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Abstract

The ordinary time-independent Landau problem of a charged particle moving in an
external perpendicular homogeneous magnetic field and the case of when a linear
potential is introduced are reviewed for motion occurring in an infinite plane, on an
infinite strip and in the half-plane. The first objective of this part of the study is to obtain
a semi-numerical solution of the modified Landau Hamiltonian for the case of motion in
the half-plane; this is done using the discretization method. The structure of the energy
eigenvalue spectrum is presented and an analysis of the results reveals that it is of the
linear harmonic operator form with slight variations which are as a result of the addition
of the linear perturbation. In an actual physical system such as a quantum Hall slab, the
linear perturbation could be an electric field or a gravitational quantum well.

The second objective of this part of the study is to investigate Landau quantization in a
two-dimensional electron gas by working in the Landau gauge. Such a system can
actually be physically created at semiconductor heterojunctions. Qur results reveal that
the degree of degeneracy in the energy levels becomes finite if the motion is restricted to
an area and the differential equation that governs this motion is the same as that presented

in the first part of the study for the case of motion in the half-plane.

Within the Density Functional Theory (DFT), an introduction to the self consistent field
method for solving the Kohn-Sham system is also presented. The objective of this part of
the study is to investigate the stability and formation sequence of the NiGe, Ni,Ge,
NizGe; and NisGe; thin film phases; this is accomplished by using an open-source

computer program called QUANTUM ESPRESSO.

A comparison of our results with those obtained from experiments reported in the
literature proves that significantly accurate predictions of the properties of materials can

be made by using DFT methods.

Ultimately our results show that the Ni,Ge, Ni3Ge; and NisGe; phases are more stable
and hence must form in the first phase while NiGe is less stable and should form in the

second phase.
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total ground state energies presented in the density functional theory calculation. They
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CHAPTER 1

1.0 Introduction

1.1 The Landau Problem and Density Functional Formalism

The ordinary Landau problem is met with in various physical contexts [ 1] and involves the study

of the dynamics of a charged particle in a homogeneous perpendicular magnetic field.

Over the years, many variations of the Landau problem have been presented and studied [1].
These mostly involve the introduction of other potentials for which exact solutions are rarely

feasible [2].

In this chapter. the time-independent ordinary Landau problem as is encountered in classical
clectrodynamics is reviewed. Starting from a classical electrodynamics introduction, a quantum
mechanical treatment is considered. The derivation of the Lagrangian and Hamiltonian of a
charged particle in a homogeneous perpeﬁdicular magnetic field proceeds from the variational

principle and finally leads to the Schrédinger equation for the system.

The property of gauge invariance in the Schrodinger equation derived from the Landau
Hamiltonian is studied and for the Hamilton equations, their gauge invariance property is proved

and the gauge dependence of the canonical momentum is studied.

Finally, some gauge fixing theories of classical electromagnetism are introduced and the most

common non-relativistic as well as relativistic gauges are presented.

We present a general discussion of the concepts that govern the density functional theory (DFT)

in this chapter.

The Hamiltonian used to model many body systems within DFT is an approximation. thus there

are always errors in the results obtained from DFT calculations depending on the type of system



being studied. The errors in most of the calculations are known to stem from the approximation
of the exchange correlation functional; thus, we conclude this introductory chapter by discussing
the local density and gencralized gradient approximations for the exchange correlation energy

which have been known to produce good results for atoms and molecules.

In summary, no entirely new material is being introduced in this chapter. The objective is firstly
to introduce the time-independent ordinary Landau problem; derive the key equations that
govern motion of a charged particle in an electromagnetic field, thereby establishing a
mathematical background which is critical for the analysis of variations of the time-independent
Landau problem studied in the next two chapters and secondly, to introduce the Density
Functional formalism; the Hohenberg-Kohn theorems, review of exchange-correlations eftects
and to introduce the popular approximation methods to the exchange-correlation functional that

are used in the computer application used to perform DFT calculations in this study.
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1.2 Charged particles in electromagnetic fields

It is well known from classical electromagnetism that when a particle of charge e moves with
velocity v in an electromagnetic field, it experiences the Lorentz force [1].

F=e(E+ ; x B) (1.2.0)

It the charged particle is of mass m and if the force (1.2.0) is the only force acting on it, then
from Newton’s sccond law, the equation of motion is derived as

m%ze(E+;xB) (1.2.1)

Since the force e(v/c X B) is perpendicular to the direction in which the particle is moving, the
work done by the force is zero. Hence this force does not appear in thé conservation of energy
equation

1

—Z—mv2 - f eE.dr = constant (1.2.2)

The electric and magnetic fields acting on the particle can be expressed by their corresponding
potentials A(r, t) and ¢p(r, t). If the potential energy due to the electric field is written as e, the
energy conservation equation (1.2.2) takes the form

1

E'mvZ + e = constant (1.2.3)
We now consider one of the simplest motions discussed in the literature [2]. The motion of a
charged particle moving in an electromagnetic field characterized by E = 0 and B = constant.

If the z-axis is chosen to be parallel to B so that B = Bk, where B is constant, the equation of
motion (1.2.1) can be written as

dv B v k (1.2.4)
m——=ep— X L
dt ¢
The adoption of a Cartesian coordinate system and replacement of the velocity vector with the
expression v = xi + yj + zk, enables us to write the three components of the equation of motion
as

mx = eB~ (1.2.5a)
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my = —eB — (1.2.5b)

mi7 =0 (1.2.5¢)

Ehminating y between cquation (1.2.5b) and the derivative of equation (1.2.5a) gives

: B

¥+ w?x =0, w=e (1.2.6)
mc

This 1s the simple harmonic motion equation [3] for X, and it has the solution

X = Rsin(wt + &) (1.2.7)

Substitution of the derivative of (1.2.7) into equation (1.2.5a) gives

y = Rcos(wt + §) (1.2.8)

Integration of (1.2.7) and (1.2.8) with respect to time yields

R . R R
X = —5cos(wt +6) + xy, y = asm(wt +6) + v (1.2.9)

where x; and y, are constants of integration. To eliminate the trigonometric functions, we add
the squares of (1.2.9) and get

RZ
(x =20 + & =y = — (1.2.10)

We observe that the motion of the particle in the xy plane describes a circle of radius R/w
centered on the point (xg,yy). Squaring and adding the equations (1.2.7) and (1.2.8) also gives

%%+ y? = R? (1.2.11)
This shows that the speed and angular velocity of the particle are R and w respectively.

According to equation (1.2.5¢), the particle has a constant speed in the z direction so that the path
of the particle is a helix, with the axis of the helix being parallel to the z-axis.
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1.2.1 The Lagrangian and Hamiltonian of a Charged Particle

The effect of the electromagnetic field on a charged particle can be described by a velocity-
dependent generalized potential [1]. From the Lorentz force, the generalized potential, the
Lagrangian and the Hamiltonian can be derived. Classically, the total energy of the physical
system is described by the Hamiltonian while in quantum mechanics, if the form of the
Hamiltonian is known, the Schrodinger wave equation determines the wave functions and energy
eigenvalues of the physical system concerned [4].

Consider the Lorentz force
F= e(E+3><B) (1.2.12)
c

where the electric and magnetic fields are expressed through potentials as

Ee_p 10A

B ¢ c dt’

and

B=VxA (1.2.13)

When we substitute equations (1.2.13) into the Lorentz force (1.2.0) we obtain

104 v
F=e (—ch ———+ =% (V x A)) (1.2.14)

c dt
Use of the vector identity
BXx(VxC)=V(B-C)—(B-V)C—-(C-V)B—Cx(VXB) (1.2.15)
allows us to transform the triple vector product of (1.2.14) to
vX(VxA)=V(v-4) —(v- V)4 (1.2.16)

The velocity v is not an explicit function of the position thus we can write the total derivative of
the vector potential with respect to time as

dA 04 (v VA
=t (D) (1.2.17)

Replacing the vector product of (1.2.14) by the relationships (1.2.16) and (1.2.17) gives the
Lorentz force
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F= [ v+ V(v A)—lfl—':J (1.2.18)

Using Lagrangian formalism, we can deduce generalized forces Q; from a velocity-dependent
potential U(g, q;) |2]. The generalized forces are expressed by

Qi =—

ou d (f)l]) (1.2.19)

T+ 5
dq; dt\dg;
Assuming that A = A(p;, q;, t) then from the definition of the total temporal derivative of a

function F(p;, q;, t) in curvilinear coordinates [2], we can also define the total derivative of the
vector potential as

p
dA 04 Z (()A JA ) .
dt ~ at dg; Gt ap; ap. (1.2.20)

=1

Here, p;, q; are the generalized momenta and coordinates, respectively, ¢ is the time and fis the
number of degrees of freedom. By considering a Cartesian coordinate system and substituting the
corresponding expressions for the linear momentum, p = mv and coordinates, an expansion of
equation (1.2.20) gives the total time derivative of the vector potential as

da _oa V(A - )+dV(A ) 1.2.21
' 6t+ Y i v (1.2.21)

where V,, signifies the derivative with respect to the three components of the velocity and we

dv
have also used p = me-.

The velocity and vector potential can be written in their component forms as
v—v1+v1+vk

and

A= AT+ A + Ak (1.2.22)

Then V(A - v) can also be written as

Jd J
(A V) < v +}()v + kdvz) (Ayv, + Ay, +4,v,)
= (A,1+A,j + A,k) ' (1.2.23)

Thus the total time derivative of the vector potential can also be expressed as
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4y )—d(/l“+/l“+/lf)—dA (1.2.24)
dr YT g T A AR = .

For a comparison with (1.2.19), we write

dA d
= : 1.2.25
dt dtv"(A v) ( )

Taking the x component and comparing it with (1.2.18) and (1.2.19) using the relation (1.2.25),
we can express the x component of the Lorentz force as

Fx:—%(eqb—gv-/l)+%aix (egb—gv-/l) (1.2.26)

For the other y and = components of the Lorentz force, we would still obtain expressions similar
to (1.2.206).

The electrostatic potential ¢ (1) is independent of velocity, and thus it is possible to Just add it
to the last term. The generalized potential then becomes

e
U =e¢—;v-A (1.2.27)

We have found that the Lorentz force is a function of both the position and velocity of the
particle. To describe the motion of the particle quantum mechanically, one needs to construct the
Hamiltonian from the Lagrangian. Using L = 7 — U for the Lagrangian, where 7 and U
correspond to the generalized kinetic and potential energies of the system, we obtain

1 . e
L :Emvz——e(/)—vv-/l (1.2.28a)
c
In this problem the generalized coordinates g; are just the Cartesian coordinates x,y and z, so
that g; are the three components v = (v,, vy, v,) of the particle velocity and A4 = (AX,Ay,AZ) 1S
the vector potential, where i = x,y,z .

With this knowledge we can now write

v: = (vxi + vyj + vzﬁ) . (vxi + vyj + VZIE) = Z v, (1.2.28b)
i
And
v-A= (vxi +v,j+ vzfc) . (sz + ij + AZ]}) = Z Vv A, (1.2.28¢)
i
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Thus in terms of the generalized coordinates, the Lagrangian becomes
1 2 e\ .
L=gm ) qF = ehp(@)+= ) d4 (1.2.29)
i i

The canonical momentum is
_ e
pi =5 =mq; + -4 (1.2.30)
. c‘

In vector form, (1.2.30) is written as
e
p=mv+ EA (1.2.31)

We can now derive the Hamiltonian A of a charged particle in an electromagnetic field from the
Lagrangian L by means of the Legendre transformation [2]

i

We find that

H= 21n (»- —A)2 + e : (1.2.33)

The velocity is replaced using equation (1.2.31). This equation indicates the simplest way of
coupling the electric field to the motion of the charged particle.

