
CONVEXITIES IN T0-QUASI-METRIC SPACES

By

KENNANY NYIRONGO

A thesis submitted to the University of Zambia in fulfillment of the requirements for the

degree of Master of Science in Mathematics

UNIVERSITY OF ZAMBIA

LUSAKA

2021



COPYRIGHT

The copyright of this dissertation vests in the author. No quotation from it or information

derived from it is to be published without full acknowledgment of the source. The dissertation

is to be used for private study or non-commercial research purposes only.

Published by the University of Zambia (UNZA) in terms of the non-exclusive license granted

to UNZA by the author.

i



DECLARATION

I, Kennany Nyirongo, declare that ”Convexities in T0-Quasi-metric Spaces” is my own

work. It has not been submitted for a degree, diploma or any other qualification at this or any

other University or College. All published work or materials from other sources incorporated

in this thesis have been specifically acknowledged and adequate reference thereby given.

Name of Student ................................................................

Signature ................................................................

Date ................................................................

ii



APPROVAL

This thesis of Kennany Nyirongo has been approved as fulfilling the requirements for the

award of the Master of Science in Mathematics by the University of Zambia.

Internal Examiner 1: ..............................................................................

Signature:.....................................................

Date:.............................................................

Internal Examiner 2: ..............................................................................

Signature:.....................................................

Date:.............................................................

Internal Examiner 3: ..............................................................................

Signature:.....................................................

Date:.............................................................

Chairperson of Board of Examiners: .......................................................

Signature:.....................................................

Date:...........................................................

Supervisor: ...............................................................

Signature:......................................................

Date............................................................

Co-supervisor:.................................................

Signature......................................................

Date............................................................

iii



ABSTRACT

In this thesis, we recall three types of convexities in metric spaces, namely; Menger convexity,

Takahashi convexity and M -convexity. We then generalise these convexities to the framework

of T0-quasi-metric spaces. Since the concept of convexities heavily relies on the concept

of betweenness, a fundamental concept in the study of axiomatic geometry, we begin by

generalising the concept of betweenness to T0-quasi-metric spaces. We show that Takahashi

convexity implies Menger convexity in T0-quasi-metric spaces. Lastly, we generalise the

concept of M -convexity to T0-quasi-metric setting and present some best approximations in

these spaces.
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INDEX OF NOTATION

Below is a list of symbols that will be frequently used and a brief indication of their meaning.

(X, d) a metric space

(X, q) quasi-metric space

Bd(x, r) Open ball of radius r centred at x

Cd(x, r) Closed ball of radius r centred at x

Sd(x, δ) Sphere of radius δ centred at x

cl(A) closure of set A

N the set of natural numbers

R the set of real numbers

Q the set of rational numbers

inf Infimum(greatest lower bound)

sup supremum(least upper bound)

max(∨) maximum

min(∧) minimum

P0(X) the set of all nonempty subsets of X

Cb(X) the space of continuous bounded functions

[xyz]d y is between x and z in a metric space

Bd(x, y) the set of points between x and y

F(X) the space of real valued function

CB0(X) sub-collection of bounded convex elements of P0(X).
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CHAPTER 1

INTRODUCTION

1.1. Background

The concept of convex metric spaces which was first introduced by Menger [21] in 1928 has

received considerable attention by many different scholars [28], [29], [20], [11] and so on.

Menger used the concept of betweenness to develop the theory of convexity in metric spaces

as follows: Let (X, d) be a metric space and x, y, z ∈ X. Then z is said to be between x

and y if and only if x 6= z 6= y, implies d(x, z) + d(z, y) = d(x, y). A metric space (X, d) is

said to be convex [21] provided it contains for each two points at least one point between

them. Thereafter, Menger [21] pioneered the Fundamental Theorem of convexity, which

states that: if (X, d) is a complete and convex metric space, then any two points of X can

be joined by a metric segment. This theorem is very important in the study of the geometry

of metric spaces. Henceforth, many other definitions of convexity in metric spaces have been

put forward. For example, in 1970, Takahashi [28], defined convexity in the following way:

Let (X, d) be a metric space. A mapping W : X×X× [0, 1] −→ X is said to be a Takahashi

convex structure (TCS) on X if for all x, y ∈ X,λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all u ∈ X. The metric space (X, d) together with a Takahashi convex structure (TCS)

W is called a convex metric space. Also, in 1988 Khalil [11] defined convexity in a metric

space in the following way: Let (X, d) be a metric space and x, y ∈ X with d(x, y) = λ.

Then (X, d) is said to be M -convex if

Cd(x, r) ∩ Cd(y, λ− r) = {zr},

where r ∈ [0, λ] and Cd(x, r) = {y ∈ X : d(x, y) ≤ r}.
If we remove the symmetry property from a metric, we have a quasi-metric defined as : Let

X be a nonempty set and consider a function q : X × X −→ [0,∞). Then, q is called a

quasi-metric on X if

(i) q(x, x) = 0 whenever x ∈ X. (ii) q(x, z) ≤ q(x, y) + q(y, z) whenever x, y, z ∈ X. Fur-

ther, we shall say that q is a T0-quasi-metric provided that q also satisfies the following

T0-condition: For each x, y ∈ X, q(x, y) = 0 = q(y, x) =⇒ x = y. The pair (X, q) is called

a T0-quasi-metric space.

Recently, Künzi [19] in 2016 defined and investigated a convexity structure in the sense of

Takahashi in the more general T0-quasi-metric spaces. He proved that various important
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results about convexity structure in metric spaces can be generalised to quasi-metric setting.

He also showed later that convexity structure occurs naturally in asymmetric normed real

vector spaces and in q-hyperconvex T0-quasi-metric spaces. Some studies on quasi-metric

spaces have been based on generalising the well known results in metric spaces to the quasi-

metric setting. For example, in [14], [19] and [24] we find the generalisations of classical

results in hyperconvex metric spaces to the quasi-metric setting. Results in these articles

confirm the surprising fact that many classical results about hyperconvexity do not make

essential use of the symmetry of the metric and, therefore, this is our motivation of general-

ising other convexities to the framework of quasi-metric spaces.

In this thesis, we recall three types of convexities in metric spaces, namely; Menger con-

vexity, Takahashi convexity and M -convexity. We then generalise these convexities to the

framework of T0-quasi-metric spaces. Since the concept of convexities heavily relies on the

concept of betweenness, it is natural to start with the concept of betweenness in T0-quasi-

metric spaces. We observe that, in T0-quasi-metric spaces, there are at least five types of

betweenness, namely; q-betweenness, q−1-betweenness, qs-betweenness, q+-betweenness and

q, q−1-betweenness. We show that q, q−1-betweenness implies q+-betweenness in T0-quasi-

metric spaces (see Proposition 4.1.6). Also, we show that q-betweenness does not necessarily

imply q−1-betweenness (see Example 4.1.3). Thereafter, we generalise the concept of Menger

convexity, from metric settings to the framework of T0-quasi-metric space. Furthermore, we

recall Takahashi convexity structure in T0-quasi-metric spaces. Then, we show that Taka-

hashi convexity implies Menger convexity in T0-quasi-metric spaces (see Proposition 4.3.27).

Lastly, we generalise the concept of M -convexity to T0-quasi-metric settings and present

some best approximations in these spaces. Also, we observe that, in T0-quasi-metric spaces

if (X, q) is M -convex, then (X, q−1) is M -convex too. However, M -convexity of (X, q) does

not necessarily imply M -convexity of (X, qs) (see Example 4.4.5).

1.2. Organisation of the dissertation

This dissertation is organized as described below.

Chapter 1. This chapter presents a background on convexities in metric spaces as investi-

gated by different scholars and the organisation of the dissertation.

Chapter 2. In this chapter, we recall some of the important definitions to be used through-

out the dissertation. In the first section we give definitions and some examples of metric

spaces, thereafter, we present a summary of notions related to normed spaces. The second

section briefly discusses the concept of quasi-metric spaces. Thereafter, we discuss the con-

cept of topologies and completeness in relation to quasi-metric spaces. Section three briefly

discusses the concept of asymmetric normed spaces.

Chapter 3. In this chapter, we recall convexities in metric spaces, namely; Menger con-

vexity, Takahashi convexity and M -convexity. Since these convexities rely on the concept of
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betweenness, a fundamental concept to axiomatic geometry, the first section gives the con-

cept of betweenness in metric spaces, which was introduced by Blumenthal [4]. Thereafter,

we recall the properties of betweenness. In the second section, we recall Menger convexity

which was introduced by Karl Menger [21] and also recall the Menger Theorem of convexity.

In the third section, we discuss a notion of convexity for metric spaces which was introduced

in [28] by W. Takahashi. Then, we recall some geometric and topological properties which

result when a uniqueness assertion is added to Takahashi’s requirements. Thereafter, we

will end this section by recalling the connection between Takahashi and Menger convexity

in metric spaces. In the third section of this chapter, we start by recalling the definition

of strong convex metric spaces and M -convex metric spaces. Then we show that a metric

space (X, d) is strongly convex if and only if it is M -convex (see Lemma 3.4.8). Thereafter,

we will show that if (X, d) is strictly convex, then it is M -convex. We will end this section

by showing that a metric space (X, d) is M -convex if and only if any two points x and y

of X can be joined by a unique curve of length d(x, y). In the fifth section, we recall best

approximations in M -convex metric spaces.

Chapter 4. In this chapter, we start our own investigations. In the first section, we

introduce the concept of betweenness and midpoint in T0-quasi-metric spaces which was

introduced by Blumenthal [4]. We show that q-betweenness does not necessarily imply

q−1-betweenness ( see Example 4.1.3). Thereafter, we will show that q, q−1-betweenness

implies q+-betweenness in T0-quasi-metric spaces. We will end this section by generalising

a well known result [4, Theorem 12.1] for the relation of betweenness in metric spaces, to

the setting of T0-quasi-metric spaces. In the second section, we generalise the concept of

Menger convexity [21], from metric settings to the framework of T0-quasi-metric spaces. In

the third section, we recall the convexity structure in the sense of Takahashi in T0-quasi-

metric spaces. We will end this section by showing the relationship between Takahashi and

Menger convexity in T0-quasi-metric spaces. In the fourth section, we generalise the concept

of M -convexity from the metric setting to the framework of T0-quasi-metric spaces. In the

fifth section, we generalise the concept of best approximations in M -convex metric spaces.

Chapter 5. In this chapter, we discuss the findings and results of our work, and present

some open problems to be studied in future.

Chapter 6 This chapter is the conclusion of this thesis.
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CHAPTER 2

PRELIMINARIES

In this chapter, we recall some basic concepts to be used throughout the dissertation. For

more details, we refer the reader to [9], [19], [15], [24], [6]. In some cases we provide the

proofs as a motivation for generalisations to come, and for the sake of the reader.

2.1. Metric spaces

In this section, we recall the definition of a metric space and give some examples.

Definition 2.1.1. Let X be a set and d : X ×X −→ [0,∞) be a function mapping X ×X
into the set of nonnegative real numbers. Then d is called a pseudometric on X if

(i) d(x, x) = 0 for all x ∈ X

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

The pair (X, d) is called a pseudometric space. If further, for x 6= y we have that

d(x, y)>0,

then d is a metric on X and the pair (X, d) is called a metric space.

