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INTRODUCTION

The problem of Meteorology

The particular meteorological problem which
forms the basis of this study is one among ﬁhree
closely related meteorological problems. These
may be stated, in their simplest terms as follows:-

(i) The specification of weather data
(such as pressure, temperature,
humidity, stream-function and flow
characteristics, etc) over all points
of a given area, from available data
at a set of fixed station pointsy;
within or without that area, at a given
point in time;

(ii) the prediction of these weather characteri-
stics from one point in time at a given
station, to a future point in time, at the
same station;

(iii) the mixed problem of the extension of
weather data in both space (specification)
and time (prediction) from space and time
dafa at given stations.

This third problem is the essential problem of
weather forecasting in meteorology. The problem being
non-linear does not admit theoretical solution in all
but a few simple cases and calls for approximate solution

13
procedures in which the error is kept as smallkpossible.



Dynamic versus statistical techniques

There are two main approaches to the problem
of weather prediction. One is the dynamic approach
in which the physical laws governing the behaviour
of the atmosphere are investigated, the other is the
statistical approach in which the distribution of
selected meteorological parameters are investigated,
and the present state of the atmosphere is projected
into the future on the basis of its statistical

behaviour in the past.

In the dynamical method, solutions of the dynamical
equations governing the motion of the system from some
initial instant (t=0) onwards are attempted using
certain simplifying assumptions, and lead to conclu-
sions about its subséquent Behaviour. In this approach
no consideration is given to the behaviour of the system
before t=0. The dynamical methods have reached a
fairly advanced stage of development since Richardson's
unsuccessful attempt at the problem in the early
1920's [5;]; they now feature among the operational
objective weather prediction techniques employed at
most major centres in the world.

Both methods are numerical weather prediction
methods. Thgydeal with the same problem but appear to
have little in common. However, it may be noted that
the dynamical method, as practiced, is not entirely free
of emprical relations which are called for in the

integration of the governing equations. For example,
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the geostrophic balance is based on the observed
behaviour of the system rather than on pure dynamical
theory. Again, any meaningful statistical investigation
needs to be based on dynamical considerations. The
attempt to predict the future state of the atmosphere

rests on the premise that the system is governed by
definite physical laws for, if its observed changes

were mef¢ chaotic fluctuations, it would be difficult

to envisage the success of the method. On the other
hand Weiner, as quoted by Lorenz /16/, has shown that
"if a statistically stationary system is deterministic
in the sense that its future state is exactly determined
from its present by a governing dynamicCs, ..ccececcccccscscs

the future of the system may be predicted by linear
regression equations, even if the nature of the dynamics
is not known". It would then appear that the more
predictable the atmosphere may be by dynamical methods,
the more predictable it is likely to be by purely

empirical statistical methods.

It would be therefore instructive to examine,
in the light of the known success of the dynamical
method, the reasons in support of the statistical
method,

Firstly, the dynamics in its present form
can be considered as representing a small portion of
the earth-atmosphere system in view of the complex

nature of the influences of external factors such



as the earth or sun, on the atmosphere. Secondly,

the density of the present observational network is

far from satisfactory. Both considerations contribute
to the rapid decay'with time, of forecast accuracy.
Although the purely mathematical difficulties such

as truncation errors and inadequacies of the dynamical
features of the models are being steadily reduced with
the advancement of computational aids, there is little hope
for believing that an easy answer to the above two major
problems can soon be found. This forms one jﬁstifica—
tion for the promotion of the statistical approach. The
other arises from the fact that the dynamical models,
presently developed, are fonnd to be less successful in
explaining the atmospheric variations in low latitudes.
Furthermore, these areas encompass much of the third
world where there is an ever diminishing ability to

maintain even the present observational networks.

The statistical method has its own drawbacks.

Its objective is to find best fit (or best prediction)
formulae. When such formulae are based on specific
samples it does not necessarily follow that the 'best’
formula is also the best for another sample , or indeed

for the population. However, since the predictions in

5/cecee



the present context are not concerned with the

entire future, it should, in most cases, suffice to
make do with suitable formulae and hope to improve
these as data availability improves. Secondly, the
use of too many predictors (initial data) can be a source
of problems. Some of the linear combinations of the
predictors may be highly correlated to the predictuxul
in the sample,and as a result, the terms corresponding
to this linear combination in the prediction formulae
will increase the error when the formula is applied

to new data. Therefore, it is of vital importance

to reduce to a minimum the number of predictors re-

quired.

Thus, whichever technique is employed, an effective
means of reducing the volume of initial data is called
for. One such means involving the use of orthogonal

polynomials, is the central theme of this thesis.

Brief history of the use of polynomial interpolation
in the presentation of initial data

In numerical weather prediction, the integration
of systems of prediction equations requires a knowledge
of the initial values of the field variables at mesh
points of a grid. 1In the early stages of numerical

weather prediction, most analysis schemes used around

6/cececocns



the world consisted of estimating grid point values
of a variable at a given instant, from subjective

(i.e. hand drawn) analyses.

Gradually, attempts were made to develop
objective analysis techniques towards this end.
Several objective analysis methods have been in use
during the past 25 years or so. The method of optimum
interpolation, which is not discussed in this thesis,
has particularly wide application throughout the world.
It is the aim of this thesis to investigate whether the
representation of meteorological fields by orthogonal
polynomials would be of use in providing the initial

data field, for numerical prediction.

Among the early attempts in this direction
was that of Bushby and Huckle in 1956 /327. They
employed quadratics or cubics of 'best mean square
fit' to 500hPa heights over Northwestern Europe and
the north Atlantic. Their results tﬁrned out to be
fairly satisfactory. However, the traditional least
squares technique is computationally tedious, especially
when polynomials of higher order are taken. Dixon, in
1969 /67, considered the feasibility of representing
various meteorological fields in terms of orthogonal
polynomial functions, and successfully applied the

method to the 300hPa height field over the British Isles,



using bivariate polynomials of degree 1 to 10. His
results, employing 8th power approximating polynomials

on the 500hPa height field over the same area as that
used by Bushby and Huckle, were superior to those obtained
by the latter, and proved superior to any subjective
analysis, however skilled. In a later paper, Dixon,
Spackman, Jones and Frances /7/ also considered 6th

power three-dimension polynomial fittings of the form
z=f(x,y,p) over the same area. Their results were

also found to be very satisfactory; the main errors

being attributed to the fact that, considering the

data volume involved, a 6th power approximation was
inadequate for close enough fit. As a rough guide,

they proposed that for analysis quality to match the
better subjective analysis in two-dimension fitting,

the ratio of the number of coefficients in the orthogonal
polynomials used, to the number of data values, should

be in the range % to k.

The above results point to the desirability of
using objective analysis techniques in 2,3 or more
dimensions with sets of orthogonal polynomials of
increasing degree. This method, quite apart from its
computational speed when compared with other methods,
has the added advantage that it lends itself well to
the incorporation of various statistical tests, during

the computation.



CHAPTER I

THE‘GENERAL ORTHOGONAL POLYNOMIALS-A REVIEW OF THEIR
SIGNIFICANCE AND PROPERTIES

This chapter is concerned with the general
problem of setting up approximations to any prescribed
degree of accuracy, to arbitrary continous functions
in 1, 2 or 3 dimensions, by linear combinations of
sets of functions of simpler structure.