The transition to quantum mechanics is obtained by replacing the canonical momentum P
by ( )V according to the rules of quantization in the coordinate representation [2, 4]. Thus we

obtain the Hamiltonian opcrator

~ 1 /h e
A=— ( V-4 ) e (1.2.34)
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1.2.2 Gauge Invariance in the Schriodinger Equation

It 1s well known that the electromagnetic potentials 4 and ¢ are not unique, but are gauge
dependent [2, 5]. The states of the particle in an electromagnetic field are given as solutions of
the Schrodinger equation with the Hamiltonian given above in (1.2.33). The Schrodinger
equation is

1 e 12 d
{ﬁ |5 - —C-A] + eqs}w = ih=1) (1.2.35)

Gauge mvariance [2] means that the solutions of the Schrédinger equation describe the same
physical states if we apply to the potentials the transformations

A =A+Vf(rt)
and

, 10f
P =d oo (r, ) (1.2.36)

where the function f (7, t) is arbitrary. In four-component relativistic notation introduced through
the four-vector A, , these transformations become

: of .
Aﬂ = AH +(_)—x’: ,Wlth
A, ={A,i¢ } and uw = 12,34 (1.2.37)
where x; = x, X, =Y, X3=12 X4 =Ict.

o~

The Schrédinger equation corresponding to the Hamiltonian F', with primed potentials can be
written as

Ay =insy (1.2.38)

Here, gauge invariance implies that the two solutions v and y' differ-only by a phase factor.
Starting with

Y = exp (fﬁf(r. t)> (1.2.39)

and inserting it in (1.2.38) gives
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p— (e/)A— (e/c)Vf]? ' 19f '
[p—(e/c) - (e/c)Vf] Yexp (%f(r, t)) +e <q§ — 25{— (r, t)> Yexp (;C.f(r, t)>
d o d J
= ih (,;f exp (%f(r, t)) — ;5]; yexp <%f(r, t)) (1.2.40)

From (1.2.40), we see that

, h 2 ° e

ot oo o]
3 e o h e e e
_exp(ng(r,l)> <7V+2Vf“-EA“EVf>¢

2 h o ,
= exp (;]CC f(r, t)) (?V — %A) Y (1.2.41)

Applying the operator (ﬁ - (e—_A') again, gives the equation

Ay = ih % (1.2.42)

The equation (1.2.42) follows from (1.2.38) by using (1.2.39). This shows that the solutions of
the Schrodinger equation (1.2.35) still describe the same physical states. cven after a gauge

transformation. The states ¥, and ', differ only by a unique phase factor exp (;\—if(r, t))

This also shows that the canonical momentum p - —i{hV is not a directly measurable quantity
since its expectation value is not gauge invariant [2]. Hence, if in a physical problem the

o~ . ~ e - -
momentum operator p appears, it must always be replaced by (p —;A) if’ electromagnetic

fields are present. This will guarantee gauge invariance in the theory.
We now consider gauge invariance in relativistic notation.

The gauge transformation for the electromagnetic field is expressed by

A, + of itl
= —— ,with
K K dx,

A/

A, ={A,ip } and x, = {x,ict} (1.2.43)

The four-momentum operator is given by

10
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da 9 a9 9 iE

Dy = —ih{ ST }z p— (1.2.44)
0x, 0x; 0x3 0xy c

We make usc of

. ) e

Pu = Pu _EAu (1245)

to achieve minimal coupling of the electromagnetic field and the particle.

Similar to (1.2.39) we have the following phase transformation of the wave function
: e
¥ () = () exp (= £ () (1.2.46)
then
e ) ) e e _ e
(pu - EA,u )1,[) (x/l) = (p/z - EAu - —C—Vf) exXp (ﬁzf(xy)>

= exp (fi%f(r, L)) (ﬁu - ;AH ) Y(x,) (1.2.47)

is valid. This ensures that observables of the type
(W Gl Gl () = (b (eI ()i () and

W Gl (= 20 ) [ G)) = (o G [P (b = 20 ) () (1.2.48)

are mvariant under the gauge transformations. The equations in (1.2.47) are exactly the right-
hand sides of the cquations (1.2.40) for g = 4 and (1.2.41) forpu = 1,2,3 respectively.

1.2.3 Gauge Invariance in Hamilton’s Equations

The gauge invariance of Hamilton’s equations [2] is discussed by considering the generalized
position coordinates ¢,¢>, ...,q, and the canonical conjugated momenta PLP2, . Pr-

The Hamiltonan H is a function of those coordinates and momenta, and, in general, of the time.

The Hamilton equations are

11



Chapter 1. Introduction

- on dg, Ol
dp; _ oW dar 07 ‘ (1.2.49)

From section (1.2.1), we recall that total time derivative of any function F(p;, q;, t) of the
generalized coordinates and momenta is expressed as

dF  OF
dt 0Jt

f
daF JF
= — g +—D, 1.2.50

{

By using Hamilton’s cquations (1.2.49), the second term on the right-hand side ot (1.2.50) can be
written as

,
(6F L OF ) B Z(arf oH OF an> -
0g; " " op ") T Li\agiap: opioq)

f
i=1

1

and, hence, (1.2.50) becomes

dF OF

—_—= I 1.2.51
dt ~ ot +{F, 1} ( )

where {F,H} is called the Poisson bracket and 1s equal to

P

Z OF oH  J0F ol

{F, H} = (ﬁ—— - ,",—ﬂ"> (]_2_52)
dq; Op;  Odp; dg;

=1
Hamilton’s equations can now be written as

dpi—{H } dqi—{H } =12 1.2.53
o = uhpi o = Ulai i=12,...f : (1.2.53)

The equations of motion are also written in the same way [2]. In the special case of a Cartesian
system and of a particle in a force field derivable from a potential function V(x, y, z, ¢), we have

— i 2 2 2
H=o—(pi+py+ p2) +V(x,y,21t) (1.2.54)

where gy = x, gy = ¥, q3 = z, and p; = Dy, P2 =Dy and p; = p, . Using (1.2.53) we obtain

dp, o1 ov
= {Hp)=—— = ———
Fral UNOY Ox ox’

12
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dp all av

_y:{Hrpy}:_—/—:_-—_;

dt dy Jdy

dp, ooV

T A

dx al - p,

—=1{H = = -—;—’

dt tH, x} p, m

dy oH p,

— ={H,y}=— =2,

dt .y} dp, m

dz oH p,

o fH N = == 1.2.55
=A== (1.255)
From (1.2.55) we get

d?x v

Mz T Tox

’ d’y v

A T oy

dz__ov | 1.2.56

AT "oz (12.56)

These are just one dimensional Newton’s equations of motion.

In the case of the motion of a charged particle with charge ¢ and mass m in an electromagnetic
field described by the potential ¢ = 1/e V(x, t) and vector potential A, we have

B=VxA (1.2.57)

where £ and B are the clectric and magnetic fields. In this case the Hamiltonian function can be
written as

2

1 e '
H=o (»- EA) +ed (1.2.58)

which is equivalent to equation (1.2.34).

13
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We can show that the Hamilton cquations that emerge from the Hamiltonian expressed by
(1.2.58) are equivalent to Newton’s equations of motion of the same particle under the influence
of the Lorentz force. These are

d°r (E + ! B)
_— = — X
mdtz e c v ,

d’x B 1 dyB dZB)
Mz T e u%(@ @) )
d’y B +1(6123 de)
Mz T\ T\ T ae b))

7 _ F+ldxl3 dyB 1.2.59
Mz T e\ c(dt dt x) (1.2.:59)

Inserting H from (1.2.58) into the general definition of the Hamilton equations (1.2.53) leads to
the expression

e () G (=) (- 24022z
and

@l =i

& =in)

Considering only the first of equations (1.2.61), we see that the total time derivative of the
momentum can now be written as

dp, d’x edA,

— - 1.2.62
at - aee T ia (1.2.62)
Thus (1.2.60) can now be written in the following form:
d’x edA, e(dx0A, dydA, dzdA, dp )
A T "E(E ox dt ox Tt 0x>—80x (1.2.63)

14
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Since the value of the vector potential A4 is obtained at the position of the charge e, the total
derivative of 4, with respect to time is

d4, 0A, JdA. dx OJA,dy 0A,dz

= —+ — = 1.2.64
dt ~ ot T ox at Vay at t oz @ (12.64)
Now substituting equation (1.2.64) into equation (1.2.63) and rearranging gives
d?x cdA, efdy[(dA, JA, dz (0A, JA, 13J0)
— = e = == — - — e 1.2.65
arT T o ¢ (dt ax oy ) Ta ( ox 0z ) ¢ ox ( )

Using the equations (1.2.57) which connect the fields and the potentials we get

dzx_ E +1 dyB dZB) 1.2.66
M ~ e\ C(dt Zoode Y (1.2.66)

This is the first of the equations (1.2.59); the other two can be derived in the same way. This
shows that the Hamilton equations resulting from the Hamiltonian (1.2.58) are equivalent to
Newton’s equations (1.2.59). Thus the potentials 4 and ¢ can be chosen at will, as long as the
equations (1.2.57) give the required electromagnetic field. Using A' and ¢ instead of 4 and o,
such that

A =A+Vf(r0)
and

. 1of '
¢ =¢-—5 0 (1.2.67)

with /° defined as an arbitrary function of the position coordinates and time. Then E' = E and
similarly, B' = B. If we replace 4 and ¢ in the Hamiltonian (1.2.58) by A" and ¢, we obtain the
equation of motion (1.2.63), i.e., the same equation as (1.2.59). Thus, it has been shown by using
(1.2.67) that the equations (1.2.59) are independent of the choice of the potentials. This property
of the Hamiltonian equations is known as gauge invariance.

1.2.4 Gauge Dependence of the Canonical Momentum

For the Schrodinger equation to remain unchanged under a gauge transformation, the wave

function ¥ (r,t) must change into Y'(r,t) = exp (%f(r, t))l,b(r, t)v.This corresponds to a
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phase change, which varies from one point to another. It is thus not a global phase factor. For

the state vector we have

[ (6)) = exp <£—if(r, t)) ()
= G (b)) (1.2.68)

Here,

e
G = exp (h—cf(r, t)> (1.2.69)

Now, in order for the behavior of an observable 4 to be invariant under a gauge transformation

we need
WAl = Wlaly),

or

GTAG = A (1.2.70)

A true physical quantity is an observable for which (1.2.70) 1s true. The observable r is such a

true physical quantity. For the canonical momentum p we have
G'pG=G'pG—G'Gp+p=GTp,Gl+p (1.2.71)

Now substituting (1.2.69) into (1.2.71) gives

e . _ ie N ie_
GTpG = exp <— h—cf (r, t)) [p.G] +p =—exp <h—cf(r, t)) thVexp <hcf(r, t)) +p

e
—p+ivy (1.2.72)

where we have used the relation [p, G(x)]=-ihG'(x).
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From (1.2.72) we conclude that the canonical momentum is gauge dependent and hence is not a
true physical quantity. However, the mechanical momentum Pmech =P — ;A IS gauge

invariant [2], so that
e e (&4
G ip—-A—=Vf)G=p—-A 1.2.73
(p p p f) P ( )

1.2.5 Gauge Fixing in Classical Gauge Theories

In classical electromagnetism, the gauge-fixing problem is simply the problem of choosing a
representative in the class of equivalent potentials, convenient for practical calculations or most

suited to physical intuition. Among the most common non-relativistic gauges, one may cite:

e V-A(r,t) = 0, known as Coulomb's gauge,
* Ay(r,t) = 0, ¢ = 0,known as the temporal gauge (or Hamiltonian or Weyl's gauge),
*n-A(r,t) = 0, known as the non — relativistic axial gauge,
ex-A(r,t) = 0, known as the multipolar or non — relativistic Poincaré gauge, and the
relativistically invariant gauge:
* 2 0"A,(x) = 0, known as the Lorentz or Landau gauge,
°X, x" A, (x) = 0, known as the relativistic Poincaré or Fock — Schwinger gauge,
X ntA,(x) =0,
when nis a space — like quadrivector, is known as the relativistic axial gauge,
° 2, n*A, (x) = 0, when nisanull — like quadrivector, is known as the light —
cone gauge,
o X, 0¥ A, (x) = s(x), for some scalar function s(x) (this gauge is sometimes used in the

quantization process).