Example 2.1.2. Let X = l∞ be a space whose elements consist of all bounded sequences

(xn)∞n=1 of real numbers, with the distance between x = (xn)∞n=1 and y = (yn)∞n=1 taken as

d∞(x, y) = sup
1≤i<∞

|xi − yi|

for all x, y ∈ X, then (X, d∞) is a metric space.

Example 2.1.3. Let F(X) be a space of real valued functions f : X −→ R, together

with a special point x0 ∈ X. Then x0 induces a pseudometric on the space F(X) where

d : F(X)×F(X) −→ [0,∞) is given by

d(f, g) = |f(x0)− g(x0)|

for all f, g ∈ F(X).

Definition 2.1.4. Let (X, d) be a metric space. The open ball of radius ε > 0 centred at

x ∈ X is the set

Bd(x, ε) = {y ∈ X : d(x, y)<ε}.

Similarly, a closed ball of radius ε > 0 centered at x ∈ X is the set

Cd(x, ε) = {y ∈ X : d(x, y) ≤ ε}.
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We note that the collection of all open balls forms a base for a topology τ(d), and it is called

the topology induced by the metric d on X.

Definition 2.1.5. Let (X, d) be a metric space and (xn)n∈N be a sequence in X. We say

that (xn) converges to a point x if for every ε > 0, there exists N ∈ N such that for all

n > N ,

d(xn, x) < ε.

In this case we say that x is a limit of the sequence (xn) in X and we write lim
n→∞

xn = x.

Definition 2.1.6. Let (X, d) be a metric space.

(i) A sequence (xn)n∈N in X is Cauchy if for all ε > 0, there exists N ∈ N such that for

all n,m ≥ N ,

d(xn, xm) ≤ ε.

(ii) A metric space (X, d) is complete if every Cauchy sequence is convergent in X.

Definition 2.1.7. Let (X, d) be a metric space. Given A ⊆ X and x ∈ X, the distance

from a point x to a set A is defined by

dist(x,A) = inf{d(x, a) : a ∈ A}.

Definition 2.1.8. Let (X, d) be a metric space. Given A,B ⊆ X, we define a Hausdorff

distance between sets A and B by

d(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

Definition 2.1.9. Let (X, dX) and (Y, dY ) be metric spaces, and let x0 ∈ X. A function

f : X −→ Y is said to be continuous at a point x0 ∈ X if given ε > 0, there exists a δ > 0

such that

dY (f(x), f(x0)) < ε

whenever dX(x, x0) < δ for all x ∈ X.

The function f : X −→ Y is said to be continuous on X if it is continuous at each point of

X.

Definition 2.1.10. Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : X −→ Y is

said to be an isometry or isometric map provided that

dY (f(x), f(y)) = dX(x, y)

whenever x, y ∈ X.

Two metric spaces (X, dX) and (Y, dY ) will be called isometric provided that there exists a

bijective isometry f : X −→ Y between them.

We next recall the concept of a norm defined on a vector space X over a field F.

Definition 2.1.11. Let X be a vector space over a field F. A norm on X is a map ||.|| :

X −→ [0,∞) that satisfies the following properties, for all x, y, z ∈ X and α ∈ F;

5



(i) ||x|| ≥ 0.

(ii) ||x|| = 0 if and only if x = 0.

(iii) ||αx|| = |α|||x||.

(iv) ||x+ y|| ≤ ||x||+ ||y||.

A normed vector space is a pair (X, ||.||), where X is a vector space and ||.|| a norm on X.

We give some examples of a normed vector space over a field F.

Example 2.1.12. Let X = lp be a space whose elements are sequences x = (xi)
∞
i=1 of

complex numbers such that
∞∑
i=1

|xi|p <∞. For each x ∈ X define

||x||p =

( ∞∑
i=1

|xi|p
) 1

p

for 1 ≤ p <∞.

Then (X, ||.||p) is a normed vector space.

Example 2.1.13. Let X = C[a, b] be the set of all continuous real valued functions on a

closed interval [a, b]. For x ∈ X, define

||x||∞ = sup
a≤t≤b

|x(t)| .

Then (X, ||x||∞) is a normed vector space.

We note that each norm on X induces a metric d by setting d(x, y) = ||x − y|| whenever

x, y ∈ X.

2.2. Quasi-metric spaces

In this section, we recall the definition of quasi-pseudometric spaces and give some of their

properties.

Definition 2.2.1. Let X be a nonempty set and consider a function q : X×X −→ [0,∞).

Then, q is called a quasi-pseudometric on X if

(i) q(x, x) = 0 whenever x ∈ X.

(ii) q(x, z) ≤ q(x, y) + q(y, z) whenever x, y, z ∈ X.

In addition, we shall say that q is a T0-quasi-metric provided that q also satisfies the following

T0-condition: For each x, y ∈ X,

q(x, y) = 0 = q(y, x) =⇒ x = y.

The pair (X, q) is called a T0-quasi-metric space.

Remark 2.2.2. If q is a quasi-metric on a set X, then q−1 : X ×X −→ [0,∞) defined by

q−1(x, y) = q(y, x) for every x, y ∈ X, often called the conjugate or (dual) quasi-metric of q,
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is also a quasi-metric on X. The quasi-metric on a set X such that q = q−1 is a metric. Note

that if (X, q) is a T0-quasi-metric space, then qs = max{q, q−1} = q ∨ q−1 and q+ = q + q−1

are called the associated metrics of q on X.

Example 2.2.3. Let X = [0,∞) and define q(x, y) = max{x − y, 0} for x, y ∈ X. Then

(X, q) is a T0-quasi-metric space.

Proof. Let x, y, z ∈ X. Then we see that q(x, x) = max{x− x, 0} = 0. Also, we note that

q(x, y) = max{x−y, 0} = max{x−z+z−y, 0} ≤ max{x−z, 0}+max{z−y, 0} = q(x, z)+q(z, y).

Now, we observe that qs(x, y) = |x− y| whenever x, y ∈ X. If q(x, y) = 0 = q(y, x), then it

implies that qs(x, y) = 0. Since qs is a metric , therefore, we have that x = y and so (X, q)

is a T0-quasi-metric space.

The following describes some concepts related to asymmetric topologies of a quasi-metric

space [6].

The topology τ(q) of a quasi-metric space (X, q) can be defined starting from the family νq(x)

of neighbourhoods of an arbitrary point x ∈ X: For any V ⊆ X, we have that V ∈ νq(x) if

and only if there exists δ > 0 such that Bq(x, δ) = {y ∈ X : q(x, y) < δ} ⊆ V if and only if

there exist ε > 0 such that Cq(x, ε) = {y ∈ X : q(x, y) ≤ ε} ⊆ V . A set A ⊆ X is τ(q)-open

if and only if for every x ∈ A, there exists δ = δx > 0 such that Bq(x, δ) ⊂ A. We shall say

that A is a q-neighbourhood of x or that the set A is q-open.

Taking into consideration lack of symmetry, a quasi metric q generates three different topolo-

gies (see [6] ), that we recall next.

Definition 2.2.4. Let (X, q) be a quasi-metric space, and x ∈ X and δ > 0. Then:

(i) the topology τ(q) is generated by the quasi-metric q, where the open and closed balls

are described as follows: Bq(x, δ) ⊆ X, whereBq(x, δ) = {y ∈ X : q(x, y) < δ}, and

Cq(x, δ) ⊆ X, whereCq(x, δ) = {y ∈ X : q(x, y) ≤ δ}.

(ii) the topology τ(q−1) is generated by the quasi-metric q−1, where the open and closed

balls are described as follows: Bq−1(x, δ) ⊆ X, whereBq−1(x, δ) = {y ∈ X : q(y, x) <

δ}, and Cq−1(x, δ) ⊆ X, whereCq−1(x, δ) = {y ∈ X : q(y, x) ≤ δ}.

(iii) the topology τ(q−1) is generated by the quasi-metric q−1, where the open and closed

balls are described as follows: Bqs(x, δ) ⊆ X, whereBqs(x, δ) = {y ∈ X : qs(x, y) < δ},
and Cqs(x, δ) ⊆ X, whereCqs(x, δ) = {y ∈ X : qs(x, y) ≤ δ}.

The following Propositions give some properties of asymmetric topologies:

Proposition 2.2.5. Let q and ρ be quasi-metrics on X inducing the asymmetric topologies

τ(q), τ(q−1) and τ(ρ), τ(ρ−1) respectively. Then, τ(qs) is finer than τ(ρs) if and only if for

all x ∈ X and ε > 0, there is a δ > 0 such that Bqs(x, ε) ⊆ Bρs(x, δ).

Proof. Suppose that τ(ρs) ⊆ τ(qs). Let x ∈ X and ε > 0 such that Bρs(x, ε) is open in

τ(ρs), so it’s open in τ(qs). Since the qs-open balls form a basis for τ(qs), then for all x ∈ X,
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there is a δ > 0 such that x ∈ Bqs(x, δ) ⊆ Bρs(x, ε) by the definition of a basis.

Conversely, suppose that for all x ∈ X and ε > 0, there is a δ > 0 such that Bqs(x, δ) ⊆
Bρs(x, ε). We need to show that τ(ρs) ⊆ τ(qs). Let U be open in τ(ρs), we must show

that it is open in τ(qs). Let x ∈ U . Since the ρs-open balls forms a basis for τ(ρs), there

is an ε > 0 such that x ∈ Bρs(x, ε) ⊆ U . By assumption, there is a δ > 0 such that

x ∈ Bqs(x, δ) ⊆ Bρs(x, ε). Thus, x ∈ Bqs(x, δ) ⊆ U. Since x ∈ U was arbitrary, U is open in

τ(qs). Therefore, τ(ρs) ⊆ τ(qs).

Proposition 2.2.6. ([6, Proposition 1.5]) Let (X, q) be a quasi-metric space, then whenever

x ∈ X and ε > 0,

(i) any ball Bq(x, ε) is τ(q)-open, Bq−1(x, ε) is τ(q−1)-open and Cq(x, ε) is τ(q−1)-closed.

The ball Cq(x, ε) need not be τ(q)-closed. Also, the following inclusions hold

Bqs(x, ε) ⊆ Bq(x, ε) and Bqs(x, ε) ⊆ Bq−1(x, ε),

with the similar inclusions for the closed balls.

(ii) The topology τ(qs) is finer than the topologies τ(q) and τ(q−1), indeed τ(qs) = τ(q) ∨
τ(q−1). This means that :

• any τ(q)-open(closed) set is τ(qs)-open(closed), similar results hold for the topol-

ogy τ(q−1).

• the identity mappings from (X, τ(qs)) to (X, τ(q)) and to (X, τ(q−1)) are contin-

uous,

• a sequence (xn)n∈N in X is τ(qs)-convergent if and only if it is τ(q)-convergent

and τ(q−1)-convergent.

(iii) the topologies τ(q) and τ(q−1) are T0, but not necessarily T1 (and so nor T2, in contrast

to the case of metric spaces). The topology τ(q) is T1 if and only if q(x, y) > 0 whenever

x 6= y. In this case, τ(q−1) is also T1 and, as a bitopological space, X is pairwise

Hausdorff.