That this can be done in the particular case where t
data function is known to be continous and where the
approximating set is a set of polynomials, was established
by Weierstrass in the following theorem, known as the
Weirstrass approximation theorem:

Let f be a continous real fanction defined on a

closed interval /a, b/, and let € be given.

Then there exists a polynomial p with real coe-

fficients such that | f(x) - p(x) |[<e ,vx{a,b]. (1.1

For a proof and discussion of this theorem see

Simmons /27/.

In any particular instance, the most convenient
approximating polynomial sets are those that belong
to the class of complete orthonormal sets, for reasons

enumerated in the brief discussion below.



The concept of orthonormality of a set of
functions in a given function space is based on the
admissibility of an 1lnner product operation in that
space. The inner product, represented by < £, g >,
of 2 elements f and g of a given function space X,
is an operation in that space X that satisfies the
following axioms:

Axiom 1: <f, g >e¢C (the field of complex numbers)

Vall elements £ and g of the space.

Axiom 2: <X, g> =Xf, g> VAEC and f,geX,

Axiom 3: <f + g, h>= <f,h>+ <g,h>, V£,
g and h € X,

Axiom 4: <g, f>= <f, g>

Axiom 5: <f, £ >%, Vf € X; being = o if and

only if £ = o €X.

In the context of this dissertation attention is
confined to the space LZ(D) of Lebesgue integrable
complex or real valued functions on a given finite
domain D in R, R2 or R3 for which

SD\ f |2dD < o in the Lebesgue sense, and for

which <f, g > is defined as

5Df(x)§T£)dx, X € D.

This can be shown to define an acceptable inner product

for this space.



Orthogonal sets in inner product function
spaces may be defined as countable or uncountable
subsets F = { f € LZ(D)/ i € I} having the property
that v i, j&€I, 143, <fi' fj>==0 . If in
addition<fi, f.l>=1 r Vi€gI, then the set F is

said to be orthogonal and normal, or orthonormal.

1.2 Complete orthonormal sets

An orthonormal set X is said to be complete
if it is exhaustive or maximal, that is if it is
impossible to find a non-zero function in the same
set X which is orthogonal to every member of F but
does not belong to F. Such complete orthonormal sets,
when they are countable, are the most appropriate to
the present purpose.

The particular space of interest in the present
context is the class of separable Ig [a,b] spaces (-an
important class of Hilbert spaces). The special pro-
perties of sepdrable Hilbert spaces of complete ortho-
normal sets used here, are expressed in the following
therorems:-

Theorem A: Every non-empty Hilbert space

contains a complete orthonormal set.

Theorem B: Such orthonormal sets (for separable

Hilbert space) are countable.

Theorem C: Let H be a Hilbert space, and let

{ fi/ iEN] be an orthonormal set in H.

Then the following conditions are



equivalent to one another, in the
sense that any one of the listed
properties implies the other 3.
(1) { fi/i € N 1 is complete
(i1) x (eH) Lr{f ]} , VieN =Xx=oeH
(1id) if x is an arbitrary vector in H, then
X = z<>(i,fi>f,l
(iv) if x is an arbitrary vector in H,

then “ X “2: 2l<xi fi>l2.

Theorem D (Bessel's inequality): For any orthonormal

subset { = i f. } CcH and any x € H.
H X ll2=§|ci |2 » where c;= <f,, £,>.
Proofs of the above theorems are given in Simmons
[27/. A proper definition of L2 /a,b/ is also given
in the above text, page 256, example 3. See also
Nicolsky /19/, chapter 14.

1.3 The best approximation to a function f€H, in
a finite orthonormal subset $={ dud:, - - -, bujcH

The mean square error E(a) of any linear
combination fn(a) = %iai<bi in § used as an appro=
ximation to a given function f in H, is defined by

ta)=| £-£ | (@) || 2= <g-£_, £+£>. The 'best’
possible approximation fn to the given function £
in the orthonormal set § is achieved by a choice of

multiples (ao»0h~'-,ﬂm) for which E(a) is least.



It can be shown /19/ that such a best
approximation fn can alwags be attained and is infact,
given by

fn = %ﬂci ¢i » Where < fi’¢i> are the

fourier components of £ in the set § . The

corresponding least error can be shown to be

given by E = Hf\\?-Elci |2 , which is > 0 in all

cases (c.f theorem D above).

It must be noted that in the case where $ is a
complete orthonormal set in H, the least error

E=0 (c.f. theorem D), and the best approximation fn is,

in fact, f itself (c.f. theorem C (iii)).

In the statement given above the convergence
of sci ¢i is convergence in H or in the sense of mean

square convergence, namely l\f—fﬂlLAO as n-—ao.

In practice, mean square convergence need not
necessarily imply pointwise convergence of the sequence

£, to f, namely that 3c,¢ =f, , VxE/a,p/.

However, there are certain well known conditions
of £ that would ensure the relation.
f =2Cid>i y Vx€[G,b] in the pointwise sense. The
best known conditions are set out below.

(a) The Dirichlet conditions

f(x) is defined and single-valued, except

possibly at a finite number of points in /a,b/.
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f(x) is periodic outside /a,b/, with period 2L.
f(x) and f'(x) are sectionally continous in
(a,b).

(b) The smoothness conditions

f(x) is piecewise smooth on /a.b/.

f(x) is periodic outside /a,b/, with period 2L.

1.4 Orthogonalization of countable (finite or infinite)
Linearly independent set of functions

Given any countable (finite or infinite) linearly

independent set of functions X= ixi/ie N } in

it is possible to systematically replace each function

of the set ¥ by a function 5 3 linear combination

(X Xy, - .- Xs.,) in such a way that the new set

i
= JieN is orthonormal. A special iterative

¢ i¢,/l€ }

construction procedure of $ from X (known as the

Gram-schmidt procedure) is given by:-

& = n=<iXn>¢ — .. . — <Py Xp> b
P T2
l1#n] (KX
with ¢ = x, (choice free)
=z ¢
”/“d’n“
The set { ¢'§ represents a systematic orthogonalization

of the given linearly independent set X ={X] and

the set E=§@a§ represents an orthonormalization of & .



1l.5a Particular orthonormal sets obtained by the

Orthogonalization of the linearly independent

set x" — The classical Orthogonal Polynomials

A useful generalization of the inner product in the
case of real valued functions eL_2[c't bj,<fg>=g,3,dx introduced
earlier is the following weighted inner product:-

<t,g> =$?’(X)f(x)g(x)dx
where the given Qlight function f&) has the following
properties:-

(i) P(x) is never - ve on /fa,b/

(ii)  P(x)is»0 a.c. (almost everywhere) on /fa,b7,

e.g. its zeroes, if any, form a countable set on
| [3a,h7 i.e. [poodx exiéts and is a real number.

In this case:-

b
<b, 6> = pot0fx) dx
J a ! J

By suitable choice of (x) and /a.b/, it is possible
develop orthonormal function sets of many kinds. These
sets | f.(x) } over various /a,b7 and with particular
choices fP(x) are among the most important classes of

orthonormal functions.