However, some of these conditions do not fix the gauge field representative completely [6]. The
form and the meaning of the residual invariance depend on the gauge fixed. Finally, these gauges

have simple generalizations to the non-Abelian situation [6].
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1.3 The Density Functional Theory

Most electronic structure calculations for solids are based on the density functional theory
(DFT), which results from the work of Hohenberg, Kohn and Sham [7, 8]. This approach has
become very popular for atoms, molecules and solids [9]. In density functional theory, the
electronic orbitals arc solutions to a Schrodinger equation that depends on the electron density
rather than on the individual orbitals [9]. The dependence of the one-particle Hamiltonian on this
density is in principle non-local [9, 10]. Often, this Hamiltonian is assumed to depend on the
local value of the density only; this is the local density approximation (LDA) [9]. In the vast
majority of DFT electronic structure calculations, this approximation is adopted [10]. It is also

applied to atomic and molecular systems [11].
1.3.1 Physical picture - IHHohenberg-Kohn theorems

In their work | 7], Hohenberg and Kohn established that for any system of interacting particles

moving under the influence of an external potential:

e The external potential V,,,,is uniquely determined by the ground state particle
density n(r); in the sense that, there cannot be two potentials that differ by more than a
constant and that give rise to the same ground state density. Thus, since the external
potential defines the Hamiltonian and therefore the many-body wave function, all properties
of the system are uniquely determined by its ground state density.

e An energy functional E[n] exists, such that the exact ground state energy is given by the
global minimum of the energy functional E[n], and the ground state density is the density

that minimizes E[n|.

The above statements constitute the Hohenberg-Kohn theorems and are the basis of all density

functional calculations | 9].

Assuming that the full wave function of an electron gas moving under the influence of an

external potential and mutual coulomb repulsion can be approximated as

Y(ry,ry, .., ty) = P ()P (ry) Py (ry) (1.3.0)
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with N being the total number of electrons in the system, we can write the electronic density as
n(r) = ) [pry)l? (13.1)
N

and the Hamiltonian in the form

o~

H=T+7V, +

)

(1.3.2)

Xt

o

where T, V., and V. are the kinetic, interaction and external potential energies.

Now, from the variational principle, if we minimize (1.3.2) over all ¥ in the ground state that

give the same n(r) we get the ground state energy E;g given by the expression

Egs = min[(¥|H|w)] = min[(¥|T + 7, + 0, |¥)] (1.3.3a)

The operators Tand V., are universal operators as they are the same for any N- electron system,

while V,,, 1s system dependent.

We then write the contribution of the external potential <‘l/|17€xl I‘IJ> in terms of the ground state

density n(r) as
Vore = [ d3rn(r) U, (1.3.3b)

Again, by the variational principle, varying n(r) in (1.3.3a) leads to

E;c = min [mm[(qflf + V.. |¥)] + f @)V, ] (1.3.4)

n Y -sn

Now, since ¥ is a functional of n(r),so is evidently the kinetic and interaction energy, we

therefore define F[n] as a universal functional of n(r) by the expression

Flnd = min[(W[T + U |[)] = (0|7 + 7, |w,) (1.3.5)

Won™
Then,
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Egs = min [F[nj + f d*rn(r) IZMJ

and

E[n] = [F[n] + f d3rn(r) {7”[]

E[n] assumes its minimum value for the correct n(r), if
N[n] = f d*m(@r) =N

Thus, the variational equation for n(r) is

6 o~
sn(r) r — 3,- _ _
57’1(7') {F[n] + f d 7n(?”) V(,’xl. H (f d 7n(r) N>} 0
OF[n] R
m n=nge " {Veﬁ (T‘) - 'u} =0
Implying that

SF|[n]

Vext (r) H— 67’1(7‘) S

(1.3.6)

(1.3.7)

(1.3.8)

(1.3.9)

(1.3.10)

where pis a Lagrange parameter [8] to enforce the restrictive condition (1.3.8). Equation

(1.3.10) shows that T/(m (r) is to within a constant a unique functional of the electronic density

and thus proves the first Hohenberg-Kohn theorem.

The equation (1.3.7) proves the first part of the second theorem; the energy functional E[n]

exists, and that the ground state energy can be obtained by minimizing some density functional.

It also “defines” the functional that has to be minimized. In what remains, we show that the

density that minimizes E[n] is also the ground state density.
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If we denote the Hamiltonian and ground state energies associated with ¥ ¢ and Paes by
Hgs, Hy o and Egg, E, ., we have by the minimal property of the ground state[7]
EGS = [( lPGSITY + V\ee + Vext I wGS)] =< [< l’UnGS |T + I//\ee + ?ext | lzun(;g >J (1311)

where ngg is the ground state density and W the ground state wave function. If we assume a

non—degenerate ground State

Yos = Vg (1.3.12)
EGS = [( an(;g l’i‘ + IZ,’(,’ + Ve.\ff. I (Pn(;_q >] = [( an(;g IT‘ + [Z‘e l angg >] + f dgrnGS (T) f}exl
n
E¢s = [F[ncs] + f d3rngs () l7ext]
E;s = min [F[n] + f d*rn(r) VM] (1.3.13)
n

Here, we have used equation (1.3.10). This shows that E[n] is indeed minimized by the correct

ground state density. (1.3.13) completes the proof of the second theorem.

We note that, if' F|[n| were a known and sufficiently simple functional of the density n(r), the
problem of determining the ground state energy and density in a given external potential would
be rather easy since it requires merely the minimization of a functional of the density functional.
The major parts of the complexities of the many-electron problem are thus associated with the

universal functional F[n].

1.3.2 The Kohn-Sham equations: Exchange and correlation effects

Because coulomb interactions have a long range, it is usually convenient to separate out

from F[n] the classical energy and write

Pl = [[ arasr ™M) 4 (13.14)

2 |r — 1’|
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The first term on the right hand side of (1.3.14) corresponds to the Hartree energy and is
considered to be the largest part of the interaction energy [9] and the second term G[n],is a
universal functional of the density n(r) just like F[n]. Here, we consider an approximation
for G[n] which leads to a scheme analogous to the Hartree - Fock method. The aim is to
approximate the kinctic energy of the interacting system by the kinetic energy of a non-

interacting (hypothetical) system with the same electronic density as the interacting system.
We first write
Glnl = Toln] + Ey. [n] (1.3.15)

where Ty[n]is the kinetic energy of the a system of non-interacting electrons with
density n(r) and E,.[n] is, by definition, the exchange and correlation energy of an interacting

system with density n(r).

The energy functional for a many-electron system can now be written as

E[n] = Ty[n] + fd r n(r)( ot +%VH> + E,.[n] (1.3.16)

Here, Vy 1s the Hartree potential and is given by

v, = fd3 LGN (1.3.17)
lr—r'|

Now, for the non-interacting hypothetical system, an effective potential has to be chosen such
that its density is equal to the density of the interacting system. With this in mind, the energy

functional of the non-interacting system can be written as

Boln] = Tolnl + [ d*rn()V,y, () (13.18)

where V,z; (1) is the effective potential energy of the system.
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In the previous scction, it was shown that the ground state of the many-electron system can be
found by minimizing the energy functional E[n] with respect to the density, subject to the

constraint (1.3.8).

The ground state density is given by
n(r) = ZIwi(r)l" (1.3.19)
i

Here, it 1s assumed that the spin orbitals 1); are normalized so that the density satisfies the correct

normalization to the total number of particles N.

For the interacting system, we now have the variational equation

)
on(r)

[E[n] + u ([ d3rn(r) — N)J =0 - (1.3.20)

n=ngs

A substitution of (1.3.16) into (1.3.20) gives

5T0[n]+v +V +5E“[n]~ 1.3.21
on (T) ext H &n (T) =H ( e )
[n the same way, for the non-interacting system we have

6Tyln] .
W + Veff (T) = U (1322)

Eliminating the kinetic energy term in (1.3.22) using (1.3.21) gives the effective potential of the

non-interacting system as

OBy [n]

Verr (1) = Voot () + Vi [n(1)] + Snir)

(1.3.23)

The Schrodinger equation for the many-electron non-interacting system can now be written as
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1
[—EVZ + Verr (T)} Y (1) = g (r) (1.3.24)

The equations (1.3.19), (1.3.23) and (1.3.24) constitute the Kohn-Sham system of equations and
are solved self-consistently by iteration to calculate the ground state density of the original

interacting problem.

The total energy of the interacting system is given by

o?
E =Ty[n]+ J d3r n(r) <Vm +— VH> + E,.[n]

[l

n(r)n(r) : (1.3.25)

= a inl— f d3rd3r’ T fd3rn(r)

on(r
If a suitable approximation for the exchange correlation energy E,.[n]can be found, we can
calculate the ground state energy, the ground state density and any observable that is known to

be an explicit functional ot the density.
1.3.3 The Local Density Approximation

The exchange correlation function used in the density functional approximation is a functional
derivative of the exchange correlation energy with respect to the local density, and for a
homogeneous electron gas, this will depend on the value of the electron density. For a non-
homogeneous system, the value of the exchange correlation potential at the point r depends not
only on the value of the density at  but also on its variation close to r, and it can therefore be

written as an expansion in the gradients to arbitrary order of the density:

Ve In(M)]) =V, [n(r),Vn(r),V(Vn(r)), o] (1.3.26)

The exact form of the energy functional is unknown, and the inclusion of the density gradients
makes the solution of the density functional equations very complicated. Usually, to solve the
many-electron problem, it is assumed that the exchange correlation energy leads to an exchange
correlation potential depending on the value of the density in r only aﬁd not on its gradients —

this 1s the local density approximation (LDA) and is written symbolically as
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EPA = [ d3re, In(r)In(r) (1.3.27)

where €,.[n(r)] is the exchange correlation energy per particle of a homogeneous electron gas
at the density n. The 1.LDA is exact for a homogeneous electron gas, and so it works well for
systems in which the electron density does not vary too rapidly. The exchange effects are usually

included in a term based on calculations for the homogeneous electron gas.

For open-shell systems the spin-up and spin-down densities 72, and n_ are usually taken into
account as two independent densities in the exchange correlation energy according to a natural

extension of the DIFT formalism. In LDA, the exchange energy is given as
ElPAnyn_] = —const. [ dre,, Irynj”(r) +n34 (1) |In(r) (1.3.28)

where const. =3/4(3/4w)'". As expected for an exchange coupling [12], this expression contains

interactions between parallel spin pairs only.

In addition to exchange, there is a contribution from the dynamical correlation effects due to the
Coulomb interactions between the electrons. These are present in the exchange correlation
potential, and several local density parameterizations of this interaction have been proposed. A
successful one is a parameterization of the correlation energy obtained in quantum Monte Carlo

simulations [12] of the homogeneous electron gas at different densities.

The DFT-LDA approach has turned out to be very successful and has led to important

improvements in calculations of the physical properties of solids.
1.3.4 The Generalized Gradient Approximation

Research on the ways to improve exchange-correlation functionals has led to improved accuracy
in results obtained using DFT calculations. Going beyond the local density approximation, the
generalized gradient approximations are obtained by adding gradient terms of the electron
density to the exchange-correlation energy or its corresponding potential. The second-order

generalized gradient approximation to the exchange-correlation energy is written as
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EGCA =fd3rexc (n(r), Vn(r),V(Vn(r))) (1.3.29)

There are various flavors of the generalized gradient approximation (GGA); the one by Perdew,
Burke and Ernzerhof” (PBE) is the recommended option for use in most calculations [12]. A
recent version called meta-GGA uses for the evaluation of the exchange-correlation energy both

the gradient of the density and the kinetic energy density [12].

In comparison to local density approximations, generalized gradient approximations lead to
improved calculations of bond angles, lengths, and energies for atoms and molecules but show

only partial improvements for solids [12].
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CHAPTER 2

2.0 Algebraic Solutions of the Landau Problem

2.1 Introduction

Exact solutions of variations of the Landau problem are rarely feasible [2]. In this

chapter, we lay (he foundation for the development of a computational solution of the

Landau problem. We review the algebraic solutions of the ordinary Landau problem and
tl

e Landau problem with a linear potential added; in an infinite-plane and in a half-plane

as 1s presented by Govaerts et ’al [5].This linear potential may correspond to a constant

electric field or a gravitational potential if the plane of motion is tilted with respect to the

horizontal direction by some angle a.