Proof. (i) Let y ∈ X be such that q(x, y) < δ and ε = δ − q(x, y) > 0. If z ∈ X is

such that q(y, z) < ε then q(x, z) ≤ q(x, y) + q(y, z) < q(x, y) + ε = δ, this shows

that Bq(x, ε) ⊆ Bq(x, δ). Hence Bq(x, ε) is τ(q)-open. Similarly, let y ∈ X with

q(x, y) > ε and δ = q(x, y) − ε > 0. If z ∈ X is such that q(z, y) = q−1(y, z) < δ

then q(x, y) ≤ q(x, z) + q(z, y) < q(x, z) + δ, so that Bq−1(x, δ) ⊆ Bq−1(x, ε). Hence

Bq−1(x, δ) is τ(q−1)-open

Next, we prove that Cq(x, ε) is τ(q−1)-closed. Let y ∈ X be such that y /∈ X\Cq(x, ε)
and setting δ = q(x, y) − ε > 0. Then Bq−1(x, δ) ∩ Cq(x, ε) = ∅, or equivalently

Bq−1(x, δ) = X\Cq(x, ε). Indeed, if z ∈ Bq−1(x, δ)∩Cq(x, ε), with q(z, y) = q−1(y, z) <

δ, then we have that q(x, y) ≤ q(x, z) + q(z, y) < ε + q(z, y) < ε + δ = q(x, y), a

contradiction. Therefore, X\Cq(x, ε) is τ(q−1)-open and so Cq(x, ε) is τ(q−1)-closed.
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Since q(x, y) ≤ qs(x; y) and q−1(x, y) ≤ qs(x, y) for all x, y ∈ X, then the given

inclusions hold.

(ii) Suppose that q−1(x, y) ≤ qs(x, y). From qs(x, y) = max{q(x, y), q−1(x, y)}, we have

that A ∈ τ(qs) is equivalent to the fact that for every x ∈ A there exists a quasi-metric q

and δ > 0 such that Bqs(x, δ) ⊆ A. Since q(x, y) < δ implies that qs(x, y) ≤ q(x, y) < δ,

we have Bq(x, δ) ⊆ Bqs(x, δ) ⊆ A, so that A ∈ τ(q). Hence, Bqs(x, δ) ⊆ Bq(x, δ) and

so by Proposition 2.2.5 we have τ(q) ⊆ τ(qs). Similarly, if q(x, y) ≤ qs(x, y), then

A ∈ τ(qs) with x ∈ A implies that there exist a quasi-metric q and δ > 0 such

that Bqs(x, δ) ⊆ A. As q(y, x) < δ implies q(x, y) ≤ q(y, x) < δ, it follows that

Bq−1(x, δ) ⊆ Bqs(x, δ) ⊂ A, so that A ∈ τ(q−1). Hence, Bqs(x, δ) ⊆ Bq−1(x, δ) and so

by Proposition 2.2.5 we have that τ(q−1) ⊆ τ(qs). Therefore, we conclude that the

topology τ(qs) is finer than the topologies τ(q) and τ(q−1).

(iii) If x and y are distinct points in the quasi-metric space (X, q) then max{q(x, y), q(y, x)} >
0. If q(x, y) > 0, then y /∈ Bq(x, ε) where ε = q(x, y). Similarly, if q(y, x) > 0, then

x /∈ Bq(y, δ), where δ = q(y, x). Consequently, τ(q) is T0 and τ(q−1) as well.

Next, suppose that q(x, y) > 0 for every x 6= y. Then y /∈ Bq(x, q(x, y)). Since

q(y, x) > 0 too, x /∈ Bq(y, q(y, x)), showing that the topology τ(q) is T1. Similarly,

τ(q−1) is T1.

Conversely suppose that τ(q) is T1 and let x, y ∈ X, x 6= y. Then, there exists a

quasi-metric q and δ > 0 such that x /∈ Bq(y, δ), which implies that q(x, y) ≥ δ.

Also Bq−1(x, δ) ∩ Bq(x, δ) = ∅ where δ > 0 is given by 2δ = q(x, y) > 0. Indeed if

z ∈ Bq−1(x, δ) ∩Bq(x, δ), then

q(x, y) ≤ q(x, z) + q(z, y) < δ + δ = q(x, y)

a contradiction, which shows that (X, τ(q), τ(q−1)) is a pairwise Hausdorff.

We present the following standard definitions.

Definition 2.2.7. If (X, q) is a quasi-metric space, then the pair (Bq(x, r), Bq−1(x, s)) where

x ∈ X and r, s ∈ [0,∞) is called a double ball. In general, (Bq(xi, ri), (Bq−1(xi, si))i∈I , with

xi ∈ X and ri, si ∈ [0,∞), is called a family of double balls.

Definition 2.2.8. Let (X, q) be a quasi-metric space. For any subset A of X, we call

clτ(q)A ∩ clτ(q−1)A the double closure of A. Moreover, if A = clτ(q)A ∩ clτ(q−1)A, then we say

A is a doubly closed subset of X.

Definition 2.2.9. A subset A of a quasi-metric space (X, q) is said to be bounded if there

exists a real number M > 0 such that q(x, y) ≤M whenever x, y ∈ A. Equivalently, a subset

A of (X, q) is bounded if there is an x ∈ X and r, s > 0 such that A ⊆ Cq(x, r) ∩Cq−1(x, s).

Definition 2.2.10. Given a subset A of a quasi-metric space (X, d), the diameter of A,

denoted by diam(A) is defined as diam(A) = sup{q(x, y) : x, y ∈ A}. We say that set A is

bounded if diam(A) <∞.
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Definition 2.2.11. Let (X, q) be a quasi-metric space. Given A,B ∈P0(X) and x ∈ X, a

mapping qH : P0(X)×P0(X) −→ [0,∞) defined by

qH(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
.

is said to be the extended Hausdorff (-Bourbaki) quasi-pseudometric on P0(X). It is

known that qH is an extended T0-quasi-metric when restricted to the set of all nonempty

subsets A of X which satisfy A = clτ(q)A ∩ clτ(q−1)A.

The following describe some properties of maps between two quasi-pseudometric spaces;

Definition 2.2.12. Let (X, qX) and (Y, qY ) be quasi-metric spaces. A map f : (X, qX) −→
(Y, qY ) is said to be an isometry provided that qY (f(x), f(y)) = qX(x, y) whenever x, y ∈ X,

that is, f is distance preserving.

Two quasi metric spaces (X, qX) and (Y, qY ) will be called isometric provided that there

exists a bijective isometry f : (X, qX) −→ (Y, qY ) between them.

We next recall some basic concepts related to the convergence of sequences in quasi-metric

spaces;

Definition 2.2.13. Let (X, q) be a quasi-metric space.

(i) A sequence (xn) converges to x with respect to τ(q), called q-convergence or left-

convergence and denoted by xn
q−−→ x, if and only if

q(x, xn) −→ 0.

(ii) A sequence (xn) converges to x with respect to τ(q−1), called q−1-convergence or right-

convergence and denoted by xn
q−1

−−−−→ x, if and only if

q(xn, x) −→ 0.

(iii) A sequence (xn) qs-converges to x if it is both left and right q-convergent to x. That is

xn
qs−−−→ x ⇐⇒ xn

q−−→ x and xn
q−1

−−−−→ x.

Definition 2.2.14. A sequence (xn) in a quasi-metric (X, q) is called

(i) left q-Cauchy if for every ε > 0, there exists nε ∈ N and x ∈ X such that

∀n ≥ nε q(x, xn) < ε.

(ii) right q-Cauchy if for every ε > 0, there exists nε ∈ N and x ∈ X such that

∀nε, q(xn, x) < ε.

(iii) left K-Cauchy if for every ε > 0, there exists n ∈ N such that

∀n, k : nε ≥ k ≥ n, q(xk, xn) < ε.
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(iv) right K-Cauchy if for every ε > 0, there exists n ∈ N such that

∀n, k : nε ≥ k ≥ n, q(xn, xk) < ε.

(v) qs-Cauchy if for every ε > 0, there exists nε ∈ N such that

∀n, k ≥ nε q(xn, xk) < ε.

Remark 2.2.15. (i) qs-Cauchy =⇒ left K-Cauchy =⇒ left q-Cauchy. The same im-

plications holds for the corresponding right notations. However, none of the above

implications are reversible.

(ii) A sequence (xn) in a T0-quasi-metric space is left Cauchy with respect to q if and only

if it is right Cauchy with respect to q−1.

(iii) A q-convergent sequence is left q-Cauchy and a q−1-convergent is a right q-Cauchy.

(iv) A sequence is qs-Cauchy if and only if it is both left and right K-Cauchy.

The following results concerning sequences in quasi-metric spaces are true.

Proposition 2.2.16. Let (xn) be a sequence in a T0-quasi-metric space (X, q):

(i) If (xn) is τ(q)-convergent to x and τ(q−1)-convergent to y, then q(x, y) = 0.

(ii) If (xn) is τ(q)-convergent to x and q(y, x) = 0, then (xn) is τ(q−1)-convergent to y.

(iii) If (xn) is left K-Cauchy and has a subsequence which is τ(q)-convergent to x, then

(xn) is τ(q)-convergent to x.

(iv) If (xn) is left K-Cauchy and has a subsequence which is τ(q−1)-convergent to x, then

(xn) is τ(q−1)-convergent to x.

Proof. (i) Suppose that (xn) is τ(q)-convergent to x and τ(q−1)-convergent to y , then

xn → x if and only if q(x, xn) −→ 0 as n→∞ and xn → y if and only if q(xn, y) −→ 0

as n→∞. Now, using triangle inequality and letting n→∞, we have that

q(x, y) ≤ q(x, xn) + q(xn, y) −→ 0

and so we obtain that q(x, y) ≤ 0 which implies that q(x, y) = 0.

(ii) Suppose that (xn) is τ(q)-convergent to x and q(y, x) = 0, then xn → x if and only

if q(x, xn) −→ 0 as n → ∞ and q(y, x) = 0. Then using the triangle inequality and

letting n −→∞, we have

q(y, xn) ≤ q(y, x) + q(x, xn) = q(x, xn) −→ 0

and so q(y, xn) −→ 0 as n→∞. Hence, (xn) is τ(q−1)-convergent to y.

(iii) Suppose that (xn) is left K-Cauchy and (xnk
) is a subsequence of (xn) such that

lim
k−→∞

q(x, xnk
) = 0. For ε > 0 choose n0 such that n0 ≤ m ≤ n implies q(xm, xn) < ε,
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and let k0 ∈ N be such that nk0 ≥ n0 and q(x, xnk
) < ε for all k ≥ k0. Then, for

n ≥ nk0 , q(x, xn) ≤ q(x, xnk0
) + q(xnk0

, xn) < 2ε.

(iv) Suppose that (xn) is left K-Cauchy such that there exists a subsequence (xnk
) which

is τ(q−1)-convergent to some x ∈ X. For ε > 0 let k0 ∈ N be such that for all

k ≥ k0, q(xnk
, x) < ε, and let n0 ∈ N be such that for all m,n ∈ N, n0 ≤ m < n

implies q(xm, xn) < ε. For n ≥ nk0 let k > k0 be such that nk ≤ n, k ∈ N. Then

q(xn, x) ≤ q(xn, xnk
) + q(xnk

, x) < 2ε.

Definition 2.2.17. Let (X, q) be a quasi-metric space. We say that (X, q) is

(i) left K-complete provided that any left K-Cauchy sequence in X is q-convergent.

(ii) right K-complete provided that any right K-Cauchy sequence in X is q−1-convergent.

Definition 2.2.18. Let (X, q) be a T0-quasi-metric space. Then (X, q) is called bicomplete

provided that the associated metric space (X, qs) is complete.

