 1]

The term can be interpreted as the emissivity of residents

-B¢. .
l- or X Wi(l) e 1]
Bj i

in zone i for shops in zone j. Thus
represents the total emissivity of residents in i for shops in j.

If the 05'5 are not independently given, then only (28) need be

satisfied and the model can be written as

. 2 " Sij
Tij A; 05 W, e , (50)
- 1
where A, = v R (51)
i @ _“%j
§ W. e

j I
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and Wj(z) is an '"attractiveness'' index. On the same lines as for
1 @ _Cj
the interpretation of Bj , K; or LW e represents the
i )

total accessibility for residents of zone i to shops in zone j.

Furthermore, it can be easily seen that as cij increases, the accessibility
decreases, and as cij decreases, the accessibility increases.

From the discussion above, it is important to note that it is not

possible to assign values of the A; 's and Bj's independently of each

other. This is because the emissibility effects operate simultaneously.

The Impedance Function

The cost decay function e that appears in equations (42)

and (43) is called the impedance function. This is because the travel costs,

C..

ij’ may be considered as a travel impedance or deterrence.

Up to now this has arisen quite naturally as a negative exponential
function. This follows directly from our assumption (30) or (33), that
the total expenditure in the system is constrained to a fixed quantity;
However, this is true only for a given fixed transport system, for if the

transport infrastructure changed, 8 would have to be adjusted.

Since, generally, the impendance function will decrease as cij
increases, one would consider situations where the function cij‘B gives a
-B¢C. .

better fit than e 7 . Then, in our derivationm, cij would be replaced
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by 1n cij sothat e 1 js replaced by

- B8 1n ¢y

j o -8 789
e = Cij . (52)

This means that while cij will remain the measured costs, travellers

actually perceive the costs in a manner varying like 1n cij' For

urban studies, where the trip costs are generally small e would

give a better fit, whereas for regional studies cij_a would be used.

Trip-end Estimates

The 0;'s and Dj's are the trip-end estimates. They are

normally obtained from a separate model, a trip-generation model. For
the purposes of the trip-distribution model, we will assume these to

have been independently given,
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5. OTHER AREAS OF URBAN STUDIES

In Section 4 the trip-distribution model was described in some detail.
This section will only review the other areas of urban studies where the
entropy-maximising technique and the probability-maximising procedure have

found applications.

The first application to be discussed will be the disaggregated
spatial-interaction model of residential location. Then we will look at -
models of inter-regional commodity flows and discuss energy and material

flows in an urban space economy.

Disaggregated Spatial-Interaction Model for Residential Location

A disaggregated residential location model can be obtained by

choosing T?? to maximise

s = - £ W™, (53)
ijkw 1]
subject to
kw _ k
§w Tij = H o, (54)
kw w
T T.. = E. 55
ik 1J i (55
and
kw . kw w :
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where Z takes a suboptimal value [s] . The variables can be defined as

follows:

= the number of type w households living in type k houses

in zone i , working in wage jobs in zone j .
H = the stock of type k houses available in zonme i.

b*? = the bid price of a type 'w  household (in job location j)

1]

for a type k house in zone i,

W . . . .
c¥. = the average proportion of income which a w-income household

1)

spends on housing.

We form the Lagrangian L in the form

L = - I In Tl.“?! + )\l.c(l) .z ’l‘kw - Hk) +A‘?(2) (EW - 3 Tkw)
* ] ) ijkw

ijkw ij i ijkw 1J 1
kw . kw w
- - I T.. .. = . - S7
coule - R T By 2 (57)

Using Stirling's approximation (6), we obtain

oL - kw k(1) w(2) kw W

1)
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AI;(I) s )‘;1(2) and u are Lagrange multipliers associated with (54),

(55) and (56) respectively.

gL' = 0, gives
ij
. _Ai’k(l) ;\‘;'(2) u(b]i“; _ cli’j)
Tk = e ) e . (58)
ij
A
i
Let e = A Hi ’ (59)
w(2)
lj W W
and e = Bj Ej - (60)

Then (58) can be written as

u(bkw-cw-)
Tl;‘; = ARgt kY o 13 1T 61)

13 1)

Equations (54) and (55) with (61) give

k 1
Ai = o - {62)
z B eM(bi:i i c”) -
jw j j
and - 1
1
W
B, = (63)
J k u(b-];‘? - )
r Akgk ¢ 1 4]
ik 1 1
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Equations (61), (62) and (63) closely resemble equations (43), (45) and (46)

of the trip-distribution model and can be solved iteratively.

The entropy maximising model outlined above may be viewed as a

suboptimal version of the following linear programming model:

Tkw ..
- to maximise

Choose
kw . kw w
Z = I T.. (b.. -~ c.. 64
052, Ty O 550 (64)
subject to
kw
?w Tii N H¥ ’ (65)
and 1Ty o= EY . (66)
jw I J
The dual problem can be formulated as follows:
k \J e .
Choose oy and “j to minimise
2 = ofH - 3 VY, (67)
ik jw 1
such that
k \J kw w
a; - vj > bij - clJ . (68)

o and v are the dual variables.