The geometry on which the motion occurs is also now known 1o mfluence the solation of

the Landaun problem {3). For the case of motion n the mfinite (x, v) plane with a \inear
potential acting in the y direction, the energy eigenstates obtained by diagonalizing the
Hamiltonian of the quantum system are localized only in the y direction, while they are
totally delocalized in the x direction. As such, they are non-normalizable. The probability
density of thesc states looks like a series of (n++/) parallel stripes parallel to the y axis
with exponentially smooth edges and invariant under translation along the x-axis. The
energy spectrum is unbounded even though both the classical and quantum systems
remain stable because the magnetic force combines with the constant force related to the
linear potential added to keep the particle rotating periodically around a magnetic centre

that moves at a constant velocity along the x-axis.
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The motion of the particle is finally studied on a half-plane where the unboundedness of
the energy spectrum of the infinite-plane is avoided by altering the geometry of the plane
of motion; this is achieved by restricting the value of the y in the y-axis. The particle then
remains confined in the half-plane. The resolution of the problem leads to the parabolic

cylinder equations whose solutions are the parabolic cylinder functions.
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2.2 The Ordinary Landau Problem

Consider a charged particle of mass m moving in a plane described by the Cartesian coordinates
(x, ») and subject to a perpendicular homogenous magnetic field, whose direction defines the z-
axis. The magnetic field derives from a vector potential, whose components in the symmetric

gauge are (A, (x,y) = — 1/2By, A, (x,y) = 1/2Bx).

2/\ GB

A
4

Fig.2.2: Diagram specifying the geometry of the problem
The Lagrangian

1T . 1 . L
L=5m(i* +y%) - 5aB0y —xy) = smwi(x? + y?) (2.2.0)

specifies the dynamics of this system through the variational principle [4]. The last term in the
Lagrangian represents a symmetric potential of angular frequency w- > 0. The expressions for

the canonical momenta are

P—al’- g p =2k '+lB 2.2.1
Ty T panys y T gy T MY T panx (2.2.1)

Thus the velocities in the x and y directions are
'—1<P+1B> ' 1P 1B 2.2.2
x=—\Pk+5aBy), y—;<y—CIX) (2.2.2)

2
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From the Lagrangian we can now derive the Hamiltonian using the Legendre transformation
H=xP +yP, —1L (2.2.3)

Substituting the equations (2.2.0) and (2.2.2) into (2.2.3) yields

1 1 gB\*
H=-=—(P’+P%)+= 2 (—) 24 y?
Zm(* + P, )+2m<(u + m (x“+y%)

B
o (xR, = yP) (224)

We now mtroduce the Cartesian Fock raising and lowering operators,

1 mwc(A+ l ;3) i 1 me<A [ ﬁ)
N B R L S N B GO

&

1 m(uT<A+ i ;3) 4 1 mwc(A [ 13) 225
Y=oV mw, V)’ Cy=oTh V maw, (225)

which satisty the commutation relations

) qB
la,,at, ] =1=]a,al,] W =~ (2.2.6)

Substitution of the inverse relations of (2.2.5) into (2.2.4) produces the Hamiltonian

1

H = Eﬁwclafxax +at,a, + 1]+ Eih(uc[a*xax —a'ya (2.2.7)

g

Next, we introduce the chiral raising and lowering operators,
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1 1

Ay = —=\0y + iay)' a-ri \/Z( aTx ti aer) (2'2'8)

satistying the commutation relations

[a+, al] =1, [Cli, (J.»I- '_ii] =0 (229)

A substitution of (2.2.8) into the Hamiltonian (2.2.7) yields

1
H = hw, (a*_a_ + ;2-) (2.2.10)

[t is clear that the states of the system are given by the orthonormalized Fock state basis [n_) .

Hence the Hamiltonian (2.2.10) diagonalizes as

Hin_) =EMn_)In_) (2.2.11)

1
hw, (aJr_aw + Z)

1
= ha)c (n_ + E)

n_) = hw, (a'f_a_ ln_) + %I n_)> = hw, (n“ |n_) + %‘ n_)>

n_) (2.2.12)

Here we have used

a_ln_y=nn_—1), a'_|nl)=n_ + 1|n_+1),
al_aln)y=n_In.), . =012.) (2.2.13)

Thus the energy spectrum of the system is

E(n.) = hw, [n_ + %J | (2.2.14)
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The energy eigenvalues (2.2.14) are like those of the harmonic oscillator [2]. Each is associated
with a degenerate sct of eigenvalues and they correspond classically to electrons orbiting
perpendicularly to the applied magnetic field B, but moving with a constant velocity in the
direction of B. They are known as Landau states and the corresponding energy levels are called
Landau levels. Each Landau level is specified by a ground state of the oscillator mode. The
higher Landau states are determined by applying the operator a’_ on the ground state of the

system [2].

2.3 The Landau Problem with a Linear Potential

We now consider an extension of the ordinary Landau problem, which includes an interaction

potential energy V(r). This potential consists of a linear term added in the y direction.

AN
iN74

Fig.2.3: Diagram specifying the geometry of the problem for the case of when a linear potential is added

The system is then described by the Lagrangian

L=-m(x? + y?) — gA(r) - — V(r) (2.3.0)
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where

V(ir)=vyy (2.3.1)

is the linear contribution to the potential energy acting along the y direction. This linear term has
a strength p; this parameter is a real constant whereas A(r) is the vector potential. This linear
potential may correspond to a constant electric ficld or a gravitational potential term if the plane
is tilted with respect to the horizontal direction by some angle «. In the latter case, one has

Yy = mgcosa.

2.3.1 The Landau Problem in an Infinite Plane with a Linear Potential

We first consider the Landau problem with a linear addition to the potential in the infinite plane.

We employ the symmetric gauge which results in the Lagrangian:

1 1
L=om(E* +3%) —5qBGy —xy) —yy (2.3.2)

The canonical momenta are

P—aL— C—gB p o=k 113 2.3.3
x T op = m¥—5qBy, Y=gy T MY 5B - (2.3.3)

The velocities in the x and y directions are found to be

1 1 1 1
x = —|(P. +— B‘), ':—~(P—— ) 2.3.
x m(; 5 qBYy y= P —5aBx (2.3.4)
The Hamiltonian
H=xP. +yP, — L (2.3.5)

is found by substituting (2.3.2) and (2.3.4) into (2.3.5) to be
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1 5 1 1 2 L oop2 2 2.
H:2_r71_<PX +qBPXy+Zq~By >+ﬂ(Py —qBPyx+ZQ'B‘X‘)+yy (2.3.6)

After simplification the Hamiltonian becomes

1 2 2

1 1 1 :
H=—(P. +=gB —\{P, —=¢gB 2.3.7
Zm(X+2q y) +2m(y 21 x) try ( )

The algebraic treatment of the Schrodinger equation starts by making the transition from the

variables (9?,)7, Prr f)y) to the new ones (%, 9., a_, al), by means of the definitions

O P DU B %
Yo =X maw, Py Ye =57 mw, Px mw,’
_ mwc<1A 1 ,“)_*_ l ma, A+1 R yIl
“-=J7n \2* ma,. Py mw, N 2h (Px QMY+ W )
+ mwc(lA 1 A) [ mwc(A+1 A+yﬂ , 238
al = =X —— — —_— - . — .
20 \2" " mw, ) T ma N 2n \Px T O F ) (238)
The inverse relations are
X=X (a_+al), 9=y, —1i h (a_—al)
’ ¢ 2mw, ~ 7
1 1
Dy = —wlcﬂ — Emwc}?c — Eim(uc (a_ —al),
) 1 1 h ;
Py = 5 MW X — o ma. T (a_+al) (2.3.9)

¢

We observe that (X.,9,) correspond to the coordinates of the centre of the particle’s circular

orbit when the magnetic force acts in the (x,y) plane. The contribution (—v/w, =—-my/B) to

33



Chapter 3. Computational Solutions of the Landau Problem

3.2 Discretization Method

Many numerical methods for solving different types of differential equations exist [15]. Most of
these methods have reasonable accuracy and produce stable solutions for a large class of
problems. However, when more realistic models of physical systems are considered, most of the
methods become difficult to use and their solutions also become unstable and unusable [16]. In
this case, an alternative approach to the solution of the differential equation is to transform it into
a matrix equation. A lattice of discrete points is set up and the values of the solution at the lattice
points are recorded. This procedure is actually a sampling of a continuous function into discrete
values and leads to the formation of a linear system of coupled equations which can be written in
matrix form. The solution of the original problem is then found by calculating the eigenvalues
and eigenfunctions of the resulting matrix. The values of the solution at the lattice points form a

vector.
3.2.1 The Finite Difference Method

The finite difference method for derivatives is one of the simplest and oldest methods for solving
differential equations. The principle behind this method is close to that of other numerical
schemes used for solving ordinary differential equations, such as the Euler and Runge-Kutta
methods. The difference is that in this method the derivatives in the differential equation are
replaced by quotient approximations. The domain of integration is partitioned in space and in
time and approximations of the solution are computed at the space or time points. The error in
the resulting numerical solution is committed when the differential operators are replaced by the
difference operators. This crror is called the discretization error or truncation error. The term

truncation error reflects the fact that a finite part of'a Taylor series is used in the approximation.

The main concept behind the finite difference scheme is the definition of the derivative of a

smooth function i at a point x € R as

u(x + h) —u(x)
h

u (x) = }lliﬂr)ré (3.2.0)

When % tends to 0 (without vanishing), the quotient on the right-hand side provides a ‘good’

approximation to the derivative. In other words, to get a good approximation of the solution, /4
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should be sufficiently small. Actually, the approximation is good when the error committed in
this approximation tends to zero as £ tends to zero. If the function u is sufficiently smooth in the

neighborhood of'x, it is possible to quantify this error using a Taylor expansion.

3.2.1.1 The Taylor Series and Approximation of the First Derivative

Suppose the function u is continuous and at least three times differentiable in the neighborhood
of x, then for any /1 > 0 we have the forward difference and backward difference Taylor

expansions as

7 h2 " h3 e
u(x + h) = ulx) + hu (x) + U ) 4 U (e) (3.2.1a)
b
and
i hz " h3 e
u(x —h) =ulx) — hu (x)+7u ) —gu (e2) (3.2.1b)

where £, € [x,x + h]and &_ € [x — h,x]. By subtracting these two expressions we obtain,
thanks to the intermediate value theorem [17], the central difference formula for the first
derivative

u (x) = ulx h)z—hu(x 1) - %u (¢) (3.2.2)

where € € [x —h,x + h]. The expression (3.2.2) defines a second-order consistent
approximation of the first derivative.

3.2.1.2 Approximation of the Second Derivative

Now, suppose u is a continuous function which is at least four times differentiable in the
neighborhood of x, then for any 4 > 0 we have the forward difference and backward difference
Taylor expansions as

2 3 4

) hs h*
u(x+h) =ulx)+ hu (x) + U ) 4 Zu (x) + ﬁu‘*(s,,,) (3.2.3a)
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and

2 3 4

, h= h°> h
ulx —h) = ulx) — hu (x) + Su ) U (x) + ﬁu‘* (e2) (3.2.3b)

where €, € [x,x + h}and e_ € [x — h,x]. By adding these two expressions, we obtain the
central difference formula for the second derivative

u(x + h) — 2u(x) + u(x — h) 3 h—4u4(£) (3.2.4)

w () = h? 24

where € € [x —h,x + h|. The intermediate value theorem is again used to simplify the

Pt(e) + S ut(e)
sum_—u*(ey) +u(e ),

3.2.2 The Finite Difference Formulation and the Solution of the Landau problem in the

Half-plane with a Linear Potential

Having established the above theory, our focus now is to use the finite-difference method to
convert the differential equation (2.3.32) into a system of equations to be solved simultaneously
by transforming the problem to a matrix eigenvalue problem. If we call /7 the coefficient matrix

of the system, then we can write the eigenvalue problem as

Hog, (§) = apgy, () (3.2.5)
with a being the eigenvalues of matrix .