2.3. Asymmetric normed spaces

In this section, we recall the definition of an asymmetric norm on a real vector space X and

give some examples.

Definition 2.3.1. ([6, p.10]) Let X be a real vector space and ‖.| : X −→ [0,∞) be a

mapping of X into the set [0,∞). Then ‖.| is called an asymmetric semi-norm on X if for

all x, y ∈ X and α ∈ [0,∞) we have that

(i) ‖αx| = α‖x|

(ii) ‖x+ y| ≤ ‖x|+ ‖y|

If in addition, we have

(iii) ‖x| = ‖−x| = 0 if and only if x = 0,

then ‖.| is called an asymmetric norm on X, and the pair (X, ‖.|) is called an asymmetric

normed space.

We note that each asymmetric norm on X induces a T0-quasi-metric q by setting q(x, y) =

‖x− y| whenever x, y ∈ X.
Remark 2.3.2. ([6, Remark 1]) If ‖.| is an asymmetric norm on a real vector space X,

then the function |.|| : X −→ [0,∞) defined by |x|| = ‖−x|, whenever x ∈ X is also an

asymmetric norm on X called the conjugate to ‖.|. We note that the symmetrisation of

the asymmetric norm ‖.| is the function ||.|| : X −→ [0,∞) given by ||x|| = max{‖x|, |x||}
whenever x ∈ X and is called a norm on X.

We now look at some examples of an asymmetric norm on a real vector spaces:
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Example 2.3.3. ([6, Example 1.2]) If X = R is a real vector space, consider the asymmetric

norm defined for all x ∈ R by ||x| = x+ where x+ = max{x, 0} is the positive part of x.

Then |x|| = x− = max{−x, 0} and ||x|| = max{x+, x−} = |x|.
Example 2.3.4. ([19, Example 3]) Let (X, q) be a T0-quasi-metric space, Cb(X) be the real

vector space of continuous bounded real valued functions onX and ‖f | = supx∈X (max{f(x)− 0, 0})
whenever f ∈ Cb(X). Then ‖f | is an asymmetric norm on Cb(X).

Proof. We show that ||f | is an asymmetric norm on Cb(X). Let f, g ∈ Cb(X) and α ∈ R.

We show that the three conditions of asymmetric norm are satisfied

(i) ||αf | = supx∈X [max{αf(x)− 0, 0}]
= supx∈X [αmax{f(x)− 0, 0}]
= α supx∈X [max{f(x)− 0, 0}]
= α||f |.

(ii) ||f + g| = supx∈X [max{f(x) + g(x)− 0, 0}]
≤ supx∈X [max{f(x)− 0, 0}+ max{g(x)− 0, 0}]
≤ supx∈X (max{f(x)− 0, 0}) + supx∈X (max{g(x)− 0, 0})
= ||f |+ ||g|.

(iii) We first observe that ||f || = max{||f |, || − f |} is a norm on Cb(X). Now, if ||f | = 0

and || − f | = 0, and (X, q) is a T0-quasi-metric space, then ||f || = max{||f |, || − f |} =

max{0, 0} = 0. Since ||f || is a norm on Cb(X), then we have that f = 0.

Conversely, if f = 0, then we have that ||f | = supx∈X [max{0− 0, 0}] = supx∈X(0) = 0

and || − f | = supx∈X [max{−0− 0, 0}] = supx∈X(0) = 0. Hence, we have that ||f | =

0 = || − f | if and only if f = 0.
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CHAPTER 3

CONVEXITIES IN METRIC

SPACES

In 1970, Takahashi [28] introduced a convex structure on a metric space which is called

Takahashi convex structure and is a generalization of the convex structure in the ordinary

sense. Earlier to it, in 1928, Menger [21] proposed another concept of convexity in a metric

space, which is known as Menger convexity and is a generalization of convexity in the usual

sense as well. Later on Khalil [11], defined strong convex metric spaces which is also the

generalization of convexity in ordinary sense.Therefore, we note that all the three convexities

are the generalization of the ordinary convexity.

In this chapter, we recall convexities in metric spaces, namely; Menger convexity, Takahashi

convexity, strong and M -convexity (see [21], [28], [11]). We will see that all these convexities

are the generalization of convexity structure in an ordinary sense and the converse is not true.

Since these convexities rely on the concept of betweenness, a fundamental concept to the

study of axiomatic geometry, we start by recalling betweenness in metric spaces. Thereafter,

we recall convexities in metric spaces and some best approximations for M -convex metric

spaces.

3.1. Betweenness in metric spaces

In this section, we recall the concept of betweenness in metric spaces. This notion was

introduced by Blumenthal [4].

Definition 3.1.1. ([4, Definition 12.1]) Let (X, d) be a metric space. A point z ∈ X is said

to be between x and y if and only if x 6= z 6= y,

d(x, y) = d(x, z) + d(z, y).

We shall symbolize this relationship by [xzy]d to mean z is between x and y in a metric

space X. We must also note that [xzy]d implies that x, y and z are pairwise distinct, since

d(x, y) > 0.

Definition 3.1.2. ([23, Definition 2.1.0]) Let (X, d) be a metric space and x, y, z ∈ X. For

any points x, y, z ∈ X, the set

Bd(x, y) = {z ∈ X : d(x, z) + d(z, y) = d(x, y)}

is called the metric segment of x and y.

14



Definition 3.1.3. ([4, Definition 13.3]) Let (X, d) be a metric space and x, y, z ∈ X. Then

z is said to be a midpoint of x and y if and only if x 6= y 6= z,

d(x, z) = d(z, y) =
d(x, y)

2
.

Theorem 3.1.4. ([4, Theorem 12.1]) In a metric space (X, d), the relation of betweenness

has the following properties:

(i) [xzy]d implies [yzx]d (symmetry of the outer points).

(ii) If [xzy]d then neither [xyz]d nor [zxy]d holds (special inner points).

(iii) [xzy]d and [xyw]d are equivalent to [xzw]d and [zyw]d.

(iv) If x, y ∈ X , the set B̄d(x, y) = {x}∪{y}∪Bd(x, y) is closed, where Bd(x, y) is the set

of all points between x and y.

Proof. (i) Let x and y be distinct points of X. If [xzy]d then d(x, z) + d(z, y) = d(x, y).

Since X is a metric space, then the symmetry condition gives d(y, z)+d(z, x) = d(y, x)

which implies that [yzx]d.

(ii) Since [xzy]d implies that x 6= z 6= y, d(x, z) + d(z, y) = d(x, y) and [xyz]d implies that

x 6= y 6= z, d(x, y) + d(y, z) = d(x, z). From the two equalities we have 2d(z, y) = 0

which implies that z = y, which contradicts that y 6= z. Hence, [xyz]d cannot hold.

Similarly, since [xzy]d implies that x 6= z 6= y, d(x, z) + d(z, y) = d(x, y) and [zxy]d

implies that z 6= x 6= y, d(z, x) +d(x, y) = d(z, y). From these two equalities we obtain

2d(x, z) = 0, which implies that x = z, contradicting that x 6= z. Therefore, [zxy]d

cannot hold too.

(iii) Suppose [xzy]d and [xyw]d holds, then we have x 6= y 6= z, d(x, z) + d(z, y) = d(x, y)

and x 6= y 6= w, d(x, y) + d(y, w) = d(x,w) for all x, y, z, w ∈ X. Now, from

d(x, z) + d(z, y) = d(x, y) and d(x, y) + d(y, w) = d(x,w) we get

d(x,w) = d(x, z) + d(z, y) + d(y, w). (3.1)

Applying the triangle inequality to Equation 3.1, we have

d(x,w) = d(x, z) + d(z, y) + d(y, w)

≥ d(x, z) + d(z, w)

≥ d(x,w).

This implies that d(x, z)+d(z, w) = d(x,w). Since each two points are pairwise distinct,

we have that [xzw]d. Now, substituting d(x, z) + d(z, w) = d(x,w) in Equation 3.1, we

obtain d(z, w) = d(z, y) + d(y, w) and also, since each two points are pairwise distinct,

we have that [zyw]d. The converse follows directly from the above argument.
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(iv) We show that if z is a limit point (or accumulation point) of B̄d(x, y), with x 6= y 6= z,

then z ∈ B̄d(x, y). Since z is a limit point, there exists a sequence {zn} that converges

to z, where zn ∈ B̄d(x, y). Hence, we have

d(x, zn) + d(zn, y) = d(x, y)

for all n ∈ N. From continuity of a metric d, we have

d(x, z) + d(z, y) = d(x, y)

and so we have that z ∈ B̄d(x, y). Therefore, B̄d(x, y) is a closed set.

3.2. Menger convexity in metric spaces

In this section, we recall the concept of Menger convexity which was introduced by Karl

Menger [21] in 1928. He used the idea of betweenness to define convexity in metric spaces.

We start by recalling the definition of convexity in the usual sense and give some examples

of in this case:

Definition 3.2.1. Let X be a linear space and λ ∈ [0, 1]. A subset A of X is said to be

convex if for all x, y ∈ A , we have

xλ+ (1− λ)y ∈ A.

A point of the form xλ+ (1− λ)y, λ ∈ [0, 1] is called a convex combination of x and y.

Example 3.2.2. ([23]) Consider the interval [a, b] ∈ R. We show that this interval is a convex

set. Let u, v ∈ [a, b] be two arbitrary elements. We need to prove that tu+(1−t)v ∈ [a, b] for

all t ∈ [0, 1]. Since u, v ∈ [a, b], then u, v ≤ b. As t ∈ [0, 1], it follows that tu + (1− t)v ≤ b.

Using a similar argument tu + (1 − t)v ≤ a. As u and v were arbitrarily chosen, then

tu+ (1− t)v ∈ [a, b] for all u, v ∈ [a, b] and t ∈ [0, 1].

We now recall Menger convexity in metric spaces and later show that convexity in ordinary

sense implies Menger convexity but the converse is not true.

Definition 3.2.3. ([21, Definition 2.1.1]) A metric space (X, d) is said to be Menger convex

if for every x, y ∈ X and for each t ∈ [0, 1], there exists z ∈ X satisfying the following two

conditions

(i) d(x, z) = td(x, y)

(ii) d(z, y) = (1− t)d(x, y).

Remark 3.2.4. ([8, Remark 2.8]) A metric space (X, d) is said to be Menger convex if for

every x, y ∈ X, there exists a point z ∈ X such that

d(x, z) + d(z, y) = d(x, y).
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We notice that we have just added conditions (i) and (ii) in Definition 3.2.4 to obtain the

result in above remark and so we observe that Menger convexity implies betweenness in

metric spaces but the converse is not true.

The following example shows that Menger convexity does not imply convexity in the usual

sense:

Example 3.2.5. ([16, p.112]) Let X = Q be the set of rational numbers in [0, 1] and d be

a metric defined by d(x, y) = |x− y| for all x, y ∈ X. Then (X, d) is Menger convex. To see

this, let x, y ∈ X, x 6= y, set z = x+y
2
∈ X, then we have

d(x, z) =

∣∣∣∣x− x+ y

2

∣∣∣∣ =

∣∣∣∣2x− x− y2

∣∣∣∣ =
1

2
|x− y| = 1

2
d(x, y)

and

d(y, z) =

∣∣∣∣y − x+ y

2

∣∣∣∣ =

∣∣∣∣2y − x− y2

∣∣∣∣ =
1

2
|y − x| = 1

2
d(x, y).