1.5b The Classical Orthogonal Polynomials

For each prescribed weight f and span /a,b/ and

standardising constant ko, = coefficient of x" in péx),

the set }bl,x,x2

b eeeee X ! generates @ specific
system i."n(X)k of orthogonal'polynomials, among
which some have been selected for special detailed study

Ly reason of:-



(i) their frequency of occurance
(ii) a definitive property (there exists a
choice of 3 alternatives) which they have in
common [e.¢. Py, Py, Pr3) ple)
These are the classical orthogonal Polynomials

and are listed below:-

Table 1.1

Name Symbol Range Weight Coefficient c
Legendre P (x) -\ \ 1 Eﬁkixﬂ/n\
- o - Ny B
Jacobi an,(b(x).)?(s;_: ~1 b= (\-kﬂ(s 2-° ( " )
N
Gegenbauer C}(X); Ay-4 - 1 (\-'ﬁl) b 2™ (N) “/r\‘.
_\
Tchebychef(1l)  T,0) -1 1 (1) % 20!
kS
Tchebychef(2) VUaX) -t v (1-x®) 2"
Laguerre & (- FX % -4
(ggneralised) | LaX)&y-d o o0 & x -1 /n.
z
i - n
Hermite e ) PR ¢ % 2

- Notes
(i) P%B(x) and C:‘x) include R (x), Tp(x) and U{x)
as special cases.

(ii) The choice of the standardising constant kn varies
from author to author and is made with some
simplification in view.

(iii) The completeness of the listed sets can be proved.

(iv) Conditions on the free parameters x, g and%are
stipulated to ensure the integrability of L(x) in

each case.
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1.6 The basic properties of the family of classical
orthogonal Polynomials

There are three possible properties common to
the orthogonal polynomials anyone of which can serve
as a defining starting point for the theory of such
polynomials. These properties are:-

P(1) Definitive property (Roderigue's Identity)

DM (Px My

1

PX = e—
) Kef
is a free scaling factor

where Kn
f is the weight function of the system
X is a polynomial of degree 0, 1 or 2.
and for each n,

PX s peex™ = L D™ex™) = o

at X=a and x=b
Untlu these conditions the system &Pn \ constitues

a f-orthogonal system of polynomials, ( Pn = q
polynomial of degree n).
P(2) The polynomials Pn of each such system satisfy:
(a) a linear homogeneous differential equation of the
form A(x)W" + B(X)W‘ + A nW = 0
where A(x) and B(x) are independent of n and A
is independent of X.

(b) a recurrence relation

! U
XPL(x) = (d+{nXX)ﬁ$hpnﬁPV)
where « and g can be computed in terms of the

set constants.

h = <Pn,Pn>

b
DK Py i

n Q
K
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CHAPTER II

THE MATHEMATICAL PROBLEM OF NUMERICAL APPROXIMATION

2.10 Statement of the problem

In practice and specifically in weather forecasting
the problem is to represent a continuous function f(x)
on a given domain /a,b/, when such a (data) function is
presented over the domain in the form of a table of
values at given stations, in the form:

- n
f(x) = aO + alx + ... + anx +E(a).

The error E(a) depends upon the choice of constants

a,. The best approximation is obviously that which

makes E(a) a minimum that is global in some acceptable
sense, the measure of which is referred to as the goodness

of fit.

The situations in which this could arise in meteo-
rological practice are nunerous. For example, consider
the correlation between the yield of a given agricultural
crop Y and some selected weather parameter T. It is
possible to fit an expression of the form:

- n
Y (1) a0 + alT + eee +anT + E(a) . (2.2)

This would give the value of Y at any given T(where T
may be temperature, etc.). In the two-dimension case
it is often useful to fit a polynomial h(x,y) in R2 to
a set of data of a plane geographical domain:
_ 2 2
hix,y) = a o * a,,% + a,,y + a,,%x" + ay Xy +a°2y +eoe
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which gives h at any given point (x,v) of the domain.
The problem is not restricted to 1 or 2 dimensions, and

may be stated in any number of physical dimensions.

2.20 Approximation to continuous functions by
polynomials. The 'best' approximation criteria

There are various criteria used for determining
goodness of fit of approximating functions. The following
are some of the well known criteria;

.(i)The Ll criterion
Find an approximation fn(x) to £(x) € /a,b/,

such that Ln f(x) - ﬁ#x) | dx is a minimum (2.4)

(ii)Thegggk(Least squares) criterion

Find an approximation fn(x) to f(x) € [a,b/
such that f(X) - f(x) '|2 dx is a minimum (2.5)

(iii)The Minimax problem ( Tchebychef)

Choose polynomials fn (%), such that

Max ' f(x)—fn(x) l is minimum (2.6)

XE& @,b]

2.30 The case of pointwise fit

(i) Taylor approximation near X, takes_theform

£(x) = £(x_) + fl(xo) (x=%_) + ... +

n n
£ (xo) (x-xo) + Rn (2.7)
+ R

nl

n

1 .2

where £, f ,...,fn+1 exist at X=X and the error Rn is

given by

R = £ (5} (xox )Pt a<$<hb (2.8)
n (o]

(n+1)1
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1f fl,fz, ceseecs ey f' are known at x=%, the Taylor

polynomial (2.6) gives f(x) in the neighbourhood of
x, € /a,b/, If the stations are equally spaced, the
derivatives fl, fz, ceoes £ can be replaced by finite-

difference formulae.

ii) Lagrange's interpolation problem and solution

The problem

Given the values of f at n+l distinct stations
xO’ R SRR RRRY X arranged such. that X4 < x14 ....(xn,

construct a polynomial pn(x) of degree n such that

(2.9)
f(xi) = pn(xi), Vi =0,1,...,n
The solution
p,(x) = %li(x)fi(x) P Li(x) = IT if:fi%
3;: R LPAPTS

2.31 Estimate of error in Lagrange's solution

Let the grror at any point«X€/a,b/; K # X iXqreeeXy

be given by E(&) = f(dowpn(dj (2.11)
where pn(dé is Langrange's polynomial, and let
g(x) = f(X)*pn(x)—fX(x~xo)(x—xl) cere (x=x_ )
(2.12
‘ .
where N is chosen such that g(Xx) = 0,and let g, gz,...,g'
represent successive derivaties of g
£(X) -p,, () - E(x)
(t=xp) (X ) won (X)) (=) (X=%)) <0 (K=

20/... 2.13)
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g has n+2 successive zeroes, xo,xl,...,xi, xi+1,..., xn

g' exists in /a,b7 and by Rolle's theorem
1 o
g has n+l successive zeroes,lo,ml, ceeern

dz exists ...

¢® has n successive zeroes, ¥, S ""En—l
gr has n-(r-2) successive zeroes in /a,b7
gr+l exists ...
gn+l has n-(n+1-2) + 1 zero
+ +
gn+l(x) = £ l(*) 0- ao 1 (xn+l.. )
dXn+1

n+l(x)— (n+1) ! has exactly one zero x—i&iln /a.,b7,

where A is chosen as in (2.12).

L) = (nel)! =» N = £
(n+1)}
B (x) _ a0
(dexg) (dxp) oo (o)) (n+1) !

(2.14)

Therefore the error E(«K) at any point« & /a,b/ is given by

n+l
E(Gk) — f(d\) __pn (o() = (O(‘Xo) (°(“X1) P (d"xn) £ (9‘ )

(n+1) !
(2.15)

21/..’
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2.32 Comments on Taylor's and Lagrange's mekhods

1) The error estimates (2.8) and (2.15) above are

generally not computable due to the unavailability

of bothﬁk\and % and the n+l derivatives in the
case of tabulated functions. However it is possible
to use (2.8) and (2.15) to get an order-of-
magnitude of the error.

ii) The expressions (2.8) and (2.15) give point by
point estimates of the eérror. A global estimate,
i.e. a measure of the €rror over the whole span,
would be more useful. 1In many cases, such an
estimate can be found as is shown in the following

sections (2.33 and 2.40 below) .