Assuming that @, ({) is a differentiable function in the closed nterval la, B], we introduce the

equidistant grid points {; = a + th, (i = 1,2,...,N), where

p =2 (3.2.6)

and N is the number of steps. At each grid point, {;, equation (2.3.32) can now be written as

d? 1
(F - (ZQZ + a)) Pey () =0 (3.2.7)
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Now using equation (3.2.4), we can write the central-difference approximation to the second
dertvative as

()Og,yc Q) = iy, (1) — 2<P1;';£L2,(5i) + @gy. ({io1) (3.2.8)

Replacing the differential operator in (3.2.7) with the central-difference approximation (3.2.8)

enables us to write equation (3.2.7) as

Pey, (ip1) — z(l)E})l);((i) + @py, ({i-1) B (%(,:2 4 a) O (3.2.9)

Clearly, this equation takes different forms at the grid points {; = a + ih. When applied to each
pomt, it yields a linear system of coupled equations whose solution gives approximate values of
the eigenfunctions ¢, ({;) of the eigenvalues a. The equation (3.2.9) must satisfy the boundary

conditions of the original Schrédinger equation.

The resulting system of equations is now expressed in the tridiagonal N x N form
(H=1a)pg, () =0 (3.2.10)

where /' 1s the unit matrix and #/ is the tridiagonal Hamiltonian matrix with elements

~(5030) =

1

— ifi=j—1

Hy = h fi=J (3.2.11)
= ifi=j+1
0 otherwise

The traditional way o solve the matrix eigenvalue problem (3.2.10) is by diagonalization. This 1s
equivalent to successive changes of the basis vectors, each change leaving the eigenvalues
unchanged while continually decreasing the values of the off-diagonal elements of matrix .
The sequence of transformations is equivalent to continually operating on the original equation

with a matrix U:

UH(U_U)(pEy{ ((l) = aU(/){'y( ({l)
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WHU™) (U, () = a (Uggy, (0)) (3.2.12)

until (UHU ™) is diagonal:

ay, 0
(UHU')z(E ) (3.2.13)

0O ann
The values of (UITU™) along the diagonal are the eigenvalues of the original problem.

When large matrices are considered, the diagonalization procedure of these matrices becomes
very tedious and mistakes during the computations become very common. For this reason, It is
very important that industrial-strength matrix subroutines from well-established scientific
libraries are used. These library subroutines are usually faster than any elementary approach and
are designed to minimize round off errors [18]. They also have a high chance of being successful

for a broad class of problems.

In this study we use a computer program called Sci-Lab and its numerical libraries combined

with the C++ programming language to solve our matrix etgenvalue problem.

We consider the different cases of'a 10 X 10,an 11 X 11,a20 X 20 and 21 x 21 Hamiltonian

matrix and present their eigenvalues in table (3.2a) and the corresponding eigenfunctions in table

(3.2b).

Now when multiplied by a factor of (-1) and up to normalization factors, (2.3.32) is the

Schrédinger equation for a harmonic oscillator.

We construct ¢ to be symmetric about { = 0 and solve for the wave function for both positive

and negative { values, then use the symmetry as a check.

[n general, the boundarics of the strip can be placed anywhere. Tor the purpose of illustrative

calculations, we choosc the interval [—4,4].
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10 x 10 11 x 11 20 x 20 21 %21
Hamiltonian matrix Hamiltonian matrix Hamiltonian matrix Hamiltonian matrix
- 0.4873691 - 0.4898462 - 0.4974251 - 0.4977149
- 1.435728 - 1.4488352 - 1.489285 - 1.490914
- 2.330162 - 2.3672781 - 2.486067 - 2.4913436
- 3.1677468 -~ 3.24918¢6 ~ 3.5225772 ~ 3.5360097
- 3.9492235 - 4.0989795 - 4.06486551 - 4.6773844
- 4.579309 - 4.9139559 - 5.9023356 - 5.9554453
- 5.4052639 - 5.6174033 - 7.2921712 - 7.3801697
- 5.51964 - 6.4303823 - 8.8020016 - 8.9369901
- 7.3667544 - 6.5925489 - 10.402537 - 10.598508
- 7.3675993 - 8.3826405 - 12.058¢8 - 12.33162

- 8.383944 - 13.732827 - 14.100635
- 15.386405 - 15.868716
- 16.980747 - 17.598725
- 18.477559 - 19.253819
- 19.838815 - 20.79777
- 21.021675 - 22.194759
- 22.026298 - 23.40474
- 22.517594 - 24.425816
- 24.003174 - 24.937522
- 24.011855 - 26.405911

- 26.415488

Table 3.2a: Figenvalues of 10 x 10, 11 X 11,20 X 20 and 21 x 21 Hamiltonian matrices in ascending order

We notice that like the results obtained in Chapter 2, those in Table (3.2a) reveal that the

spectrum of eigenvalues belongs to a semi-infinite discrete set labeled as

a=-a,(h), n=01.2,.., (3.2.14)

where each of the quantities —a,, (h) is a continuous function of the step-size A.

We also notice that cven though the width of the strip or equivalently the domain of integration
is the same, the cigenvalues corresponding to the differently sized Hamiltonian matrices are not
the same. This is so because the step-size between the lattice points is different for each matrix
size. We know from Section (3.2.1) that the step-size 4 should be sufficiently small in order to
get a good approximation of the solution. Therefore, we expect to obtain better approximations

of the solution when large Hamiltonian matrices are used. In this case, our 21 x 21 Hamiltonian
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matrix gives a much better approximation of the solution of the Landau problem in the half-plane

with a linear potential.

For a complete solution of equation (3.2.7) and hence the Landau problém in the half-plane with
a linear potential, knowledge of both the eigenvalues and corresponding eigenfunctions is
required. In Table 3.2b we present the eigenfunctions corresponding to the first three eigenvalues

of our most accurate Hamiltonian matrix; the 21 X 21 matrix.

Eigenvalue - 0.4977149 -~ 1.490914 - 2.4913436
h - 0.0057161 - 0.0208697 0.0499548

- 0.0146353 - 0.0501177 0.1119679

- 0.0299759 - 0.0933913 0.1873930

~ 0.0552076 - 0.1526399 0.2648767

- 0.0933559 - 0.2233446 0.3198419

- 0.1455791 - 0.2922300 0.3210049

- 0.2095019 - 0.3381617 0.2455713

- 0.2781941 - 0.3380541 - 0.0973958

@ - 0.3407564 - 0.2767768 - 0.0839931
S - 0.3849062 - 0.1565600 - 0.2340513
§ - 0.4008676 - 2.870e-15 - 0.2923111
= - 0.3849062 0.1565609 - 0.2340513
0 - 0.3407564 0.2767768 - 0.0839931
m - 0.2781941 0.3380541 0.0973958
- 0.2095019 0.3381617 0.2455713

- 0.1455791 0.2922300 0.3210049

- 0.0933559 0.2233446 0.3198419

- 0.0552076 0.1526399 0.2648767

- 0.0299759 0.0933913 0.1873930

- 0.0146353 0.0501177 0.1119679

- 0.0057161 0.0208697 0.0499548

Table 3.2b: The first three cigenvalues of the 21 x 21 Hamiltonian matrix with their corresponding  eigenvectors

Now that we have the eigentunctions of the Hamiltonian, we can construct the full wave
functions of the system. However, it should be remembered that in quantum mechanics, the wave
function has no direct physical meaning, but is a theoretical construction that can be used to
derive the probabilities of measurement outcomes [2]. For that reason, we do not provide any
discussion regarding the construction of the wave functions. Instead we plot the eigenfunctions

of the Hamiltonian corresponding to the ground state, the first excited and the second excited
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state energies, and then proceed to discuss applications of our solution to a two-dimensional

electron gas in the next section.

Eigenfunctions of the first three Eigenvalues
0.4 T

0.3

0.2

0.1 |-

9%
\

-4 -3 -2 -1 0 1 2 3 4

y
Figure 3.2: Shows plots of the ground state, first excited and second excited states of a 21 X 21 Hamiltonian matrix. Observe
the symmetry.

The motion of a particle is characterized by a wave function which represents a “wave packet”
[2]. With reference to equation (2.3.26), ¢, ({;) represents the amplitude of the full wave
function. Figure 3.2 depicts the form of the amplitude, it shows the dependence of the amplitude
of a wave packet on the distance from its centre on the stripe [-4, 4]; for the ground state, first

excited state and the second excited state.

3.3 Landau Quantization in a Two-Dimensional Electron Gas

Finally, to complete our study of the influence of a uniform magnetic field on the dynamics of
charged particles in a linear potential, we consider the time-independent problem of a two-
dimensional electron system in a uniform perpendicular magnetic field. Such a system can

actually be created at semiconductor heterojunctions. In this case, the classical electron orbits
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can be macroscopic and there is no reason to neglect the diamagnetic contribution to the

Hamiltonian.

Previously, we have worked in the symmetric gauge. However, with the algebraic solutions of
Chapter 2, it does not appear possible to enforce vanishing of the wave function at two separate
values of x. This is because the plane wave components in x of these wave functions derive from
the eigenvalue equation for the magnetic centre coordinate y., which also contributes linearly to
the Hamiltonian. Thus for the purpose of diagonalization of the Hamiltonian, it is convenient to
adopt the Landau gauge. This idea was actually first presented by Govaerts, Hounkonnou and
Mweene [5] in their study but no actual treatment was given. Here, we show that such a
treatment once again lcads to the parabolic cylinder functions already found in the previous

section and to a finite degeneracy n the Landau levels.

Once again, we want to treat the dynamics of the system using the variational principle.  We

therefore start with the Lagrangian in the Landau gauge

1
L= Em(icz +y%) —qBxy —yy ' (3.3.1)

From the Lagrangian, we obtain the expressions for the canonical momenta

p O p 0L
=L, =mx —qgby , —ay

=57 Y =my (3.3.2)

By means of equations (3.3.2), the velocities in the x and y directions are found to be

X = L (P, + qBy), y = 5 (3.3.3)
m m
The Hamiltonian function, derived from
H=xP, +yP, — L _ (3.34)
is obtained by substituting (3.3.1) and (3.3.3) into (3.3.4):
2 2
H :%(1&;;@); %1— 21% (P +qBy)* - %n— + gyg—(ix; qBal;)Py + yysz 2
:%ﬁtq n{i =+ %—%(sz + 2qByP, + q*B?y?) — ﬁjt 4 mxy+q my +yy
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P* B* qBPy q*B%y? 1 , P2
=2 4 Y =—(P.%+2gBP 2p2y2) 4L 4
o+ +— +yy =3 (P> + 2qBP,y + q*B?y?) z vy

Hence, the Hamiltonian can be written as

H 1 P+1 B 2+Py2+ 3.3.5
=g (P gaBy) + gty (3:3:5)

Now we consider the diagonalization of (3.3.5) by using the wave function in configuration
space rather than using Fock algebra. For the momentum and space operators we have the

commutation relation

|2.2] = [9.B] = ih (3.3.6)
Therefore,
~ 2
~ 1 /.2 N2 PR R
2 :%(Px +qBY) + 549 (3.3.7)

The transition to quantum mechanics is made in the usual manner as

Thus, we can write the Hamiltonian as

H= hz((7+iB)/' h’ E)Z+ 3.3.8
T om\ax w1 2m oy? vy ' (3:3.8)

The Schrédinger equation for the system then becomes

2 he 92

qu) Y(x,y)— Imay? Y(x,y) +yvy¥(x,y) = E¥(x,y) (3.3.9)

h? i
" 2m (ax + h

It is evident that the wave functions of the system can be written in the separated form
Y(x,y) =e*™p(y) (3.3.10)

with
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k= (3.3.11)
-

Here the eigenvalues P, take all values from —co to + co.