That is, d(x, y) = d(x, z) + d(z, y) for all x, y, z ∈ X.

On the other hand, the set of all rational numbers in [0, 1] is not convex. Since for every

two rational numbers there is an irrational number between them. Hence it is not possible

to join two points without leaving the set.

The following Proposition gives an equivalent definition of Menger convex metric space. This

result will be extended to T0-quasi-metric setting with minor modification.

Proposition 3.2.6. ([23, Lemma 2.1.2]) Let (X, d) be a metric space. Then (X, d) is

Menger convex if and only if for every x, y ∈ X with x 6= y we have

Cd(x, r) ∩ Cd(y, r − λ) 6= ∅,

where r = d(x, y) and every λ ∈ [0, r].

Proof. Suppose that for every x, y ∈ X with x 6= y we have

Cd(x, λ) ∩ Cd(y, r − λ) 6= ∅,

where r = d(x, y) and every λ ∈ [0, r]. Let x, y ∈ X, 0 ≤ t ≤ 1. Then 0 ≤ tr ≤ r. Let

r1 = tr and r2 = r − tr .i.e r1 + r2 = r = d(x, y). Then there exists z ∈ Cd(x, r1) ∩ Cd(y, r2)
such that d(x, z) ≤ r1 and d(z, y) ≤ r2.

Now, using the triangle inequality we have,

d(x, y) ≤ d(x, z) + d(z, y) ≤ r1 + r2 = r = d(x, y)

and so d(x, y) = d(x, z) + d(z, y), thus we have that d(x, z) = r1 = tr = td(x, y) and

d(z, y) = r2 = r − tr = (1− t)d(x, y). Hence, (X, d) is Menger convex metric space.

Conversely, suppose that (X, d) is Menger convex. Let x and y be distinct points of X such

that d(x, y) = r and λ ∈ [0, r]. We want to show that

Cd(x, λ) ∩ Cd(y, r − λ) 6= ∅.
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To do this, let t =
λ

r
, so that 0 ≤ t ≤ 1, and by Menger convexity of (X, d), there exists

z ∈ X such that

d(x, z) = td(x, y) = tr = λ and d(z, y) = (1− t)d(x, y) = (1− t)r = r − λ.

This implies that z ∈ Cd(x, λ) and z ∈ Cd(y, r − λ) and so z ∈ Cd(x, λ) ∩ Cd(y, r − λ) .

Hence,

Cd(x, λ) ∩ Cd(y, r − λ) 6= ∅.

Remark 3.2.7. A subset A of a convex metric space (X, d) is said to be Menger convex if

for every x, y ∈ A, any point between x and y also lies in A.

We now give the fundamental theorem of metric convexity which was introduced by Menger

(1928) in [21]. We start by stating, without proof the Caristi’s Theorem, and later use it to

prove Lemma 3.2.11. The proof of Caristi’s Theorem can be found in [8].

Definition 3.2.8. Consider a function f : X −→ X and a point x0 ∈ X. The function f is

said to be upper (resp. lower) semi-continuous at the point x0 if

f(x0) ≥ lim
x→x0

sup f(x)

(
resp. f(x0) ≤ lim

x→x0
inf f(x)

)
.

Definition 3.2.9. ([8, Definition 1.2.1]) Let (X, d) be a metric space. A self-mapping

f : X −→ X is said to be a Caristi’s mapping if there exists a lower semi-continuous

function ϕ : X −→ [0,+∞) such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)),

for all x ∈ X.

The following theorem will be used to prove Lemma 3.2.11 and Lemma 3.2.12 and later these

Lemmas will be used to prove Theorem 3.2.14.

Theorem 3.2.10. (Caristi’s Theorem) Let (X, d) be a complete metric space and let ϕ :

X −→ [0,+∞) be a lower semi-continuous and bounded function. Suppose that f : X −→ X

is an arbitrary self-mapping which satisfies:

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), x ∈ X.

Then f has a fixed point.

Lemma 3.2.11. ([8, Lemma 2.1]) Let (X, d) be a complete metric space with x, y ∈ X, x 6= y,

and suppose 0 < λ < d(x, y). Let S = S(x, y, λ) = {z ∈ Bd(x, y) : d(x, z) ≤ λ} ∪ {x}. Then

there exists a point zλ ∈ X such that

(i) zλ ∈ S(x, y, λ).

(ii) u ∈ Bd(x, y) and [xzλu]d implies d(x, u) > λ.
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Proof. (i) For each z ∈ S with d(x, z) < λ there exists yz such that [xzyλ]d. In this

case we define a mapping G : S −→ S by G(z) = yλ if d(x, z) < λ and G(z) = z if

d(x, z) ≥ λ. Also define ϕ : S −→ (0,∞) by ϕ(z) = λ − d(x, z). Since the metric

d is continuous and λ is a constant, then ϕ is continuous on S. For z ∈ S and from

d(x,G(z)) = d(x, z) + d(z,G(z)), we have

d(z,G(z)) = d(x,G(z))− d(x, z)

= λ− λ+ d(x,G(z))− d(x, z)

= λ− d(x, z)− (λ− d(x,G(z))) = ϕ(z)− ϕ(G(z)).

.

Since S is a closed subset of a complete metric space X, then by Caristi’s theorem, we

have G(z) = z for some z ∈ S. This implies that d(x, z) = λ and so we can choose

zλ = z ∈ S

(ii) Let u ∈ Bd(x, y) and that there exists z′ ∈ S with d(x, z′) ≤ λ such that [xz′u]d. Then

it follows that d(x, u) > λ. Hence the result.

Lemma 3.2.12. ([8, Lemma 2.2]) Let (X, d) be a complete Menger convex metric space

with x, y ∈ X, x 6= y, and suppose 0 < λ < d(x, y). Then there exists z′ ∈ S such that [xz′y]d

and d(x, z′) = λ.

Proof. By Lemma 3.2.11, there exist zλ ∈ S such that

(i) zλ ∈ S(x, y, λ).

(ii) u ∈ Bd(x, y) and [xzλu]d implies d(x, u) > λ.

Let λ
′
= d(x, y)− λ and again applying Lemma 3.2.11 we obtain yλ ∈ X such that

(i)
′
yλ′ ∈ S(y, zλ, λ

′
).

(ii)
′
u ∈ Bd(y, zλ) and [yyλ′u]d implies d(y, u) > λ

′
.

Case 1. Suppose zλ = yλ′ . Since zλ = yλ′ ∈ S(y, zλ, λ
′
), we have d(y, zλ) = d(y, yλ′ ) ≤ λ

′

and also zλ ∈ S(x, y, λ), gives d(x, zλ) ≤ λ. Now, using the triangle inequality

d(x, y) 6 d(x, zλ) + d(zλ, y)

6 λ+ λ
′
= d(x, y).

Thus, d(x, y) = d(x, zλ) +d(zλ, y). Since d(x, y) = λ+λ′ = d(x, zλ) +d(zλ, y), then it follows

that d(x, zλ) = λ.

Case 2. Suppose zλ 6= yλ′ . In this case since X is convex in the sense of Menger, there exists

w ∈ X such that [zλwyλ′ ]d. By assumption the relations [xzλy]d, [zλyλ′y]d and [zλwyλ′ ]d

hold. It follows from transitivity of betweenness that [xwy]d, [xzλw]d, [ywzλ]d and [yyλ′ ]d
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also hold. Now, [xwy]d and [xzλw]d imply d(x,w) > λ by (ii) while [ywzλ]d and [yyλ′w]d

imply d(y, w) > λ
′

by (ii)
′
. Therefore, d(x, y) = d(x,w) + d(w, y) > λ+λ

′
= d(x, y). This is

a contradiction and so using the same argument as in case 1, we have that d(x,w) = λ.

Next, we state without proof Banach Extension Theorem, which will be used to prove The-

orem 3.2.14.

Theorem 3.2.13. (Banach Extension Theorem) Let f be a bounded linear functional on

a subspace Z of a normed space X. Then there exists a bounded linear functional f̂ on

X which is an extension of f to X and has the same norm ||f̂ ||X = ||f ||Z where ||f̂ ||X =

sup
x∈X,||x||=1

|f̂(x)| and ||f̂ ||Z = sup
x∈Z,||x||=1

|f̂(x)|.

We end this section by looking at the fundamental theorem of convexity which was pioneered

by Menger[21]. This theorem is very important in the study of the geometry of metric spaces.

Theorem 3.2.14. If (X, d) is a complete and Menger convex metric space, then any

two points x, y ∈ X can be joined by a metric segment.i.e there exists an isometry ϕ :

[0, d(x, y)] −→ X with ϕ(0) = x and ϕ(d(x, y)) = y.

Proof. Let x0, x1 ∈ X, x0 6= x1. By Lemma 3.2.12, there exists x1/2 ∈ X such that

d(x0, x1/2) = d(x1/2, x1) = 1
2
d(x0, x1) i.e x1/2 is a midpoint of the pair (x0, x1). Let λ =

d(x0, x1) and define the mapping F by taking

F (0) = x0, F (λ/2) = x1/2, F (λ) = x1.

Again by Lemma 3.2.12, there exists points x1/4 and x3/4 which is a pair of (x0, x1/2) and

(x1/2, x1) respectively. Define

F (λ/4) = x1/4, F (3λ/4) = x3/4.

We show that F is an isometry on the set A = {0, λ/4, λ/2, 3λ/4, λ}. That is,
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d(F (0), F (λ/4)) = d(x0, x1/4) =
1

4
d(x0, x1) =

λ

4
=

∣∣∣∣0− λ

4

∣∣∣∣ = d(0, λ/4).

d(F (0), F (λ/2)) = d(x0, x1/2) =
1

2
d(x0, x1) =

λ

2
=

∣∣∣∣0− λ

2

∣∣∣∣ = d(0, λ/2).

d(F (0), F (3λ/4)) = d(x0, x3/4) =
3

4
d(x0, x1) =

3λ

4
=

∣∣∣∣0− 3λ

4

∣∣∣∣ = d(0, 3λ/4).

d(F (0), F (λ)) = d(x0, x1) = λ = |0− λ| = d(0, λ).

d(F (λ/4), F (λ/2)) = d(x1/4, x1/2) = d(x0, x1/4) =
1

4
d(x0, x1) =

λ

4
=

∣∣∣∣λ4 − λ

2

∣∣∣∣ = d(λ/4, λ/2).

d(F (λ/4), F (3λ/4)) = d(x1/4, x3/4) = 2d(x0, x1/4) =
1

2
d(x0, x1) =

λ

2
=

∣∣∣∣λ4 − 3λ

4

∣∣∣∣ = d(λ/4, 3λ/4).

d(F (λ/4), F (λ)) = d(x1/4, x1) =
3

4
d(x0, x1) =

3λ

4
=

∣∣∣∣λ4 − λ
∣∣∣∣ = d(λ/4, λ).

d(F (λ/2), F (3λ/4)) = d(x1/2, x3/4) =
1

4
d(x0, x1) =

λ

4
=

∣∣∣∣λ2 − 3λ

4

∣∣∣∣ = d(λ/2, 3λ/4)

d(F (λ/2), F (λ)) = d(x1/2, x1) = d(x0, x1/2) =
1

2
d(x0, x1) =

λ

2
=

∣∣∣∣λ2 − λ
∣∣∣∣ = d(λ/2, λ).

d(F (3λ/4), F (λ)) = d(x3/4, x1) = d(x1/2, x3/4) =
1

4
d(x0, x1) =

λ

4
=

∣∣∣∣3λ4 − λ
∣∣∣∣ = d(3λ/4, λ).