2.33 The minipax problem

It may be attempted to keep E(«) small for all
{a,b7, (see sec. 2.31 above) but this is complicated
by the indeterminacy of the last factor in (2.15)
where ) is essentially dependent on x and fn+1 is not
explicity known. Suppose, however, that it is known
or it is assumed on physical grounds that 71
bounded over /a,b/. Then the pProblem of reducing E(x)
over the whole span essentially becomes the problem of
choosing the n+l1 stations x; € /a,b7 such that vxe/a,b7,

(x—xo)(x—xl)...(x—xn) is minimised, or

Max (x—xo)(x—xl)...(x~xn) 1s minimised.

X¢€ [a,b7 (2.16)

This is known as the minimax problem and a solution was

found by Tchebychef in the following theorem:
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Theorem E
The expression |
Max (x—xo)(x—xl)...(x—xn)l is least when

xe@ ,
the stations xo,xl,...,xnlg € /a,b/ are chosen

to coincide with the zeroes of the polynomial

T (x) = Cos(nCos 'x) , -l£x€1 (Tchebychef's
2" polynomial of 0(n)).
= Cos n® ’ X = Cos ® , 0€0sT (2.17)
ZP

2.40 The method of least squares approximation

Given a function f(x) (assumed continuous) in
tabulated form at a fixed set of data stations (x ,xl,...,xm
construct a polynomial

_ n
fn(x) = aj + a;x + c.. + anx (2.18)

for which the mean square error
b 2.
Q(ao,al,...,ar) = L~\ f(x)~fn(x) \ dx is minimum. (2.
A necessary condition at minimum Q is that the set
(a ,al,...,a ) satisfy the conditions

?Q(ao,al,...,ar) |a=4 =0 ; k=0, 1,...,r (2.20)
ax

and the mean square error criterion for best fit is then
given by the following system of n+l linear equations for

the coefficients ao,al,...,a

r
b
, .
0= B! = 0-2 4 J’xkf(x)dx +§ai S« x1+kdx+
%ak o ¥ L ‘.‘Ok_‘_‘
>a, f x"Fax.
9o J (Y (2.21)

23/--.0..
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O = zé_g'_a} [b xK+ idx - {A xkf(x)g‘

»

or
S a,
A

The normal system (2.22) can be written in the

>

b . b
xk+'dx = £ xkf(x)dx (2.22)

alternative form
ht’ka’.‘a = bk ’ k'i=0’l,¢o-'r

or in matrix notation (2.23)

Ha = b

here B (a,b) = (hy) = ) x *Kax 4 ingular
where H_ . (a, = ik) = o ¥ X is non-singu
by virtue of the existence and unigueness of the inter-
b

polating polynomial, and bk = Sm xkf(x)dx can be
evaluated by quadrature from its observed values at the
data stations. The normal system (2.23) has the unique
solution

a=mn1p (2.24)

where H' is the inverse of H.

2.41 Shortcomings of the method

The least squares procedure outlined above
has the following defects:

(i) The denser the data the greater the
precision in values for a, and the better
the fit, but the more tedious the computa-
tion, especially so when polynomials of higher
order are taken.

(ii) There is no objective method of reducing
the number of predictors used.

(iii) The normal equations which arise with the
basis 1,x,x2,...,xn and equally spaced
data stations X, involve an approximately

Hilbert matrix, which is extremely troublesome,



due to the rapidly diminishing value
of the determinant of H as n increases.
For the particular case of equally
spaced x in /a,b/ = /0,17, the matrix
of coefficients is approximately

hi‘ = 1 ‘i,lk= 0'1ooa'n+l
TFR-1

(—I-éi. . . l/n;IQ\W

¥1/3 . .. 1
: 2n+1 (2.25)

e o . 1
Lfil 2n+l——/(

Tke ratio of the largest to the smallest term,

which is evident in (2.25) increases as n increases,
and leads to numerical problems of ill-conditioning
in the solution of the»normal equations.

For the case of an overdetermined system,
i.e. where the number of equations is more than the
number of unknowns, the problem (2.23) may be expressed

in matrix form by

I H r b
mXm mxn mxl - mxl (2.26)
n§m %xm n%l ngl
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where H is the mxn matrix of column vectors

fl, fZ""'fn

1.e. by 1) £n 1)
h21 h,, h,_

e A R T T BT A
@mla Eﬁﬂd ?qu

H is the transpose of H; I is the mxm unit matrix;
0 is an mxm null matrix; r is an mxl residual vector
which constitutes the error of the approximation, and
is to be minimised; o is an nxl null vector and b is
an mxl vector of the data function.
(2.26) can be put in the form (2.27)
(H.H)a =Hb |
and has the solution

a= (I‘i.H)'—1

Hb (2/28)
The meteorological problem is mostly concerned

with such overdetermined systems, where we attempt to

approximate to the field of observations within a small

area of the chart by, for instance, a quadratic of best

fit, say

2 (2.29

= . 2
h(x,y)= aj, tagxt ag Y + aj x"+a  xy + a ¥
where the values of the coefficients aij which give best

fit are to be determined. These coefficient values are
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given by (2.28) form which the observation vector
can then be represented as

b = 2z + r, where 3z=Ha, (2.30)

It is sometimes desirable to introduce a
weighting matrix W into this scheme. For instance
it may be desirable that the fitting be better for
some parts of the interval than others. In this case
the normal system (2.26) becomes (2.31)

(H.W.H)a = H.Wb

and has the solution

a= (ﬁ.w.H)'lﬁ.Wb (2.32)

The size of thematrix HH depends entirely
on the degree of the éxpression to be fitted, and grows
rapidly as polynomials of higher order are taken.
Thus the computation becomes more cumbersome and time
consuming, and the problem of ill-conditioning of the
matrix HH becomes more serious. As HA grows in size
the estimates for a; become unreliable. Infact it has
been found (see [/7/7) that increasing the degree of the
fitting expression does not necessarily bring about an
improMment in the fitting expression. This is due partly

to the worsening condition of the array.
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These considerations lead to the search for
approximating polynomials that are represented in a
form in which the disadvantages inherent in the above
formulations can be minimised. The orthogonal polynomials

seem to provide a way out, as is demonstrated in the next

chapter.