Resolving the terms in the Schrédinger equation (3.3.9) one at a time, we find:
Right hand side = Ee™* ¢(y)

Left hand side terms;

Last term := yye™ ™ ¢(y)

hZ 62
; — i
Middle term = e “ @54)(}’)
First term := — h* (() qu) (p(y)ieikx +£queikx (p(y)
2m\o h Ox h

h% /0 [ ) ex
= ( hql?y) ”*QO(yH que“ 7162

2Zm\dx
h?
_ k 2 l/(A ikx ilx
Z'm[ h e e o(y)
2
qByk\" .. 1 .
- (—h—) e w(y)] =5 - (h*k? + 2hgByk + (qBy)*)e™™ ¢(y)
2p2 21,2 2
q°B yhk hek qB hk
— 2 4 ka S ( ) ( + _) ikx
o (y + PERAPETE o(y) = m m) B ()
After recombining all the terms, the Schrédinger equation becomes
h? d* 1 (qB\’ hiy? -
_ﬂﬁ Tm (E) (y + q—B) +yy o) = Ep(y) (3.3.12a)

This equation is exactly of harmonic oscillator form with a linear perturbation, where y is shifted

by
hk

Yo =5

i (3.3.12b)
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Thus we expect a solution of the form

Y(xy) =e* o, (y+y,) = e"ghﬁy""«pn o +y,) (33.13a)
We define the cyclotron frequency of the motion of the particle as
w 9B

o= (3.3.13b)

If we take the width of the sample in the x direction to be Ly, and assuming periodic boundary
conditions, then y, may be defined as the classical center of the electron orbit. In that case the
allowed k values are

kL, = 2mj, j=0,123,.. (3.3.14)
This condition may also translate into a condition on the classical centre

=2
Yo = a0 (33.15a)

of the electron orbit. 'We must have

0<y, <L, (3.3.15b)

where L, is the width of the sample in the y direction, for all the electrons to orbit inside the
sample. We notice that this gives an upper bound on j

. _9B .
0<j < -Z—TEI'L,CL}, = Jmax (33.16)

Equation (3.3.14) suggests that the values of k are quantized, and equation (3.3.16) shows that
the degree of degeneracy in the energy levels becomes finite if the motion is restricted to an
areaL,L,.

We now introduce the magnetic length
lp = |— (3.3.18)
Then the maximum number of electrons which can occupy a given Landau level is

. y
= 3.3.19

We note that (3.3.19) depends on the magnetic field. Thus the bigger the field, the more electrons
can fit into a Landau level.
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Now, we can rearrange (3.3.12a) into the form

[ h? d? +1 <qB) +2yhk h2k? )
| 2mdy? 2 y? qB ' q*B? try ey

Eo(y)

[ h% 42 1 (qB)Z 2+thky h2k?
—s—=—tsm|—] Yy

Zmdy2+2m - +to +yy]¢(y)-—E<p(y)

and finally, write the Schrodinger equation as

h? d2 1 (qB\? qBhk h2k?
[‘z‘rzzy—ﬁi’”(‘;) v (v +T)y]"’(”)=(5“ 2m )‘P@

If we introduce the notation,

_ 2mo, 1 E h h h2k?

we transform the Schrodinger equation into

(j—;z— (3¢ + a)) 9e(@) =0

(3.3.20a)

(3.3.20b)

(3.3.200)

(3.3.21)

(3.3.22)

This is in fact the same differential equation as (2.3.32), whose solutions are the parabolic

cylinder functions in the y direction. Thus as far as the spectrum of eigenvalues and the

eigenfunctions of the Hamiltonian are concerned, the results of Section 3.2 are still applicable.

The only difference in this case will be in the value of the energy E. Nevertheless, we do not

expect the values of E to vary considerably from those of Section 3.2.
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CHAPTER 4

4.0 Some uses of the Density Functional Theory in materials

Science.
4.1 Introduction

The accurate prediction of material properties is one of the primary goals of
computational condensed matter physics. For this reason current research efforts aim
at developing DFT simulation software with improved accuracy for the prediction of
material properties and increased ability to study very complex systems at a relatively

low financial cost.

This work on the density functional theory is not related to the work presented earhier

on the time-independent Landau problem.

Our aim for presenting this chapter is twofold. Firstly, we would like to demonstrate
some of the capabilitics of the density functional theory by performing basic
clectronic structure calculations on Ge, Ni, NiGe, Ni;Ge., Ni,Ge and NisGes.
Secondly, it is our hope that the study of the Ni-Ge system will help to increase
awareness of research in theoretical condensed matter physics and facilitate the
adoption of density functional theory calculations in future rescarch activities in the

Department of Physics at the University of Zambia.

To start, an introduction of the computer code that was used to implement the DFT
calculations is given. This is followed by a series of Self-Consistent Field (SCF)
calculations which are performed on the Ge, Ni and the Ni-Ge systems to obtain the
total ground state energies per unit cell of the phases on the Ni-Ge phase diagram
which have been obtained experimentally. By comparing these energies, a study on
the stability of the various phases can be conducted; in turn their formation sequence

can also be predicted.
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4.2 Plane Wave Self-Consistent Field (PWscf) Calculations

The use of plane-wave basis sets and pseudopotentials has proven to be an easy and
yet fairly accurate method for performing electronic structure calculations on solids

within density functional theory implemented in computer code [19].

In the present work, the calculations were performed using an ope- source computer
package for electronic structure calculations and simulation of molecules and solids

called QUANTUM ESPRESSO [19].

The QUANTUM ESPRESSO program comprises the following core packages for

calculation of electronic structure properties within density functional theory:

e PWscf (Plane-Wave Self Consistent Field) code: consists of a set of computer
programs for electronic structure calculations. The PWscf code is well suited
for the calculation of ground- state properties of solids and the generation of
pseudopotentials.

e CP (Car-Parrinello) code: this is an ab initio electronic structure and molecular
dynamics program using plane wave and pseudopotential implementations of
density functional theory. It is mostly used for molecular simulations but also
supports geometry optimizations, Born-Oppenheimer molecular dynamics,
path integral molecular dynamics, response functions, excited states and

calculations of some electronic properties.

All the calculations in this work were performed using the PWscf code, and thus our
description of how the QUANTUM ESPRESSO program works will be focused more
on the PWscf code and less on the CP code. As was outlined in Chapter 1, the
Hohenberg — Kohn theorems and Kohn — Sham approach allow us to calculate the
ground state energy and ground state density of an interacting electron system via the
non-interacting Kohn — Sham system. The only approximation required in this
approach is that for the exchange — correlation energy, which is unknown as an

explicit functional of the electron density. For the QUANTUM ESPRESSO program,
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the two main types of exchange-correlation functionals; local density approximation

(LDA) and generalized gradient approximation (GGA) are available.

The type of exchange-correlation functional used for each calculation was read from
pseudopotential files provided with the distribution. We employed the Plane Wave
Self-Consistent Field method within the Generalized Gradient Approximation (GGA)
of Perdew, Burke and Ernzerhof (PBE) [19] for the exchange correlation functional as
implemented in the pseudopotentials provided with the QUANTUM ESPRESSO

distribution.

The input files for the PWscf code were written by hand in a text editor. The input data
in the input files are organized as several name-lists, followed by other fields

introduced by keywords. All the input files used in this work are presented in the

appendix.

Due to lack of adequate computational resources, the results presented here are only
meant to illustrate the enormous potential DFT calculations have to support
experimental results and their elegancy and usefulness in cases where experimental

techniques are not readily accessible such as in the study of low-dimensional systems.

This work was performed on a Linux system running on an Intel Pentium dual-core
processor with a speed of 2 gigahertz and 2 gigabytes of memory. With this hardware
architecture, only up to 50 atoms can be modeled in the simulation and the self
consistent field calculations can take as long as 48 hours to run, depending on the
complexity of the material being simulated, the properties being studied and the
number of atoms used in the unit cell. The type of calculation being performed also

influences the duration of the simulation runs.

Ideally, for complicated solid or molecular systems, parallel multi-node computer
clusters with as many as 16, 24, 32 or even 48 core processors and 8 or more gigabytes
of memory should be used and are recommended [19]. Calculations on these machines

are much faster and more reliable as they can be optimized to the fullest potential of
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the computer hardware to produce the best results possible without affecting the run-

time of the simulation much.

In the next section we illustrate how an SCF (Self- Consistent Field) cycle for solving

the Kohn- Sham equations proceeds.
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4.2.1 Self- Consistent field cycle

The Kohn-Sham equations provide a practical way of calculating the ground state
density and energy including every observable that is known to be an explicit

functional of the ground state density [7]. The calculations involve solving the

Schrédinger and Poisson’s equation self-consistently.

Initial guess: n(r)

n(@)is A
updated Calculate effective potential:

Veff [n(r)] = Vere ) + Viln()] — Vex [n(r)]

Solve Kohn-Sham equations:

{—%VZ + Vegy [n(r)]] Yi(@) = &i(r)

Calculate the electron density:

n@) = ) P

Calculate
other
output
quantities:

Energy,
forces, etc.

No

Self - consistent?

Fig. 4.2.1: Flow chart showing the self —consistent field cycle.
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The flow chart in Fig.4.2.1 illustrates how the process for solving the Kohn-Sham
equations and Poisson’s equation for the electronic charge density self-consistently
proceeds.

The SCF cycle always starts with an initial guess of the electronic charge density. The
charge density is used for calculating the effective potential using the Poisson
equation, the solution of the Poisson equation is then used in the Kohn-Sham
equations to obtain the ground state solution of the system. The solution of the Kohn-
Sham equations is used to calculate the new electron density. After the density is
calculated, a check is performed by the code to ensure convergence. When
convergence is achieved, calculations of the observables proceed; otherwise the cycle
starts all-over using the last calculation of the electronic charge density as the initial

guess until convergence is achieved.

The SCF cycle has been successfully implemented in the PWscf code of the
QUANTUM ESPRESSO computer package. In this work we illustrate how it works
by running SCF cycles to calculate the total ground state energies of Ge, Ni, NiGe,
Ni3Ge;, Ni,Ge and NisGes.

4.2.2 Density Functional Methods in the Study of Crystalline Materials

Within the PWscf code, electronic and ionic structure calculations are performed after
running an SCF cycle using a program called pw.x [19]. The pw.x program uses the
input files written by hand in a text editor. The details of the system being studied that

can be entered in the input file are, but not limited to:

¢ ATOMIC SPECIES;

e ATOMIC POSITIONS (In the unit cell);
o K-POINTS;

e CELL PARAMETERS;

e OCCUPATIONS.
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For all calculations in this study, the k-point grids were generated automatically. The
automatic generation of the k-point grid follows the convention of Monkhorst and

Pack [19].

4.3 Results

Intrinsic crystalline Germanium has a diamond lattice structure. Its underlying space
lattice is face-centered cubic and its primitive basis has two identical atoms at
co-ordinates (0, 0, O) and (1/4, 1/4, 1/4) centered at each point of the lattice. Each atom
has four nearest neighbors that form a tetrahedron and the structure is bound by

directional covalent bonds.

Fig. 43.1a and Fig. 43.1b show visualizations of crystalline Germanium and
fcc Nickel. These were generated from the PWscf input file of the self-consistent
calculation using a computer program called XCrySDen [20]. The figures present
perspectives of the Germanium diamond crystal structure and face-centered cubic

structure of Nickel and show how the atoms are placed in the conventional cells.

By editing the input file, any crystal structure geometry can be produced; atoms can be
moved to different locations and electron-hole movements in the valence band can

also be simulated [19].
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Fig 4.3.1a: Face-Centered cubic structure of Ge with a lattice parameter equal to 10.9251 Bohr
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Fig 4.3.1b: Face-Centered cubic structure of Ni with a lattice parameter equal to 6.6505 Bohr
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4.3.1 Convergence for Plane-Wave Energy Cut-Off

Total Ground State Energy (Ry)

Germanium

The graph below shows convergence of the total ground state energy versus the
kinetic energy cut-off of the plane-waves for Ge calculations. To reach the
ground state of the system, different values of the kinetic energy cut-off had to
be used until the value of the total ground state energy calculated by the self
consistent algorithm become constant. It was this value of the total ground state
energy that was used in the rest of the calculations. Here we started with a
kinetic energy cut-off of 16.0 Ry and increased this values in steps of 4.0 Ry
up to 60 Ry until the total ground state energy converged to a value of
-328.2124 Ry corresponding to a kinetic energy cut-off of 52 Ry which we

used in the rest of the Ge calculations.

Convergence For Plane-Wave Energy
-328.208 T T y T

‘ge ecut.txt’ ———
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-328.212 } \ : .
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o
\

2.
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Kinetic Energy Cut-Off (Ry)

Fig 4.3.1a: Total ground state energy of Ge versus the kinetic energy cut-off. The convergence values
are: -328.2124 Ry for the total ground state energy and 52 Ry for the Kinetic energy cut-off.