Hence, the mapping F is an isometry on the set A = {0, λ/4, λ/2, 3λ/4, λ}. By induction

we obtain the points {xp/2n}, 1 ≤ p ≤ 2n − 1 for all n ∈ N in X such that the mapping

F : pλ/2n −→ xp/2n is an isometry. Since {pλ/2n} is a dense subset of [0, λ] with F an

isometry defined on this set, and since X is complete, by Banach extension theorem, we can

extend F to the entire interval [0, λ] by the function ϕ, and thus obtaining a metric segment

in X joining x0 and x1.

3.3. Takahashi convexity in metric spaces

In this section, we recall the concept of Takahashi convexity in metric spaces. This concept

was introduced by Wataru Takahashi [28] in 1970 and later it was extensively studied by

Machado ([20]) and Talman([29]). We will end this section by showing that Takahashi

convexity implies Menger convexity.

Definition 3.3.1. ([29, Definition 1.1]) Let (X, d) be a metric space. A mapping W :

X × X × [0, 1] −→ X is said to be a Takahashi convex structure (TCS) on X if for all

x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all u ∈ X. The metric space (X, d) together with a convex structure is called a convex

metric space.
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Note 3.3.2. A Banach space and each of its convex subsets are also convex metric spaces

but the converse is not true.

Definition 3.3.3. ([28]) A subset K of a convex metric space X is said to be convex if

W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1].

The following example shows that Takahashi convexity does not imply convexity in the usual

sense:

Example 3.3.4. ([29, p.112]) Let X be the set of rational numbers in [0, 1] and d be a

metric defined by d(x, y) = |x− y| for all x, y ∈ X, and a mapping W : X×X× [0, 1] −→ X

defined by W (x, y, λ) = λx+ (1− λ)y. Then we have

d(u,W (x, y, λ)) = |u−W (x, y, λ)|

≤ λ|u− x|+ (1− λ)|u− y|

= λd(u, x) + (1− λ)d(u, y),

for all u ∈ X. Hence W is a Takahashi convex structure on X, and so (X, d) is convex in

the sense of Takahashi.

However, the set of all rational numbers in [0, 1] is not convex. Since for every two rational

numbers there is an irrational number between them. Hence it is not possible to join two

points without leaving the set.

Definition 3.3.5. ([20]) A TCS W on a metric space (X, d) is said to have Property (I)

provided that

d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2|d(x, y)

for all x, y, z ∈ X and λ1, λ2 ∈ [0, 1].

We now give two examples of convex metric spaces in the sense of Takahashi (see [28]) :

Example 3.3.6. ([28, Example 2]) Let (X, d) be a metric space with the following properties;

(a) For all x, y ∈ X,

d(x− y, 0) = d(x, y)

(b) For all x, y ∈ X and λ ∈ [0, 1]

d(λx+ (1− λ)y, 0) ≤ λd(x, 0) + (1− λ)d(y, 0).

Then the metric space (X, d) is convex.

Proof. Let x, y ∈ X and for every λ ∈ [0, 1], define a mapping W : X ×X × [0, 1] −→ X by

W (x, y, λ) = λx+ (1− λ)y. We show that (X, d) is convex in the sense of Takahashi. Thus

for all u ∈ X and property (a), we have

d(u,W (x, y, λ)) = d(λx+ (1− λ)y, u)

= d(λx+ (1− λ)y − u, 0)
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Now, we can write u = λu+ (1− λ)u and using property (b) we have,

d(u,W (x, y, λ)) = d(λx+ (1− λ)y − u, 0)

= d(λ(x− u) + (1− λ)(y − u), 0)

≤ λd(x− u, 0) + (1− λ)d(y − u, 0)

= λd(u, x) + (1− λ)d(u, y).

Hence, W (x, y, λ) is a convex structure on X and so (X, d) is a convex metric space.

Example 3.3.7. ([28, Example 1]) Let I be the unit interval [0, 1] and X be the family

of closed intervals [ai, bi] such that 0 ≤ ai ≤ bi ≤ 1. For Ii = [ai, bi], Ij = [aj, bj] and

λ ∈ [0, 1], we define a mapping W by W (ai, bj, λ)=[λai+ (1−λ)aj, λbi+ (1−λ)bj] and define

a metric d in X by a Hausdorff distance i.e

d(Ii, Ij) = sup
a∈I
{|inf
b∈Ii
{|a− b|} − inf

c∈Ij
{|a− c|}|}.

Then the metric space (X, d) is convex.

Proof. We prove that (X, d) is a convex metric space by showing that d(Ik,W (Ii, Ij, λ)) ≤
λd(Ik, Ii) + (1− λ)d(Ik, Ij). By the Hausdorff distance

λd(Ik, Ii) + (1− λ)d(Ik, Ij)

= λ

(
sup
a∈I
{| inf
b∈Ij
{|a− b|} − inf

c∈Ii
{|a− c|}|}

)
+ (1− λ)

(
sup
a∈I
{| inf
b∈Ik
{|a− b|} − inf

c∈Ij
{|a− c|}|}

)
≥ sup

a∈I

{
| inf
b∈Ik
{λ|a− b|} − inf

c∈Ii
{λ|a− c|}+ inf

b∈Ik
{(1− λ)|a− b|} − inf

c∈Ij
{(1− λ)|a− c|}|

}
= sup

a∈I

{
| inf
b∈Ik
{λ|a− b|}+ inf

b∈Ik
{(1− λ)|a− b|} −

(
inf
c∈Ij
{λ|a− c|}+ inf

c∈Ii
{(1− λ)|a− c|}

)
|
}

≥ sup
a∈I

{
| inf
b∈Ik
{|a− b|} −

(
inf
c∈Ij
{λ|a− c|}+ inf

c∈Ii
{(1− λ)|a− c|}

)
|
}

Now, we have that

inf
c∈Ii
{λ|a− c|}|+ inf

c∈Ij
{(1− λ)|a− c|} = inf

c∈[λai,λbi]
{|a− c|}+ inf

c∈[(1−λ)aj ,(1−λ)bj ]
{|a− c|}

≥ inf
c∈[λai+(1−λ)aj ,λbi+(1−λ)bj ]

{|a− c|}

= inf
c∈W (Ii,Ij ,λ)

{|a− c|}.

Thus, we have that

λd(Ik, Ii) + (1− λ)d(Ik, Ij) ≥ sup
a∈I
{| inf
b∈Ik
{|a− b|} − inf

c∈W (Ii,Ij ,λ)
{|a− c|}|}

= d(Ik,W (Ii, Ij, λ)).

Hence, d(Ik,W (Ii, Ij, λ)) ≤ λd(Ik, Ii) + (1− λ)d(Ik, Ij) and so (X, d) is convex.

We have the following properties of convex metric spaces;
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Proposition 3.3.8. ([28, Proposition 1]) Let {Kα}α∈A be a family of convex subsets of

convex metric space (X, d), then
⋂
α∈AKα is also a convex subset of (X, d).

Proof. Let {Kα}α∈A be a family of convex subsets of the metric spaceX and letK=
⋂
α∈AKα.

For any x, y ∈ K, then by the definition of indexed family of sets, x, y ∈ Kα for all α ∈ A.

Since each of these sets are convex , then for all α ∈ A and λ ∈ [0, 1], W (x, y, λ) ∈ Kα.

Hence, we have that W (x, y, λ) ∈ K. Since x and y are arbitrary in K and so
⋂
α∈AKα is

convex subset of (X, d).

Proposition 3.3.9. ([28, Proposition 2]) The open balls Bd(x, ε) and closed balls Cd(x, ε)

are convex subsets of the convex metric space (X, d).

Proof. Let y, z ∈ Bd(x, ε) and fix α ∈ [0, 1], then W (y, z, α) ∈ X. We need to show that

W (y, z, α) ∈ Bd(x, ε). Now, since X is a convex metric space, we have

d(x,W (y, z, α)) ≤ αd(x, y) + (1− α)d(x, z)<αε+ (1− α)ε = ε.

Therefore, W (y, z, α) ∈ Bd(x, ε) and so Bd(x, ε) is convex.

Similarly, we can show that Cd(x, ε) is a convex subset of (X, d).

Proposition 3.3.10. ([28, Proposition 3]) Suppose that (X, d) is a convex metric space and

λ ∈ [0, 1] then

d(x, y) = d(x,W (x, y, λ)) + d(W (x, y, λ), y)

for all x, y ∈ X.

Proof. Since X is a convex metric space, and using the triangle inequality, we obtain

d(x, y) ≤ d(x,W (x, y, λ)) + d(W (x, y, λ), y)

≤ λd(x, x) + (1− λ)d(x, y) + λd(x, y) + (1− λ)d(y, y)

= (1− λ)d(x, y) + λd(x, y)

= d(x, y).

Therefore, we have that d(x, y) = d(x,W (x, y, λ)) + d(W (x, y, λ), y) for all x, y ∈ X and

λ ∈ [0, 1].

Proposition 3.3.11. ([29, Proposition 1.2]) Let W be a TCS on a metric space (X, d). If

x, y ∈ X and λ ∈ [0, 1], then

(i) W (x, y, 1) = x and W (x, y, 0) = y.

(ii) W (x, x, λ) = x.

Proof. (i) Since W is a TCS on X, then for any x, y ∈ X and λ ∈ [0, 1], we obtain that

d(x,W (x, y, 1)) ≤ 1.d(x, x) + (1 − 1)d(x, y) = 0 + 0.d(x, y) = 0 and so we have that

d(x,W (x, y, 1)) ≤ 0 which implies d(x,W (x, y, 1)) = 0 and therefore, W (x, y, 1) = x

for all x, y ∈ X. A similar argument shows that W (x, y, 0) = y for all x, y ∈ X.
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(ii) Since W is a TCS on a metric space X, then for every x, y ∈ X and λ ∈ [0, 1], we have

that d(x,W (x, x, λ)) ≤ λd(x, x) + (1− λ)d(x, x) = λ.0 + (1− λ).0 = 0 and so we have

d(x,W (x, x, λ)) ≤ 0 which implies that d(x,W (x, x, λ)) = 0 and so W (x, x, λ) = x

whenever x ∈ X.

Lemma 3.3.12. ([28, Proposition 1.2]) Let (X, d) be a Takahashi convex metric space. For

any x and y in X and λ ∈ [0, 1], we have

d(x,W (x, y, λ)) = (1− λ)d(x, y)

and

d(W (x, y, λ), y) = λd(x, y)

Proof. Let x, y ∈ X and λ ∈ [0, 1], we want to show that d(x,W (x, y, λ)) = (1 − λ)d(x, y).

Since W is a TCS on X , we have that

d(x,W (x, y, λ)) ≤ λd(x, x) + (1− λ)d(x, y) = (1− λ)d(x, y). (3.2)

Next, using the triangle inequality and W being a TCS on X, we have

d(x, y) ≤ d(x,W (x, y, λ)) + d(W (x, y, λ), y)

≤ d(x,W (x, y, λ)) + (λd(x, y) + (1− λ)d(y, y))

= λd(x, y) + d(x,W (x, y, λ)),

which implies that

(1− λ)d(x, y) ≤ d(x,W (x, y, λ)) (3.3)

Hence, by combining (3.2) and (3.3), we have d(x,W (x, y, λ) = (1− λ)d(x, y).