CHAPTER III

3.10 Orthogonal Least Squares

Consider the set of n+l polynomials P = {pn(x)/xﬁ.D;
neIj where pk(x) is of degree k in x. Let the fitting
function ¢ (x) be a linear combination of the pi(x), say

P(x) = Eijj(x) . (3.1)

Now the mean square error defines a function J(co,cl,...,cr)
b

= || £60- o060 |Pax

of the r variables (cr). As in (2.19) above, J(cr) is

quadratic in C. and the necessary condition for minimum

J(cr) is b .
0=93 = o0-2 jo\ Py () £(x)dx + 2 ey S&pj (%) p, (x) dx
Doy (3.2)
or the normal system
Se, j: P4 (x) py (x) dx = f: Py () £(x) dx. (3.3)

If the set{ pn(x)§ is orthonormal on the working domain
D, the integral on the left side of equation (3.3) reduces to

b 1 j=k
L pj(x)pk(x)dx =0 ik (3.4)

in this case (3.3) takes the uncoupled form
b
ey = fo\pj(x)f(x)dx , 3=0,1, ...,r (3.5)
For this choice of functions, the expression for the

mean sguare error J(cr) takes the form

Jc) = H £ ”2 — s¢ (3.6)
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where the coefficients ¢; are the Fourier coefficients

of f in the given orthonormal system, defined in sec.
(1.3), J(c)r) is necessarily > o (Bessel's inequality)

and tends to zero as n tends to infinity in the case where
the orthonormal set is complete in the function space

employed (see e.g. Nicolsky/197,pl74).

3.11 Advantages of orthogonal least squares

Orthogonal least squares as described above removes
many of the difficulties enumerated in sections (2.32) and
2.41) above, thus:

(i) The computation is made easier by use of

orthogonal sets of functions, for the
reason that the system of simultaneous
equations for the coefficients in the previous
procedure (sec. 2.40) is now replaced by a
system of linear equations for each coefficient
in turn.

(ii) An expression for the error of approximation
is known (viz equation 3.6 above) and the
magnitude of this error can easily be estimated.

(iii) At any stage of the computation an estimate is

available for the sharpness of the approximation

namely the residual sum of squares.
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R = (f-c_ 9o=Cq By=---mC, k)2 (3.7)

where k represents the last stage in the
computation. If it is desired to go one degree
higher, the new residual sum of squares is

2
R}%+1= (£ e, ¢o 1 177" "% Pk %kn1 dk+1) (3.8)

where the coefficients CyCqre-2sCy are exactly

the same in both (3.7) and (3.8). From these two

equations
2 2 _ 2 2
R+l 7 By = O dpa (3.9)

Hence the contribution of each term to the

residual sum of squares can easily be computed, and

those terms with little contribution can be ignored.
(iv) The correlation index between the fitted surface

and the actual observations can be computed.

(v) There is considerable reduction in the storage
requirements, form the full set of observation
values, to only a few coefficients. The optimum
coefficient to data ratio has been estimated to
be in the range 1:2 to 1:4 /97. This means that
instead of storing all the n values of any measured
parameter for each of the n stations it is sufficient
to store a few coefficients needed in the fitting

expression.
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3.20 Choice of Orthogonal Polynomials

The choice of a particular class of polynomials
depends upon the variable being analysed and the domain
in which the analysis is carried out. The three main types

of polynomial fnnetions used are:

3.21 Spherical Harmonics - Global analysis

This is a two-dimension extension of harmonic
Fourier analysis in a spherical co-ordinate system for
wave-type variables which may, on physical grounds, be
expected to be periodic in space. The application of
spherical harmoanic analysis to the spatial distribution
of pressure, temperature and flow characteristics,
especially at the upper levels, is particularly appro-
priate because the fields of these variables tend to be
dominated by long wave undulations that abproximate to
the sinusidal shape of the harmonic space functions. 1In
this way the fields can be described quite accurately by
a relatively small number of spherical harmonics, in

particular by those which represent the longest wavelengths/9

The height z of a surface of constant pressure at a
given time can be expressed as a function of latitude ¢ and

longitude N . 2z can be represenged as a series of the form

z(o: A) = T (a_(&)CosmTnth (&) Sin mTx (3.10
L n T

Mz
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This is a usual Fourier analysis at different
latitudes ¢, where m is the number of waves around
the earth. Values of the Fourier coefficients am and

bm can be computed from the integrals

am( ¢) =1 é z ( &, A\)Cos m|L§7\d}\ (3.11)
L 0oL

b (&) =1 2( ¢, A) Sin mf)dA

m L jo T

Since the values of z are available at a discrete

set of points over a grid point network, amand bm need
to be evaluated by approximating the integfals in (3.11)
along the latitudes by the corresponding sums of values
of the heights. The amplitudes of the wave numbers from

1l to m can be calculated from
_ 2 2
A= 1/ a2 +pl | (3.12)

Radinovic 207 successfully applied this method to the

1000, 850, 700 and 500 hPra heights over the Mediterranean,
taking wave numbers 1 to 5.
Expression (3.10) can similarly be expanded in

terms of spherical harmonics as

TeN= 23 Cos mh +b, 5in mh) PTCos) (3-13)
wiere pﬁ(Cos (;) are the Legendre functions of order m .
(Legendre polynomials if m=0).

.‘ ffdﬂf’)\)!ﬂ_=..§$am€os m)\'-l-_‘ bmfaswm md, (3.13) cdn be
watben ' ‘ :

2{en) = ECMIPTIM) , u- Cosg (3.14)
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The orthogonality relations for this set of functions

are

jP (/f ) P (/\/‘)d/\/\ = 2(n+m)! gk ’ n,k=0,1,...,

(2n+l)(n+m)' (3.15)
Multiplying (3.14) by Pﬂ()ﬁ) and integrating from -1

to 1 gives
| ]
m m m
j z P am = I p P d 3.
L,z ) P (myap °n ] Pn (M) PRmram
Using the orthogonality condition (3.15), the right

hand side reduces to the single term.

{
2 (n+m)! Cn

, (3.17)
(2n+1Yn-m)!
giving
1
C_ = (2n+l) (n-m) j 1(6, A)p;“ (/.,.)d/m (3.18)
=
2 (n+m)

Hence the coefficients Cn can be determined by a method
similar to that discussed for 8, and bm in (3.11) above.
Also from (3.13), an and bmn are simply the Fourier
coefficients obtained from the expansion of Cn () in
a Fourier series. It follows that a - and bmn can be

obtained from a. and bm respectively, as follows:
[}
_ m
“u 1. SEA
fb (/M)P (p)apm

(3.19)
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where amSM ) and bmﬁ/‘) are those given in (3.11)

and can similarly be determined by, e.g. Simpson's or
Trapezoidal quadrature, at the latitudes corresponding
tO/A. The integrals in (3.19) can then be evaluated by
use of th? Gaussian quadrature formula

Legwrau= s atequl) (3.20)
which is of the highest degree of precision 2n+1
(Rrylov, /147, p. 108), and has, for its n nodes, the roots
of the Legendre polynomials of order n

n ——
Pn(xk) = 0. (3.21)

The condition of orthogonality corresponding to (3.15)
is
nm, n m n
= i *
zAkpn(/"'k )Pn’(/A“) 2 (ntm)! S\nn (3.22)
(2n+1) (n~m)!
Using (3.20), (3.19) can be re-written as

- n N m
a = ZAkam(/w)Pn (/,4) (3.23)

mn
_ n .
bin =2 Ab (M) Py (/M )
The wvalues oflpa and AE are given in tables, for

various values of n, see /I147.

Such an analysis enables the various important
characteristics of the flow patterns to be studied. These
include; |

(i) Space and time variations of the spectral
distribution of wave amplitude at various spac

scales.,
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(ii) Contributions of various terms to the
total variance of the fields analysed.
(iii) Spectral distribution of kinetic energy.
(iv) Propagation of the waves.
For details of the actual analysis, procedure
and the results of analyses carried out in specific

areas, reference may be made to Radinovic 4§g7

Due to the large volume of data that would be
involved in a global analysis and the uneven distribution
of the available data particularly'over the southern
hemisphere, the above theoretical results can be modified
to take account of one hemisphere only. Eliasen and
Machenhauer /8/ performed a spherical harmonic analysis
of the 1000 and 500 hPa heights over the northern hemisphere
utlllzlng the special condition of orthogonality.