65



Chapter 4. Some uses of the Density Functional Theory in Materials Science

e Nickel
The graph below shows convergence of the total ground state energy versus the
kinetic energy cut-off of the plane-waves in the Ni calculations. The total
ground state energy converged to a value of -85.8958 Ry corresponding to a
kinetic energy cut-off of 48 Ry which we used in the rest of the Ni

calculations.
Convergence For Plane-Wave Energy
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E -85.891 \
> \
S 85892 |-
C \
w
ot
s 85893 t
]
T
C
3 85894 L .|
O
S B
© 85895 | \\\
S ——t——— e
-85.896 : i

15 20 25 30 35 40 45 50 55 60
Kinetice Energy Cut-Off (Ry)

Fig 4.3.2b: Total ground state energy of Ni versus the kinetic energy cut-off. The convergence
values are: -85.8958 Ry for the total ground state energy and 48 Ry for the Kinetic energy cut-
off.
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4.3.2 Convergence for K-Point Mesh Density

Germanium

After the kinetic energy cut-off of a system is found, it is necessary to perform
another convergence test for the total ground state energy. While keeping the
value of kinetic energy cut-off obtained in the first test fixed (52 Ry), the
number of k-points is varied in order to sample within the first Brillouin zone.
With the following divisions of the three primitive reciprocal lattice
vectors: 2, 4, 6, 8, 10, 12, 14, and 16, the total ground state energy for the Ge
calculation converged to a value of -328.232 Ry which corresponds to a

10 x 10 x 10 k-point mesh density.

Convergence of The K-Point Mesh Density

'328 T T 7 T T T
] ge_k-point.txt’ ——
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]
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g
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©
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P &\\
-328.25

2 4 6 8 10 12 14 16
Primitive Reciprocal Lattice Vector

Fig 4.3.2a: Total ground state energy of Ge versus the primitive Reciprocal Lattice Vectors.
The total ground state energy converges to a value of -328.232 Ry which corresponds to
210 x 10 X 10 k-point mesh grid.
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e Nickel
Performing a similar procedure for the Ni calculation as was done for the Ge,
the total ground state energy converged to a value of -85.888 Ry which
corresponds to an 8 X 8 X 8 k-point mesh density.

Convergence of The K-Point Mesh Density

'8572 T T | 3 "3
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°
859 | Y 1 ‘
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2 4 6 8 10 12 14 16
Primitive Reciprocal Lattice Vector

Fig 4.3.3b: Total ground state energy of Ni versus the primitive Reciprocal Lattice
Vectors. The total ground state energy converges to a value of -85.888 Ry which
corresponds to an 8 X 8 X 8 k-point mesh grid.
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4.3.3 Calculation of the Lattice Parameter

¢ Germanium

The final convergence test performed involves keeping the k-point mesh
density and kinetic energy cut-off values obtained in the first and second tests
fixed. For the Ge calculation these were energy of 52 Ry and a k-point mesh
density of 10 X 10 X 10. By choosing a range of 3% about the approximate
experimental value, the value of the lattice parameter was varied while
recording the corresponding values of the total ground state energy. This
procedure was executed continuously until an equilibrium lattice parameter
was obtained; this was where the total ground state energy had its minimum
value. In this calculation the total ground state energy had its minimum at —
328.2346 Ry which corresponds to a lattice parameter of 10.9251 Bohr. This is
the value of the lattice parameter that is used in the calculations that followed.

Germanium Equilibrium Lattice Parameter

'ge_celldm.txt’ ——

328.216
328.218
;>~ -328.22
& -328.222
1]
& -328.22
@
T 328226
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73
2 328232
L
-328.234
-328.236
10.2

Fig 4.3.4a: Total ground state energy of Ge versus the Lattice Parameter. The system

10.4 106 10.8 11 11.2 11.4
Lattice Parameter (Bohr)

has an energy minimum of -328.2346 Ry at around 10.9251 Bohr. This is the
equilibrium Lattice Parameter for the Ge lattice.
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Total Ground State Energy (Ry)

Nickel

A similar procedure as that which was used for the Ge calculation was also
used for Ni. While keeping the k-point mesh density of 8 X 8 X 8 and a kinetic
energy cut-off of 48 Ry; obtained in the first and second tests fixed, an
equilibrium lattice parameter of 6.6505 Bohr was obtained. This value
corresponded to a total ground state energy minimum of -85.8957 Ry and
was used in all the Ni calculations that followed.

Nickel Equilibrium Lattice Parameter
-85.8905 . T T

85891 1
858915 |\
85892 | -\
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e
85.896 . — - . . -
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Lattice Parameter (Bohr)

ni_celldmtxt’ ——

Fig 4.3.4b: Total ground state energy of Ni versus the Lattice Parameter. The system
has an energy minimum of -85.8957 Ry at around 6.65 Bohr. This is the equilibrium
Lattice Parameter for the Ni lattice.
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4.4 Stability of Nickel Germanides

Phase formation of nickel germanides formed by thermal annealing has been studied

widely in materials science [21, 22, 23, 24]. The table 4.0 shows experimentally

obtained crystal structures and lattice parameters of some phases of the Ni-Ge system.
Phase Wérﬂystal structure Lattice constants (/\)‘
a b c
Ni,Ge | Orthorhombic 5113 [3.830 |7.264 |
NisGe; Monoclinic 11.68 |673 [6.36
NiGe Orthorhombic 5389 [3.438 |5.82
NiGe; Orthorhombic 10.830 | 5.763 5.762

Table 4.0: Crystal structures and lattice parameters of phases of the Ni-Ge system [25, 26, 27, 28].

We studied the stability of the phases of the Ni-Ge system by obtaining the total
ground state energies of the phases using the PWscf code. Initially, we used the crystal
structures and lattice paramcters of each phase as given in table 4.0. After several
attempts, it was clear that the computational power available to us was not adequate
and we could not obtain meaningful results using this direct approach. We therefore
adopted an approximation approach that used two model cases. These model cases
made use of our results from the study of the elemental materials Ni and Ge to give us
some insight into the stability of the phases in the Ni-Ge system. We picked the four
phases, NiGe, Ni,Ge, Ni;Ge, and NisGes;, which are commonly observed in
experimental thin {ilm studies of the Ni-Ge system. For each phase we considered the

following two model cases:

1. When Ni atoms are static and Ge atoms diffuse to the Ni sites: In this case the
convergence parameters for Ni obtained above in section 4.3 where used since
the Ni atoms arc static. A kinetic energy cut-off of 48 Ry, lattice parameter of

6.6505 Bohrs and a k-Point mesh density of 8 X 8 X 8 were used; -
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2. When Ge atoms are static and the Ni atoms diffuse to the Ge sites: In this case
the convergence parameters for Ge obtained above in section 4.3 where used
since the Ge atoms are static. A kinetic energy cut-off of 52 Ry, lattice
parameter of 10.9251 Bohr and a k-Point mesh density of 10 X 10 X 10 were
used.

Fig. 4.4 shows the total ground state energies that were obtained in our calculation for
each of the two model cases for the NiGe, Ni2Ge and NizGe; phases.

Total Ground State Energy
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@ Total Ground State
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Energy

-246.03 -249.94 -326.52 -335.91 -535.00

Fig 4.4: Total Ground State Energy of the NiGe, Ni,Ge, Ni;Ge; phases.

From the results we deduce that the NizGe; phase is the most stable since it has the
lowest ground state energy and hence is expected to form first followed by Ni,Ge
while NiGe is expected to form last having the highest ground state energy. An
attempt to study the NisGes phase was not successful due to lack of adequate

computational resources.
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CHAPTER 5

Discussion and Conclusion

5.1 The Landau problem

The aim of the first part of this study was to solve the Landau problem in the half-plane with a
linear potential using numerical means. The discretization method was used to obtain the energy
eigenvalues of the Hamiltonian and for illustrative purposes, we presented the spectrum of

eigenvalues for the interval of integration [-4, 4].

The discretization mecthod is known to produce very accurate results as the step-size is reduced
[17]. However, we note that there is actually a limit to how small the step-size can be made. For
the solution of many differential equations, as the value of the step-size goes beyond a specific
minimum (while approaching zero) unique to each type of differential equation, the
discretization method fails to produce the correct eigenvalues [17]. The principal source of this
problem is known to result from the approximation of continuous functions by discrete ones
[16, 17]. As such, it is usually necessary to compare the results obtained using the discretization

method with those obtained using other methods.

Given this problem with the discretization method, it is natural to ask why another method was
not chosen in the first place. The simple answer is that many numerical methods have inherent
problems [15, 16, 17] such as slow convergence rates, propagation of relative and truncation
errors, etc., etera. The type of problem (equations to be solved) usually influences the choice of
numerical method to be used and in this study the discretization method was selected because it
is fast, easy to implement in computer code and many standard library routines to be used in

computer code for solving differential equations exist.
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Furthermore, a comparison of our results with those obtained by Mweene et al [18] using the
bisection method helped to establish that Table 3.2a actually presents the correct spectrum of
eigenvalues. Although the bisection method is a slowly convergent method, the fact that it is still
an efficient method that can be used as a global method to get initial appi*oximations, strengthens

our faith in the results we obtained using the discretization method.

To come close to an actual situation of physical interest in the quantum Hall context, where the
linear potential could be related to a constant electric field or a gravitational potential well, we

considered Landau quantization in a 2-D electron gas. We considered a finite sample (Hall slab).

A derivation of the Hamiltonian in the Landau gauge revealed that the degree of degeneracy in
the energy levels becomes finite if the motion of the electrons is restricted to an area and that the
maximum number of electrons which can occupy a given Landau level depends on the strength
of the magnetic field. The relationship between the number of electrons in a Landau level and the
strength of the magnetic field is actually linear. The stronger the field, the more electrons can fit

in a Landau level.

The use of the Landau gauge in this treatment once again led to the parabolic cylinder functions
which were obtained as the solution when the symmetric gauge was used in an earlier chapter.
For the energy spectrum, an analysis of the expression obtained after use of the Landau gauge
shows that besides a term analogous to the one linear in yy,, there is another contribution whose
scale is set by the Landau problem itself, hw,. This latter contribution remains independent of
the coefficient setting the strength of the linear potential, y. Thus, the only effect of introducing

this extra interaction cnergy in the system is to slightly tilt the spectrum of the Landau levels.

As was already pointed out in [5], to assess under which experimental. conditions such effects
may become observable, one has to understand the functional dependence of the energy
spectrum on the geometry of the slab as compared to the effects of a linear potential term which
may be due to electric or gravitational interactions. Nevertheless, whatever the details of these

dependences, it remains true that the factors setting the scales for these types of effects are the

Landau gap, hw, and the potential energy.yy,.
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5.2 The Density Functional theory and its applications in materials

science

The continuous increase of computational power combined with the development of new
algorithms and tools allows the application of advanced theoretical techniques in the modeling of
materials of growing complexity. The density functional theory (DI'T), based only on quantum
mechanics and the laws ol clectromagnetism, has become a reliable tool for atomic scale

simulations of numerous compounds and nanostructures.

The aim of the second part of this study was to introduce the density functional theory and its
applications in materials science. We presented the computer program that was used to perform
the calculations and how the self-consistent field algorithm works. To conclude we proved that
DFT procedures provide a framework which allows comparison of measured material properties

with theoretical predictions by studying crystalline materials.

In thin film reactions only some of the compounds present in the equilibrium binary phase
diagram form during solid state reactions. For the Ni-Ge system only two phases are observed.
The available reports agree on the second and final phase, NiGe, but disagree on the first phase.
Some researchers report orthorhombic Ni»Ge [22, 23, 24] while others report monoclinic NisGes

[25, 26, 27, 28, 32] or hexagonal Ni3Ge; [29] as the first phase.