Cde X
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The method of solution is now briefly outlined. The parameter |
in the entropy-maximising model {equations (61), (62) and (63)} is
calibrated using bid-rent levels. This means that using data from a

previous survey, u is varied until the predicted level of bid-rents

Z(p) is a sufficiently close approximation to the observed bid-rents

Z(Obs) for that particular survey. The model can then be used for

pPrediction assuming that the calculated value of ¥ does not vary with

time,

Senior and Wilson [5] ran the models using data for the City of
Leeds. The entropy maximising model was calibrated for a given
suboptimal situation, then they used the linear programming model
{(64), (65), (66), (67) and (68)} to find the optimal solution. They
also checked that the linear programming estimates of ng are the

limits of the entropy maximising model estimates as u is increased [12].

Inter-regional Commodity Flows and Energy Flows in an Urban Space Economy

Entropy maximising techniques can be used in urban or regional
economic forecasting. Models can be built to accommodate price

increases and energy shortages to meet the prevailing energy constraints.

Denote a set of regions by i, j, k, ... and the economic goods

classified into commodity goods by m, n, p,... . Also define
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x?j = the total flow of commodity m from region i to region j ,

c?} = the mean cost of transporting a unit of commodity m from i
to j,

x? = the total production of commodity m in region i ,

Y? = the total consumption of commodity m in region i .

In exactly analogous way to the trip-distribution case, a production-
attraction constrained model can be derived for the inter-regional flows

of commodities. The constraints are:

m
§ xj; = x? , (69)
and : x?j = x? . (70)

Xi: e, = CT (71)

where C® is the total expenditure in the system on transporting commodity

m ., Defining a Lagrangian and proceeding in the usual way, the solution
is
’ e L @ om (72)
x5, = e ) Y
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where Agl)m R A§2)m and " are the Lagrange multipliers

J

associated with the constraints (69), (70) and (71). The parameter

™ has to be estimated (for each commodity group m) by calibration.

If we let
'Agl)m m .m
e =A XD, (73)
and |
-A{2m
e 1 = 3§‘ v;‘ , (74)

and substitute in (69) and (70), equation (72) becomes

_nm B
m_ m.m MR ij
xij Ai Bj xi Yj e , (75)
where
m 1
A s ’ (76)
B? Y? e B
J ]
and

B = . 77)
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Equations (75), (76) and (77) are the production-attraction
constrained model for inter-regional flows of commodities. Production-
constrained and attraction constrained sub-models of this model have
been derived by Wilson [11], and interpretations similar to those in

the trip-distribution case adopted.

Models of energy and materials flows in an urban space economy
would be of importance in making regional economic forecasts. They

could also be a contribution to the study of changing energy situations.

Wilson et al [1] built models for urban energy sectors by
constraining the flows and then using the entropy-maximising technique
to obtain most probable internally consistent estimates of the variables,
For example, for energy sector changes that affect transport patterns,
energy usage and its cost for various pricing policies (cij's) and
distributions of land use (Oi's and Dj's) could be explored. Th}s
is usually achieved by the introduction of additional constraint

equations.
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6. CONCLUDING REMARKS

From what has been outlined in the above sections, it can be seen
that entropy plays an important role in the formulation of mathematical
models for environmental studies. One would, however, make some
observations: these will be related with dynamics in the modelling

field, model-consistency, and application to towns like Lusaka.

The models that have been discussed have been taken to be
describing an equilibrium situation, that is, parameters have been
assumed to be constant with time. This is never the case since urban
patterns change with time. Then, perhaps, an important research task

would be parameter forecasting,

It is important that interaction models should be internally
consistent. In entropy maximising techniques, this is achieved by
specifying the main interaction variables. Wilson [9] attained high
levels of resolution while still being consistent. If, for instance,
the categorisation by person type was not made, one would be faced
with a situation where non-car owners are allocated car trips. While
entropy-maximising models are internally consistent, the number of
parameters to be estimated also increases to uncomfortable proportions

with greater disaggregation.

Although these mathematical models have been applied to large

cities like Leeds and London, they can be applied to towns like Lusaka
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since there is also need to plan for the future. Of course fewer people,
smaller areas and smaller income groups would be involved, thereby

allowing for high levels of resolution to be attained.

A traffic density count was carried out in Lusaka by Emenalo [2].
Emenalo states in the report that “A pumber of road junctions in Lusaka
are unnecessarily staggered. Such junctions have been féﬁnd to be
accident black spots...", and that '"Filter lanes are almost non-
existent in Lusaka, particularly at junctions‘where their presence would
undoubtedly reduce traffic congestion..." . This shows lack of good

planning, and the models discussed in this dissertation would be of

relevance.
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