S p™ (/”)P ,(/A)%ﬂ an ’ n+n’ even (3.24)

for normalized Legendre functions. Utilizing this
condition, they were able to employ the expression (3.13)
for one hemisphere. For n+n' even, the height of the
isobaric surface considered turns out to be symmetric with
respect to the equator. For n+n' odd, the surface turns
out to be antisymmetric. For this latter case, amn,and

bmn are given by



|
- m
amn = J, A PIPL ) dp (3.25)
m |
- m
bmn = { bm(/\A)Pn (/v\)d/V\

and the Gaussian quadrature formula is

| > k
Lf(/\/-)d/w= %‘Akf(/u\j ) (3.26)

3.22 Orthogonal Polynomial Functions ~ Local regional anal:
When the data are given over a geographical domain

smaller than a sphere, the analysis is best achieved

if more general functions are used, where the sinusidal

form cannot strictly be assumed and where matching of

conditions on the boundaries of the domain does not arise.

A wide choice of these polynomials exists from the set of th

classical orthogonal polynomials enumerated earlier (sec. 1.

The method can be applied to any variable which is con-

tinuous in space and to any type of surface. The first

step in setting up the analysis is to choose a suitable

grid of points, bearing in mind two factors. Firstly, the

points should be evenly spaced in the co-ordinate directions

X and y, though it is not necessary that the grid spacings A

and &y be equal. Secondly, the points should be close

enough to reproducé all the major features of the prattern.

A clear account of the fitting procedure is given in /8/.

This is described briefly below, in a specific context.
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The given data comprises a set of m observations of
pressure -~ heights hl'hZ""'hm measured at the m stations
of a grid point network. The set of m height values (hi)

may be represented by an mxl row vector

h = (hl' J’lz”'.’hm)‘ (3427)

These values will be expressed in terms of n base vectoy
functions of known analytical form fl'f?"’°’fn

h = a,£. + a,f

1 5 + ... + ang

(3.28)

1l 2 n

If n=m the fit is exact. However, this is not necessary
as one of the aims of the exercise is to specify the field
in terms of the fewest possible functions. Therefore it
is assumed that n¢<m and r is the residual vector. The
task then is to determine §=(al,a2,...,an), such that r

is a minimum, in a specific norm.

If the solution is sought using the method of
least squares, the problem can be formulated as a partition

matrix equation of the form
! H r b
mxm  mxn mx1 mxi
~ = (3.29)
H O o o
N MPRAA Nnx| nx\

This was considered in chapter II (2.26) and the solution

was given in (2.28).
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For clarity, consider the two~dimension case

in which the base functions are formed by the polynomial

set l,x,y,xz,xy,yz,... and set up the tableau:

(*”ag, ..
&Lg). -

s}

msn (3.30)

(XM"’u.) .

where the dots in H are obtained by evaluating each of
l,x,y, ... at the data positions listed on the left. Then
the pressure height vector can be represented in the form

h=al+ax+... +r (3.31)

1 2= =
‘yYielding a grid point expression for the component hij
h.. = a, + a_x.. +a3:.ij to.. (3.32)
ij 1 2~U
in the form of a polynomial representing the continuuos
space distribution of the atmospheric variable considerd
(here dressure-height). However, the determination of

coefficients is hampered by the ill—conditioning problem dis-

cussed in chapter I.
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Using orthogonal fitting, the tableau (3.30)

may be replaced by

] ¢| ¢a. ¢'\
(X’ lYl) [ [ LI . .
(x5,¥,) c e e o .
.o e o oo o . min (3.33)
(xm:Ym) e o ov o .

where @1, ¢2, +++ $, are selected orthogonal polynomials

in (x,y). These ¢ satisfy the orthogonality condition

<¢r’ q’s) = 3 <‘grs o (3.34)

The normal system (3.29) now takes the form
i '] i
(¢,6) - b = {$ - h), where ¢ = transpose ¢ (3, 35)
The orthogonality condition introduced in (3.34)

yields the solution

b = (d>'; hy / o2, (3.36)
and the observation vector h is now given by
h=b¢4 +b,b, + ... +b §  4r (3.37)

and the expression for the fitting polynomial is
hy =by ¢, +b, ¢, +. .. (3.38)

In summary, the main steps in the fitting procedure are:
(i) The generation of a sufficient.set of orthogonal
base functions from the cartesian set 1,X,¥) ece,
indeed from any other linearly independent set

such as the classical orthogonal polynomials.
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(ii) The computation of the coefficients of the

fitting function

b =(Pr rer ) (3.39)

r
‘<¢r’¢1?>
(iii) Construction of the fitﬁing function on

the required domain.
Note that step (i) takes more computation time than
fii) and (iii) combined. However, this step does not
involve the data, and once the functions are constructed
for a particular domain, they can be stored and used

for different sets of data.

3.23 Empirical Orthogonal Functions (E.O.F.s)

These are not of predetermined form as are
spherical harmonics or classical orthogonal polynomials.
Their form rather develops as a unique function of the
data to which they apply. The shape of each E.O.F.
when plotted on a chart on the area from where the data
came bears a close resemblance to the anomaly pattern
of the variable itself. 1In this regard the E.O.F.s have
a clear physical interpretation.

In trying to specify an arbitrarily large percentage
of the total space and time variability of a variable
by each of several types of orthogonal polynomials in
general, the number of E.O0.F.s to do this will be smaller
than that of any other type of functions. As the stability
of regression prediction depends on the use of as few
predictors as possible, as well as on a large data sample,

E.O.Fs are the most efficient in reducing the number of



The functions are orthogonal components of the
spacewise variation of a field, while the coefficients
of different E.O.F.s are orthogonal in time. 1In contrast
with other orthogonal functions the data points need
not be evenly spaced in this case. Any geographical
arrangement is suitable for E.O.F. analysis, but as
a rule E.O.F,., analysis is most efficient when the data

comes from a fairly uniform distribution of points.

Mathematical derivation of E.O.F.s

The clearest description of the mathematical
derivation is that given by Gilman /107 and is re-
produced below.

Consider pressure values at N grid points measured
at M different times. The observed data at the grid

points form an MxN matrix P where t represents time

tr
and r represents position. Assume that Ptr is expres-
sible as a product of two other matrices Qti independent

of r and Yir independent of t; i=1,2,...,n. Thus

Per™Qi¥ir (3.40)

A further requirement is that Q and Y satisfy

(3.41)
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where Iii is the identity unit matrix and D;; is
a diagonal matrix with all non-diagonal elements

equal to zero. Under these conditions

/
PrePee = (Y',3Q"5¢) (94, 0)

— L 9
= Y i(QN5400Y
so that
' / ' -
Vi rePer)Yri= Q¢Q s = Dyy (3.42)
and with (3.40) and (3.41)
= '
Qi Per¥ri (3.43)

Thus on the basis of the assumed decomposition of Ptr

into a time factor Yir and a space factor Q subject to (

tif

Yir turns out to be simply the matrix which diagonalizes

PrtPtr and Qti is simply given by (3.43).