Table 5.0 shows experimental results of the formation of phases in the Ni-Ge system obtained by

different authors.
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First phase Second phase o
Observed l\plcal Observed Typical
phase formation formation
No temperature phase temperature Reference
(') (0
1 =250 260-600 E.D. Marshal et al. [22]
1 Ni,Ge 160 NiGe 250 Y.F. Hsich ct al. [23]
150-300 250-600 M.W. Wittmer ct al. {24]
2 Ni;Ge, - NiGe - L.J. Lin et al. [29]
- - S. Gaudct ct al. [25]
3 Nis;Ge, - NiGe 150 I-. Nemouchi et al. [20, 27, 30]
- 200-300 Patterson ct al. [28]
4 Nis;Gey/ 250/300 NiGe 350 M. Mueller et al. [31]
Ni,Ge
5 NisGe;, 145 NiGe 285 J.K. Pondo [32]

Table 5.0: Observed Ni-Ge system phases and their typical formation temperatures.

In our results we reported that since the Ni;Ge, and Ni,Ge phases have relatively low total
ground state energics, they are expected to be more stable than NiGe which has higher ground
state energy. In relation to the formation sequence, our results indicate that Ni;Ge, and Ni,Ge
should form earlier than NiGe. This is in perfect agreement with the experimental results shown

in Table 5.0 above.
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Appendix: Quantum Espresso Input Files

1. Crystalline Germanium

&control
calculation = 'scf',
restart mode = 'from scratch’',
outdir = '/home/elias/tmp/',
pseudo dir = '/opt/espresso-4.2.1/pseudo/"’,
prefix = 'ge',
/
dsystermn
ibrav = 2,
celldm(l) = 10.9251,
nat = 2,
ntyp = 1,
ecutwfc = 52.0,
/

&electrons
conv_thr = 1.0d-8,
mixing beta = 0.7,
/
ATOMIC SPECIES
Ge 72.64 Ge.pbe-paw kj.UPF
ATOMIC POSITIONS
Ge 0.000000000 0.000000000 0.000000000
Ge 0.250000000 0.250000000 0.250000000
K_POINTS automatic
10 10 10 000

2. Fce Nickel

&control
calculation = 'scf',
restart mode = 'from scratch',
outdir = '/home/elias/tmp/',
pseudo dir = '/opt/espresso-4.2.1/pseudo/"',
prefix = 'ni', ‘
/
&system
ibrav = 2,
celldm(l) = 6.6505,
nat = 1,
ntyp = 1,
nspin = 2,
starting magnetization(l) = 0.1,

ecutwfc = 48.0,
ecutrho = 288.0,

occupations = 'smearing',
smearing = 'methfesscl-paxton',
degauss = 0.02,

/
sdelectrons
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conv_thr
mixing beta
/
ATOMIC SPECIES

i

Ni 58.69 Ni.pbe-nd-rrkjus.UPF

ATOMIC POSITIONS

Ni 0.000000000 0.000000000 0.000000000

K _POINTS automatic
8 8 8 0 00

NiGe — when Ge is static while Ni diffuses to the Ge sites

&control
calculation
restart mode
outdir
pseudo dir
prefix
/

&system

ibrav =

celldm(1)
nat

ntyp =

nspin

starting magnatization (1)
ecutwtc

ecutrho

occupations =
smearing =

degauss
/
&electrons
conv_thr

mixing beta =

/
ATOMIC SPECIES

'scf?',

'from scratch’',
'/home/elias/tmp/"',
'/opt/espresso-4.2.1/pseudo/ ",
'nige’,

o~

. 9251,

~

.1,
2.0,

288.0,

'smearing’,
'methfessel-paxton’',
0.02,

g ON NN

1.0d-8,
0.7

’

Ni 58.69 Ni.pbe-nd~rrkjus.UPF
Ge 72.64 Ge.pbe-paw kj.UPF

ATOMIC POSITIONS

Ge 0.000000000 0.000000000 0.000000000
Ni 0.250000000 0.250000000 0.250000000

K_POINTS automatic
10 10 10 O 00

NiGe — when Ni is static while Ge diffuses to the Ni sites

&control
calculation

restart mode

outdir
pseudo dir

i

i

'scf’,

"from scratch',
'/home/elias/tmp/ ",
'/opt/espresso-4.2.1/pseudo/",
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prefix
/
&system
ibrav
celldm (1)
nat

il

ntyp =

nspin
starting magnetization (1)
ecutwfc
ecutrho
occupatioris
smearing
degauss
/

&electrons

conv_thr =

mixing beta
/
ATOMICiSPFFTES
Ni H58.H9
Ge 12,64
ATOMIC POSITTONS
Ni 0.000000000
Ge 0.250000000
K_POINTS automatic
8 8 8 000

&control
calculation
restart mode
outdir
pseudo dir
prefix
/
&system
ibrav
colldm (1)
nat
ntyp
nspin
starting magnetization (1)
ecutwfc
ecutrho
occupations
smearing
degauss
/
selectrons
conv_thr
mixing beta
/
ATOMIC SPECTES

0.000000000
0.250000000

‘nige’',

N
@]
(e}
Ul

7
14

7

.1,

48.0,

288.0,

'smearing’,
'methfessel-paxton',
0.02,

ONND N YN

Ni.pbe-nd-rrkijus.UPF
Ge.pbe-paw kj.UPF

0.000000000
0.250000000

Ni,Ge - when Ge is static while Ni diffuses to the Ge sites

'scf!',

'from scratch’',
'/home/elias/tmp/"',
'/opt/espresso-4.2.1/pseudo/ "',
'nige',

N

0.92

I4

nNo
@2l
b

’

.1,

52.0,

288.0,

'smearing’',
'methfessel-paxton’',
0.02,

O NN W

1.0d-8,
0.7,
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Ni 58.69 Ni.pbe-nd-rrkjus.UPF
Ge 72.64 GCe.pbe-paw Kj.UPF

ATOMIC POSTITIONS

Ce 0.000000001
Ni 0.250000000
Ni -0.250000000

K_POINTS automatic
10 10 10 0 00

0.000000001
0.250000000
-0.250000000

0.000000001
0.250000000
-0.250000000

Ni,Ge - when Ni is static while Ge diffuses to the Ni sites

&control
calculation = 'scf',
restart mode = 'from scratch',
outdir = '/home/elias/tmp/',
pseudo dir = '/opt/espresso-4.2.1/pseudo/",
prefix = 'nige',
/
&system
ibrav = 2,
celldm(l) = 6.6505,
nat = 3,
ntyp = 2,
nspin = 2,
starting magnetization(l) = 0.1,
ecutwfc = 48.0,
ecutrho = 288.0,
occupations = 'smearing',
smearing = 'methfessel-paxton',
degauss = 0.02,
/
delectrons
conv_thr = 1.0d-8,
mixing beta = 0.7,
/
ATOMIC SPECIES
Ni 58.69 Ni.pbe-nd-rrkjus.UPF
Ge 72.64 Ge.pbe-paw_kJj.UPF

ATOMIC POSITIONS

Ni 0.000000001 0.000000001 0.000000001
Ni -0.500000001 -0.500000001 -0.500000001
Ge 0.250000000 0.250000000 0.250000000

K POINTS automatic
8 8 8 000

Ni;Ge, - when Ge is static while Ni

&control
calculation =
restart mode =
outdir =
pseudo dir =
prefix =
/

diffuses to the Ge sites

'scf',

'from scratch',
"/home/elias/tmp/",
'/opt/espresso-4.2.1/pseudo/ ",
'nige’,
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&system

ibrav = 2,
celldm(1l) 10.9251,
nat = 5,
ntyp = 2,
nspin = 2,
starting magnetization(l) = 0.1,
a ecutwfc = 52.0,
ecutrho = 288.0,
occupations = 'smearing',
smearing = 'methfessel-paxton’',
degauss = 0.02,
/
&electrons
conv_thr = 1.0d-8,
mixing beta = 0.7,
diagonalization = 'cg' ,
/
ATOMIC SPECIES
Ni 58.69 Ni.pbe-nd-rrkjus.UPF
Ge 72.64 Ge.pbe-paw kj.UPF
ATOMIC POSITIONS
Ge 0.000000000 0.000000000 0.000000000
Ge 0.250000000 0.250000000 0.250000000
Ni 0.500000001 0.500000001 0.707000001
Ni 0.707000001 0.707000001 0.500000001
Ni -0.500000001 -0.500000001 -0.707000001

K _POINTS automatic
10 10 10 000

Ni3Ge;- when Ni is static while Ge diffuses to the Ni sites

&control
calculation = 'scf',
restart mode = 'from scratch',
outdir = '/home/elias/tmp/',
pseudo dir = '/opt/espresso-4.2.1/pseudo/",
prefix = 'nige',
/
&system
ibrav = 2,
celldm(l) = 6.6505,
nat = 5,
ntyp = 2,
nspin = 2,
starting magnetization(l) = 0.1,
ecutwic = 48.0,
ecutrho = 288.0,
occupations = 'smearing',
smearing = 'methfessel-paxton',
degauss = 0.02,
/
&electrons
conv_thr = 1.0d-8,
mixing beta = 0.7,
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/
/

ATOMIC SPECLES

diagenalization =

v

teg' o,

o

Ni 58.69 Ni.pbe-nd-rrkjus.UPEF
Ge 72.64  Ge.pbe-paw kj.UPF
{ ATOM1C POSITIONS
i Ni 0.000000001 0.000000001 0.000000001
| Ni 0.500000001 0.500000001 0.707000001
Ni 0.707000001 0.707000001 0.500000001
Ge -0.500000000 -0.500000000 -0.500000000
Ge 0.250000000 0.250000000 0.250000000
K _POINTS automatic
888 000

NisGes- when Ge is static while Ni diffuses to the Ge sites

&control
'scf!',
'from scratch',

calculation =
restart mode =

outdir = '/home/elias/tmp/’,
pseudo dir = '/opt/espresso-4.2.1/pseudo/",
prefix = 'nige',
//
&system
ibrav = 2,
celldm(l) = 10.9251,
nat = 8,
ntyp = 2,
nspin = 2,
starting»magnetization(l) = 0.1,
ecutwfc = 52.0,
ecutrho = 288.0,
occupations = 'smearing',
smearing = 'methfessel-paxton’',
degauss = 0.02,
/

selectrons
conv thr = 1.0d-8,
mixjngrgeta = 0.7,
/
ATOMTCiSPECiBS

Ni 58.69 Ni.pbe-nd-rrkjus.UPF

Ge 72.64 Ge.pbe-paw_ kJj.UPF
ATOMIC POSITIONS

Ge 0.000000001 0.000000001 0.000000001
Ge -0.000000001 -0.000000001 0.000000001
Ge 0.000000001 -0.000000001 -0.000000001
Ni 0.250000000 0.250000000 0.250000000
Ni -0.250000000 -0.250000000 0.250000000
Ni 0.250000000 ~0.250000000 -0.250000000
Ni -0.250000000 0.250000000 -0.250000000
Ni -0.250000000 ~0.250000000 -0.250000000

!
|
5 K _POINTS automatic
i

10 10 10

000
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10. NisGe; - when Ni is static while Ge

diffuses to the Ni sites

&control
calculation = 'scf',
restart mode = "from scratch',
outdir = '/home/elias/tmp/"',
pseudo dir = ' /opt/espresso-4.2.1/pseudo/ ",
prefix = 'nige',
/
&system
ibrav = 2,
celldm(l) = 6.6505,
nat = 8,
ntyp = 2,
nspin = 2,
starting magnetization(l) = 0.1,
ecutwfc = 48.0,
ecutrho = 288.0,
occupations = 'smearing',
smearing = 'methfessel-paxton',
degauss = 0.02,
/
&electrons
conv_thr = 1.0d-8,
mixing beta = 0.7,
diagonalization = 'cg' ,
/
ATOMIC SPECILIES
N1 “8.69 Ni.pbe-nd-rrkjus.UPF
Ge 72.64  Ge.pbe-paw xJ.UPF
ATOMIC POSITIONS
Ni 0.000000001 0.000000001 0.000000001
Ni 0.500000001 0.500000001 0.707000001
Ni 0.707000001 0.707000001 0.500000001
Ni ~0.500000001 -0.500000001 -0.707000001
Ni -0.707000001 -0.707000001 -0.500000001
Ge -0.500000000 -0.500000000 -0.500000000
Ge 0.250000000 0.250000000 0.250000000
Ge -0.250000000 -0.250000000 -0.250000000

K POINTS automatic

"8 8 8

000
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