Similarly, we have

d(W (x, y, λ), y) ≤ λd(x, y) + (1− λ)d(y, y) = λd(x, y). (3.4)

Also, using the triangle inequality and W being a TCS on X, we obtain

d(x, y) ≤ d(x,W (x, y, λ)) + d(W (x, y, λ), y)

≤ d(W (x, y, λ), y) + (λd(x, x) + (1− λ)d(x, y))

= (1− λ)d(x, y) + d(W (x, y, λ), y),

which implies that

λd(x, y) ≤ d(x,W (x, y, λ)) (3.5)

Hence, combining (3.4) and (3.5) we obtain d(W (x, y, λ), y) = λd(x, y).
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Definition 3.3.13. ([28, p.145]) Let (X, d) be a metric space. We say that (X, d) is strictly

convex provided that for each x, y ∈ X and λ ∈ [0, 1], there exists a unique W (x, y, λ) ∈ X
such that

(i) d(x,W (x, y, λ)) = (1− λ)d(x, y)

(ii) d(W (x, y, λ), y) = λd(x, y).

Definition 3.3.14. ([29, Definition 1.3]) Let W be a TCS on a metric space (X, d). We

say that W is a strict TCS if for any w ∈ X there exists (x, y, λ) ∈ X ×X × [0, 1] for which

d(z, w) ≤ λd(z, x) + (1− λ)d(z, y),

for every z ∈ X, then w = W (x, y, λ).

Lemma 3.3.15. ([29, Lemma 1.4]) Let W be a strict TCS on a metric space (X, d). Then

for every x, y ∈ X and α, β ∈ [0, 1], we have

W (W (x, y, β), y, α) = W (x, y, αβ).

Proof. Let z ∈ X. Then we have

d(z,W (W (x, y, β), y, α)) ≤ αd(z,W (x, y, β)) + (1− α)d(z, y)

≤ α (βd(z, x) + (1− β)d(z, y)) + (1− α)d(z, y)

= αβd(z, x) + (1− αβ)d(z, y).

Since W is strict TCS on X, then we have W (W (x, y, β), y, α) = W (x, y, αβ).

Definition 3.3.16. ([29]) Let (X, d) be a metric space with TCS W . We say a TCS W has

(i) property (S) provided that

d(W (x, y, λ),W (x′, y′, λ)) ≤ λd(x, x′) + (1− λ)d(y, y′)

whenever x, y, x′, y′ ∈ X and λ ∈ [0, 1].

(ii) condition (C) provided that W (x, y, λ) = W (y, x, 1 − λ) whenever x, y ∈ X and λ ∈
[0, 1].

(iii) Property (J) if, W (W (x, y, β), y, α) = W (x, y, αβ). whenever x, y ∈ X and α, β ∈ [0, 1].

We now investigate the continuity property of a strict TCS W .

Theorem 3.3.17. ([29, Theorem 1.5]) If W is a strict TCS on a metric space (X, d), then

for every pair x, y ∈ X with x 6= y and λ ∈ [0, 1] the function h : [0, 1] −→ X defined by

h(λ) = W (x, y, λ) is an embedding of [0, 1] into X.

Proof. Let λ1, λ2 ∈ [0, 1], and assume, without loss of generality, that λ1 < λ2. Then by
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Lemma 3.3.12 and Lemma 3.3.15, we obtain that

d(W (x, y, λ1),W (x, y, λ2)) = d(W (x, y, λ2
λ1
λ2

),W (x, y, λ2))

= d(W (W (x, y, λ2), y,
λ1
λ2

),W (x, y, λ2)) by Lemma 3.3.15

= (1− λ1
λ2

)d(W (x, y, λ2), y) by Lemma 3.3.12

= (1− λ1
λ2

)λ2d(x, y) by Lemma 3.3.12

= (λ2 − λ1)d(x, y).

Hence the proof.

It does not appear that even a unique TCS W is necessarily continuous as a function from

X ×X × [0, 1] to X. However, we have the following:

Theorem 3.3.18. ([29, Theorem 1.7]) Let W be a TCS on a metric space (X, d). Then W

is continuous at a point (x, x, λ) of X ×X × [0, 1].

Proof. Let (xn, yn, λn) be a sequence in X ×X × [0, 1] which converges to (x, x, λ). In view

of Proposition 3.3.11, it suffices to show that (W (xn, yn, λn)) converges to x. Let ε > 0, since

the sequences (xn) and (yn) both converge to x, there is an N ∈ N such that d(x, xn) ≤ ε

and d(x, yn) ≤ ε for all n ≥ N . Now,

d(x,W (xn, yn, λn)) ≤ λnd(x, xn) + (1− λn)d(x, yn)

= λnε+ (1− λn)ε

= ε, for all n ≥ N.

Hence, W (xn, yn, λn) converges to x = W (x, x, λ).

The following Theorem shows that if X is compact, then the sequence (W (xnk
, ynk

, λnk
))

converges to (x, y, λ) with x 6= y.

Theorem 3.3.19. ([29, Theorem 1.8]) Let W be a strict TCS on a compact metric space

(X, d). Then W is continuous as a function from X ×X × [0, 1] to X.

Proof. Let (xn, yn, λn) be a sequence in X ×X × [0, 1] which converges to (x, y, λ), and let

w be a limit point of the sequence (W (xn, yn, λn)). Choose a subsequence (W (xnk
, ynk

, λnk
))

which converges to w. Then for any z ∈ X, we have

d(z,W (xnk
, ynk

, λnk
)) ≤ λnk

d(z, xnk
) + (1− λnk

)d(z, ynk
)

for all n ∈ N. By continuity of a metric d, we have

d(z, w) ≤ λd(z, x) + (1− λ)d(z, y).

By Definition 3.3.14, we have that w = W (x, y, λ). It follows that W (x, y, λ) is the only limit

point of the sequence (W (xn, yn, λn)). Since X is compact, (W (xn, yn, λn) must converge to

W (x, y, λ).
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In the next proposition we show that Takahashi convexity implies Menger convexity. How-

ever, the converse is not yet known.

Proposition 3.3.20. ([23, Proposition 2.1.8]) Let (X, d) be a metric space. If (X, d) is

Takahashi convex, then it is Menger convex.

Proof. Suppose that (X, d) is Takahashi convex metric space, let x, y ∈ X and let λ ∈ [0, 1].

Let z = W (x, y, 1− λ). By Lemma 3.3.12, we have that

d(x, z) = d(x,W (x, y, 1− λ))

= (1− (1− λ))d(x, y)

= λd(x, y).

And

d(z, y) = d(W (x, y, 1− λ), y)

= (1− λ)d(x, y).

Hence, Takahashi convexity implies Menger convexity.

3.4. M-convexity in metric spaces

In this section, we first recall the concept of strong convexity in metric spaces. Thereafter,

we recall M -convexity in metric spaces and study the convexity of balls in relation to prox-

iminality of convex sets in M - convex metric spaces [11]. We begin by recalling the definition

of a strongly convex metric space as defined by Borsuk [23] in 1959:

Definition 3.4.1. ([23, Definition 2.2.1]) A metric space (X, d) is said to be strongly convex

if for every x, y ∈ X, and for every t ∈ [0, 1], there exists a unique z ∈ X such that

(i) d(x, z) = td(x, y)

(ii) d(z, y) = (1− t)d(x, y).

Remark 3.4.2. A metric space (X, d) is said to be strongly convex if and only for every

x, y ∈ X, there exists a unique point z ∈ X such that

d(x, z) + d(z, y) = d(x, y).

This can easily be seen when we add conditions (i) and (ii) in Definition 3.4.1.

We note that every t ∈ [0, 1] determines a unique value of a point z in the segment Bd(x, y).

The following example shows that strong convexity does not imply convexity in the usual

sense:

Example 3.4.3. ([16, p.112]) Let X be the set of rational numbers in [0, 1] and d be a

metric defined by d(x, y) = |x− y| for all x, y ∈ X. Let x, y ∈ X, x 6= y, then we can find a

unique point z = x+y
2
∈ X, such that,

d(x, y) = d(x, z) + d(z, y)
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for all x, y, z ∈ X. Thus, (X, d) is a strong convex metric space

However, the set of all rational numbers in [0, 1] is not convex. Since for every two rational

numbers there is an irrational number between them. Hence it is not possible to join two

points without leaving the set.

Remark 3.4.4. We notice that every strongly convex metric space is Menger convex, but

the converse is not always true as can be seen from the example below.

Example 3.4.5. ([23, Example 1.6]) Let X = R2 be a Euclidean space and define a metric

d : X ×X −→ [0,∞) by

d(x, y) = max{|x1 − y1|, |x2 − y2}

where x = (x1, y1), y = (x2, y2). Then (X, d) is Menger convex but not strongly convex.

Proof. Let x, y ∈ X, x 6= y, set z =

(
x1 + y1

2
,
x2 + y2

2

)
then

d(x, z) = max

{ ∣∣∣∣x1 − x1 + y1
2

∣∣∣∣ , ∣∣∣∣x2 − x2 + y2
2

∣∣∣∣ } = max

{ ∣∣∣∣x1 − y12

∣∣∣∣ , ∣∣∣∣x2 − y22

∣∣∣∣ }
=

1

2
max

{
|x1 − y1| , |x2 − y2|

}
=

1

2
d(x, y).

A similar argument shows that d(z, y) =
1

2
d(x, y) for all x, y ∈ X. Hence,

d(x, z) + d(z, y) =
1

2
d(x, y) +

1

2
d(x, y) = d(x, y).

Therefore, (X, d) is Menger convex metric space. To see that it is not strongly convex.

Consider the points x = (0, 0), y = (1, 0) and fix t =
1

2
∈ [0, 1]. We notice that

d(x, y) = max{|1− 0|, |0− 0|} = max{1, 0} = 1.

Since (X, d) is Menger convex, we obtain the following equations;

d(x, z) =
1

2
and d(z, y) =

1

2
(3.6)

where z = (z1, z2). Now, we observe that two distinct points z =

(
1

2
,
1

2

)
and z =

(
1

2
, 0

)
satisfies the two equations in 3.6. Therefore, there is no unique value of z that solves the

two equations and so (X, d) is not a strong convex metric space.

Definition 3.4.6. ([11, Definition 1.1]) A metric space (X, d) is called M -convex if for every

two distinct points x and y in X with d(x, y) = λ, and for all r ∈ [0, λ], there exists a unique

zr ∈ X such that

Cd(x, r) ∩ Cd(y, λ− r) = {zr}.

Remark 3.4.7. If zr = 1
2
d(x, y), then zr is the midpoint of x and y.

The following Proposition shows that strong convexity and M-convexity are equivalent in a

convex metric space.
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Proposition 3.4.8. ([23, Lemma 2.2.2]) Let (X, d) be a convex metric space. Then (X, d)

is strongly convex if and only if it is M-convex.

Proof. We first show that if (X, d) is M -convex then it is a strongly convex metric space.