Observations

(i) 1f Ptr are generated as departures from the
average of the pressures, P;tptr is an nxn matrix
of covariances among the time series of pressure
at the N grid positions; and if the Ptr are
normalized at each point by dividing by the local
G, PI'_tPtr forms an NxN matrix of correlations
among the time series of pressure at the N positions.
(ii)Q{tQti forms an nxn diagonal matrix of variances of the
time coefficients Iy s (in which all the covariances
are zero). The total of the variances of A 5 is
equal to the total time variance of pressure at the

N positions.
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(iv) The linear independence of the row vectors in

Q implies that their seperate variances

ti
represent seperate contributions to the total
variance of pressure. This makes it possible
to rank the E.O.F.s in order of their importance
and discard those E.O.F.s with negligible contri-
bution to the total variance. In this way it is

possible to filter out small scale and random local

variations.

(v) The analysis can be carried out for any field

variable such as temperature, pressure-height, etc.
as well as time averaged quantities. The procedure
is to determine, from the given data, the E.O.F.s

corresponding to the time period under consideration

over the given area. The result is a set of patterns

(yi) on a decreasing space scale with increasing i,
and those’yi which refer to space scales which are

not of interest can be identified and discarded.

The method was first described by Lorenz /167 in 1956

a meteorological context. With the advent of electronic

computers which eased the laborious computations involved,

numerous papers on the use of E.O0.F.s in the statistical

proeessing of meteorological data have appeared.

The determination of Y and Q can be carried out in

the simplest possible way by the method of matrix diagona-

lization due to Jacobi (for a square symmetric matrix).

As an illustratrive example consider the simple case

where A is the 2x2 symmetric matrix
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A will be made diagonal by a simple rotation of
axes through an appropriate angle 6. From the
transformation equations (for a rotation of axes) an

orthogonal matrix T can be formed as follows
T = Cos 6 Sin ©
-Sin 8 Cos © (3.45)
Pre-multiply A by T and post-multiply A bt T', to get
. =) Cad
Cos 6 8in #© aq ay, Cos (¢] Sin o
PR .
TAT Sin 6 Cos a,, a,, Sin ® Cos *]

0
pa—
Cos 6 Sin ~57 allcos 9+a1281n 3] a12Cos 9+a1181ne

-Sin © Cos 0/!|a,.Cos 6+a..Sin © azzcos 6-a, .Sine

_J 2 22 12
(f; C0320+2a Cos0Sin0O+a Sinzo a Coszo~a Cos 0Sin0-a Siniﬁ
11 12 22 12 11 12
~-a.,,Cos0Sin6~-a Sin29+a Cosze ~aC,.,Cos8Sinb+a Sin29+a Cosze
11 12 12 €2 ‘ 11 22
L_ +a2281ne¢ose +a1251n9Cosa _
a Cosze+a Sin29+2a Sin0Cos® (a,.~a,.)SinBCos6+a (Coszeé;a
11 22 12 22 11 12
(a,,—a,,)SinfCosb+a (Cosze—sinze) a sin29+a Cosze+2a Sing
22 11 12 11 22 %ée
3 » . A3 . ,J |
which matrix will be diagonal if
, 2 . 2 -
(a22~a11)81n9C050 + a12 (Cos“9-8in“9) = 0
or
%Slnze(a22~a11) = a12Cosze
i.e.
tan28 = 2a12 (3.47)
2327311
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Equation (3.47) gives the required angle of rotation.
In this simple case A was made diagonal by a single
rotation through the angle @, If A is a matrix

of large order, the method consists of eliminating
the largest off diagonal element of A by a rotation
through 9, followed by the elimination of the next
largest off diagonal element of A through another
rotation through 62, and so on, until the diagonal

elements of A are sufficiently dominating.

Recall equation (3.42), which can be put in
the form

YAY' = D (3.48)
where A = Pétptr is the NXN symmetric matrix.
If ajk is the largest off diagonal element of A,
then the transformation matrix T is of the form
qooo...ooo.....f\
0l100...000..... .

00. .. cos6, 0. «=8Sinb.. . (3.49)

- [ . [} [ . ] .

ST

where the angle of rotation 61 is defined by

tan28l = 2ajk (3.50)

%kk 255
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the first approximation to D is obtained by forming

AT!

Dl =T 1 (3.51)

1

A repetition of the above procedure, with now the
largest off diagonal element of D1 used to determine
the new angle 92 gives
- ]
02 TZDlT2

Tl

= 1
T,T,A T 2

271 1
In general
= '
Dr TrDr—ltr

] ] 1
TyTpoy+++T A T{T5...TL (3.52)

By this process Dr will tend to the diagonal matrix pD.
The product TrTr_l...T1 will tend to the diagonalizing
matrix Y. The diagonal elements of D are the eigenvalues
of Y, ordered so that d1> d2‘> ...>.dm or vice versa.

’

The rows of\;re the associated E.O.F.s

3.24 Applications of E.O.Fs.

The most important property of E.0.Fs. is the
filtering of data, enabling large data sample storage
to be reduced by up to a quarter of the original volume.
Apart from this, EOF analysis has application in the
field of long range weather forecasting, pParticularly

the following:
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(1) Analog forecasting

In this method the hypothesis is that similar
anomaly fields of a variable have similar sequels.
Thus by comparing a whole library of past records,
it is possible to select a particular field which
bears the closest resemblance to the current
record. If such an exercise were to be carried
out subjectively it would no doubt be time con-
suming and unreliable, and EOFs provide the most
reliable filtered fields for analog selection.

(ii) Multivariate regression

Given a field of one variable over a given period and
a second contemporary field of another variable over
the same area, sets of empirical orthogonal func-
tions for the two variables can be constructed.

From the time coefficients Iy s of these functions,
linear coefficients can be computed relating the

two variables. Specifically it is possible to

select a suitable circulation index (such as pres-
sure) as a predictond 0w relate it to some other

meteorological parameter to be predicted.



CHAPTER 1V

ILLUSTRATIVE PROJECT - The representation of a
specific meteorological field (Eressure-height)
over Southern Africa, in terms of orthogonal polynomials

This chapter describes a Project undertaken

by the author, as a practical application of orthogonal
polynomial analysis. The analysis was carried out on
pressure-height (a function of x and Y), in geopotential
metres above sea level, of the 850 hPa surface over
Southern Africa.

In meteorology, the movement of pressure systems
has long been established to correspond to the movement
of weather systems. Therefore pressure analysis at
the earth's surface has been found to be a useful tool
in weather forecasting. But before a Pressure analysis
can be carried out, the pressure values measured at
individual stations have to be reduced to a common re-
ference level. Mean sea level is omesuch convenient
level. The main variables which go into the reduction
procedure are;

(i) The pressure at the station level.
(ii) The mean temperature in a fictitious air
column between the station and the mean
sea level.

However, for stations at elevations of 500m or
more above mean sea level, this reduction introduces
unacceptible errors, and it is found convenient in these
circumstances to reduce the station level Pressure to

the height of some constant pressure level, above the



station.

In meteorological convention, certain
constant pressure surfaces have been designated as
standard surfaces. The 850 hPa surface, at an
average of 1500m above sea level, is one such standard
surface. It is common practice to reduce station level
pressures of stations 0t 500 m or more above sea
level to heights of the 850 hPa surface. The reduction
formular used is

F&SO = 67.445(273.15 + T) 1og10PS + HS (4.1)
850

where T is the mean temperature of the air column

between the station and the 850 hPa surface,\-\S is the
station height above sea level and Ps is the station
level pressure. In practice T cannot be measured and

is approximated by Ty the station level temperature.

Once the reduction is achieved each computed
value can be plotted at the corresponding station
position on a chart and a contour analysis can be
carried out. But, as cagisudged from the preceeding
paragraph, the computed values are contaminated
by errors of various kind.

This project was concerned with the actual analysis
of the computed values into pressure systems, i.e. the

fitting of polynomial surfaces of best fit, to the computed
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values over the Southern African region. The
classical orthogonal polynomials were examined for
this purpose, and Legendre polynomials were chosen
for the exercise for the simple reason that this
Polynomial set has weight function unity. The re-

sults are presented below, in figures 1~ 10.

Discussion of results

Figure 1 shows the 'actual' situation surmised
subjectively from the observed station data. The height
values shown on the chart were estimated at every 5°
latitude/longitude intersection from a chart, drawn by
subjective means, with all its attendant error attdbutes.
The main features of the analysed contour pattern, based
on this chart are:

a high pressure centre in the southeast of the area.

an elongated low pressure centre running WSW-ENE

to the north of the high pressure.

Figure 2 shows the approximation by the first
degree Legendre polynomial, i.e. the best fitting plane.
This involves terms in l,x and y only. The pattern
depicts the highest values to the south-east, gradually
falling to the lowest values in the northwest. This has
a root mean square error of 1.06 per cent, where r.m.s.

error is computed from the formula

e T/iz‘hﬁl‘c’z (4.2)
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where hc represents the computed field and summation

is over all stations i,
Figure 3 is the second degree approximation.
Now the contours are more curved. The rms error was

computed to be 0.93 per cent for this field.

Figure 4 is the third degree fitting. Both
high and low pressure centres take on the right shape
almost exactly in their right positions. Howéver,
computed values in the low pressure are less than input
values by an average of 1.5 per cent, and those in the

high centre are higher than input values by a similar

~margin. The result isg a higher gradient from high to

low, as compared to the input pattern. The r.m.s. error
is 1.9 per cent.

Figure 5 is the fourth degree fitting, There
is a further increase in the fitting error in the high
and low centres and a further reduction elsewhere. A
further hightening of gradient, results. The r.m.s.

error still remains 1.9 per cent.

Pigure 6 is a fourth degree fitting by Tchebychef
polynomials, for comparison purposes. The resultant
pattern was similar to that for Legendre polynomials of
the same degree (figure 5 above), but the latter gives
overall superior results, the r.m.s. error for this being'é%

per cent.
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Figure 7 is the seventh degree Legendre fitting,
the highest admissible degree for the selected grid of
5x7 = 35 points. There is continued increase in the

difference between computed and input values in the

extremum centres.

To check whether the fitting error was influenced
by truncation error, especially for high degree polyno-
mials, the computation was carried out in double precis}on
arithmetic for Legendre polynomials of order 4. The re-
sults obtained were exactly the same as those obtained

for single precision arithmetic, and are therefore not

shown here.

Some Observations

(1) For a symmetric domain with equally spaced arguments
(x and y), it appears appropriate to use the classical
orthgonal polynomials. With this choice of functions
the orthogonalization process is redundant, and the
fitting procedure only involves the normalization

of the functions and determination of the fitting

coefficients.
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(ii) The results of the project described above

(iii)

(iv)

shows a theoretically insignificant error. This
error is consistently negative in the vicinity

of low centres (i.e. lower computed values than
input) and consistently positive in high centres.
This raises the possibility of incorporating some
refinement into the procedure to cater for extremum
points, to reduce the &rror over the field as a
whole.

It has to be borne in mind that reference to

errors is made on the basis of the assumed accuracy
of the input data which, as it has already been
pointed out earlier on, are thewselves contaminated
by errors. 1In a sense the central theme of this
thesis is to provide an objective analysis scheme
which is mathematically based and to that extent
more consistent in the spatial variability of the
values. It is just possible that the error orginates
more in the incompatibility of the input data due

to inconsistency of the individual station values.
Actual observing stations are not situated at
equally spaced points, and the above procedure would
be of limited value in terms of operational objective
analysis. It would be preferable to obtain, from the

raw data over any distribution of station points
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(not necessarily equally spaced), a direct

objective analysis over that area, and possibly

interpolate for values at equally spaced points

if need be.

With this consideration in view (i.e. iv) above),
the analysis as described above was applied to actual
(station value) 850 hPa heights over Zambia and the
neighbouring territories. The results are shown in
figures 9(input data = reported station values) and
9 (fourth degree Legendre fitting). Figure 10 shows the
distribution of the error (input height minus computed)
at each station over the domain. The r.m.s. of the per
centage error (as defined above) works out at 0.97. The
error in the vicinity of extremum centres is generally
consistent with the earlier discussion (figures 3 to 8).
This seems to indicate therefore, that for this procedure
and choice of functions used, the distribution of points

in the x and y directions is immaterial.



CHAPTER V

SUMMARY AND CONCLUSIONS

The purpose of this thesis was to investigate
the use of orthogonal polynomials in the analysis of
meteorological data. This was with two particular
fields of application in mind. The first is the field
of objective analysis for dynamic weather forecasting
by numerical means, and the second, statistical weather
forecasting. The use of orthogonal functions, as

compared to other types of functions, is justified by:

(i) Economy of specification due to elimination

of any linearly dependent terms.

(ii) Ease of computation, afforded by the orthogonality
property.

(iii) The possibility of using recurrence relations
in generating the polynomial functions.

(iv) Ease of incorporating statistical tests, for

goodness of fit, if need be.

Three types of orthogonal polynomial functions
were discussed. The first of these, the spherical
harmonic functions were found suitable for analysis on
a spherical scale, especially in the upper levels of
the atmosphere, where the fields of some meteorological

elements tend to be dominated by wavelike andulations.
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It is possible to describe such fields by a small

number of space harmonic functions, particularly those
which represent the longest wavelengths. Hence the
various characteristicsg (time and Space variability) of

the dominant wavelengths can be studied.

The second type of functions considered, the
classical orthogonal polynomials are suitable for
analysis over a geographical domain much smaller
than a sphere, A wide choice of such polynomial
3ets exists, including the classical orthogonal
pPolynomials, though it is not a necessary condition
to start with an orthogonal set, These particular
functions appear to lend themselves well for use in the

objective analysis of various meteorological fields.

It is the authorg opinion, on the basis of the
results discussed in chapter iv, page 4R of this thesis,
that thisg particular method can be very successfully

applied in objective analysis, though further research
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The third types of functions considered, the
empirical orthogonal functions, have a special signi-
ficance for the study of the relation of circulation
to climate. The abundance of literature on the subject
is testimony to the concensus of the meteorological
community as to their usefulness. Equally signifi-
cant is the use of EOFs in long range weather fore-
casting. Here, two types of application are possible.
One is prediction by analog (or weather types), and the
other by multivariable regression. The reduction in
the number of variables needed to specify a field,
afforded by EOFs, makes them AVWNL - convenient than

any other type of polynomial functions.
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