Suppose that X is M -convex. Let x, y ∈ X be such that d(x, y) = r and 0 ≤ t ≤ 1. Then

0 ≤ tr ≤ r. Let r1 = tr and r2 = r − tr then we have that r1 + r2 = r = d(x, y). Since X is

M-convex,

Cd(x, r1) ∩ Cd(y, r2) = {zt},

this implies that d(x, zt) ≤ r1 and d(zt, y) ≤ r2. Considering, the triangle inequality, we have

that

d(x, y) ≤ d(x, zt) + d(zt, y) ≤ r1 + r2 = r = d(x, y)

and so d(x, y) = d(x, zt) + d(zt, y). Hence, we obtain

d(x, zt) = r1 = tr = td(x, y) and d(zt, y) = r2 = r − tr = (1− t)r = (1− t)d(x, y).

Next, we show that zt ∈ X is unique. Suppose that there also exist z
′
t ∈ X such that

d(x, z
′
t) = td(x, y) and d(z

′
t, y) = (1− t)d(x, y). Since X is M-convex, then

z
′

t ∈ Cd(x, r1) ∩ Cd(y, r2) = {zt}

and so zt = z
′
t. Hence (X, d) is a strong convex metric space.

Conversely, suppose X is strongly convex. Let x, y ∈ X with d(x, y) = λ and r ∈ [0, λ]. We

show that

Cd(x, r) ∩ Cd(y, λ− r) = {zr}.

Let t =
r

λ
so that 0 ≤ t ≤ 1. Then by the strong convexity of X, there exists a unique

zr ∈ X such that d(x, zr) = td(x, y) = r and d(zr, y) = (1− t)d(x, y) = λ− r. That is,

zr ∈ Cd(x, r) ∩ Cd(y, λ− r).

Suppose that there also exist z′r ∈ X such that z′r ∈ Cd(x, r) ∩ Cd(y, λ − r). Then we have

d(x, z′r) ≤ r and d(y, z′r) ≤ λ− r. Now,

d(x, y) ≤ d(x, z′r) + d(z′r, y)

≤ r + λ− r

= λ = d(x, y)

which implies that d(x, y) = d(x, z′r) + d(z′r, y). Hence, we obtain

d(x, z′r) = r and d(y, z′r) = λ− r.

Since

d(x, z′r) = r = d(x, zr) and d(y, z′r) = λ− r = d(y, zr),

it follows that z′r = zr and so we have

Cd(x, r1) ∩ Cd(y, r2) = {zr}

and so (X, d) is M -convex metric space.
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Definition 3.4.9. ([11, p.585]) Let (X, d) be a metric space and A ⊆ X. Then A is said to

be convex if for every x, y ∈ A, then

Cd(x, (1− t)λ) ∩ Cd(y, tλ) ⊆ A

for all t ∈ [0, 1] where d(x, y) = λ.

Definition 3.4.10. ([23, Definition 2.1.3]) An M -convex metric space (X, d) is said to be

strictly convex if for all x, y ∈ Cd(z, r) with λ = d(x, y), we have

Cd(x, (1− t)λ) ∩ Cd(y, tλ) ⊆ Bd(z, r).

for all 0 < t < 1 and all z ∈ X and r > 0.

We note that for normed linear spaces, it was proved in [12], that strict convexity charac-

terises M -convexity. We recall the following:

Theorem 3.4.11. ([11, Theorem 2.4]) Let (X, d) be a strictly convex metric space, then

(X, d) is M -convex.

Proof. Let x, y ∈ X and λ = d(x, y). Since (X, d) is strictly convex then we have that

E(t) = Cd(x, (1− t)λ) ∩ Cd(y, tλ) 6= ∅

for all t ∈ (0, 1). Suppose that z1, z2 ∈ E(t), then we have that d(x, z1) 6 (1−t)λ, d(x, z2) 6

(1− t)λ and d(y, z1) 6 tλ, d(y, z2) 6 tλ. Now consider

d(x, y) 6 d(x, z1) + d(z1, y) 6 (1− t)λ+ tλ = λ = d(x, y),

and so d(x, y) = d(x, z1) + d(z1, y). That is z1 is between x and y and so we have that

d(x, z1) = (1− t)λ and d(y, z1) = tλ.

Similarly, we obtain d(x, y) = d(x, z2) + d(z2, y). That is z2 is between x and y and so we

have that d(x, z2) = (1− t)λ and d(y, z2) = tλ. Let d(z1, z2) = α and since z1 and z2 between

x and y, then α < λ and X being strictly convex, then we have that

Cd(z1, (1− s)α) ∩ Cd(z2, sα) ⊆ Cd(x, (1− t)λ) ∩ Cd(y, tλ) ⊆ Bd(z, r)

for all s ∈ (0, 1). This implies that

Cd(z1, (1− s)α) ∩ Cd(z2, sα) ⊆ Bd(z, r).

Since z1 and z2 between x and y then we have that d(x, y) = d(x, z1) + d(z1, z2) + d(z2, y)

and so

d(z1, z2) = d(x, y)− d(x, z1)− d(z2, y). (3.7)

But we know that d(x, y) = d(x, z2) + d(z2, y), thus substituting this in 3.7, we obtain

d(z1, z2) = d(x, z2)− d(x, z1) = λ− tλ− (λ− tλ) = 0.

Since d is a metric, we get z1 = z2. Hence (X, d) is an M -convex metric space.
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The converse of Theorem 3.4.11 need not be true as is clear from the following example.

Example 3.4.12. ([11, p.16-18]) Let X = Cd(x, ρ) be closed ball of S2,r of radius ρ with πr
4
<

ρ < πr
2

, where S2,r is a spherical space whose elements are ordered 3-tuples x = (x1, x2, x3)

of reals with x21 +x22 +x23 = r2, and distance d is defined for each pair of elements x and y as

d(x, y) = r cos−1
(
x1y1 + x2y2 + x3y3

r2

)
.

To see that (X, d) is M -convex. Let x, y ∈ X such that d(x, y) =
πr

4
= λ, then we need to

find a point z ∈ X such that

Cd(x, µ) ∩ Cd(y, λ− µ) = {z}

where µ ∈
[
0,
πr

4

]
. Now, let

z ∈ Cd
(
x,
πr

8

)
∩ Cd

(
y,
πr

8

)
.

Then we have that d(x, z) = d(y, z) = 1
2
d(x, y) =

πr

8
. Suppose that there exists another

z′ ∈ Cd
(
x,
πr

8

)
∩ Cd

(
y,
πr

8

)
, then d(x, z′) = d(y, z′) = 1

2
d(x, y) =

πr

8
. Thus we have that

d(x, z) =
πr

8
= d(x, z′) and so z = z′. Therefore,

Cd

(
x,
πr

8

)
∩ Cd

(
y,
πr

4
− πr

8

)
= {z}.

Hence, (X, d) is M -convex. To see that (X, d) is not strictly convex. We just have to check

that the conditions for strict convexity are not satisfied. That is, for any x, y ∈ Cd
(
z,
πr

2

)
we have that d(x,w) 6

πr

2
, d(y, w) 6

πr

2
=⇒ d(z, w) <

πr

2
. However, letting x and y be

the points of X such that d(x, z) = d(x, z) = πr
2

=⇒ x, y ∈ Cd
(
z,
πr

2

)
, then all the points

w ∈ X between x and y have the property that d(x,w) = πr
2

= d(y, w) =⇒ d(z, w) = πr
2

,

contradicting strictly convexity.

We recall the characterization of M -convexity by Khalil(1988) in [11], using line segment.

Definition 3.4.13. ([11, p.580]) Let (X, d) be a metric space. For x, y ∈ X, a curve joining

x and y in X is an image under a one-to-one continuous map γ of a closed interval I = [a, b]

into X such that γ(a) = x and γ(b) = y.

Definition 3.4.14. ([11, p.580]) Let (X, d) be a metric space, I = [a, b] a closed interval

and γ : I −→ X a curve. We define the length of a curve denoted by l(γ) as

l(γ) = sup
n

n∑
i=1

d(γ(ai−1), γ(ai))

where the supremum is taken over all n ∈ N and {a = a0, a1 . . . , an = b} is a partition of

[a, b].

Let (X, d) be an M -convex metric space and x, y ∈ X. For each n, let us define a set

E(n) ⊆ X as follows:

E(0) = {a(0, 0) = x, a(0, 1) = y}
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E(1) = {a(1, 0) = x, a(1, 1), a(1, 2) = y}

where a(1, 1) is the midpoint of x and y. Assume that E(n) has been defined such

that E(n) = {a(n, 0) = x, a(n, 1), a(n, 2), . . . , a(n, 2n) = y}, where a(n, k) = mid(a(n, k −
1), a(n, k + 1)), 0 < k < 2n. Then we define E(n+ 1) as follows:

E(n+ 1) = {a(n+ 1, 0) = x, a(n+ 1, 1), a(n+ 1, 2), . . . , a(n+ 1, 2n+1) = y},

where

a(n, k) =

mid(a(n, (k−1)
2

), a(n, (k+1)
2

)) if k is odd

a(n, k
2
) if k is even

for 0 < k < 2n. For each n we have,

d(x, y) =
2n−1∑
0

d(a(n, k), a(n, k + 1)).

Further, for all positive integers 0 < t < 2n, we have

d(a(n, t), a(n, s)) =
2n−1∑
k=s

d(a(n, k), a(n, k + 1)).

Set A(x, y) = ∪∞n=0E(n) and G[x, y] = clτ(d)A(x, y). Then G[x, y] is called a line segment

joining x and y.

Definition 3.4.15. ([11, p.582]) Let (X, d) be M -convex and for every x, y ∈ X such that

d(x, y) = λ and each t ∈ [0, 1], define

L(x, y) =
⋃

0≤t≤1

(Cd(x, (1− t)λ) ∩ Cd(y, tλ)) =
⋃

0≤r≤λ

(Cd(x, λ− r) ∩ Cd(y, r)) .

It follows from the construction of G[x, y] and Definition 3.3.7 that L[x, y] = G[x, y].

Theorem 3.4.16. ([11, Theorem 1.1]) Let (X, d) be an M-convex metric space and x, y ∈ X.

Then G[x, y] is a curve of minimum length joining x to y.

Proof. Let d(x, y) = 1, and Q be the rational numbers in [0, 1]. Define the map: γ : Q −→
A[x, y] such that γ(r) = a(n, k) ∈ E(n), when r = k

2k
and 0 < k < 2n. We show that γ is an

isometry from Q onto A(x, y). Now

d(γ(r), γ(s)) = d(a(n, r), a(n, s)) =
2n−1∑
k=s

d(a(n, k), a(n, k + 1))

=
2n−1∑
k=0

d(a(n, k), a(n, k + 1)) = d(r, s).

This implies that d(γ(r), γ(s)) = d(r, s) and so γ is an isometry. Let t ∈ [0, 1], and tn be a

decreasing sequence in Q such that tn −→ t. Since tn is a Cauchy sequence in Q and γ is an

isometry on Q, it follows that γ(tn) is a Cauchy sequence in G[x, y]. Further, d(γ(tn), x) is
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a decreasing sequence. Thus d(γ(tn), x) −→ t. Since (X, d) is M -convex, there exists z ∈ X
such that

Cd(x, t) ∩ Cd(y, 1− t) = {z}.

We claim that γ(tn) converges to z. Since d(γ(tn), x) is a decreases to t then d(γ(tn), x) > t,

and using the fact that (X, d) is M -convex, then we can find a unique zn such that

Cd(x, t) ∩ Cd(γ(tn, rn − t) = {zn},

where rn = d(γ(tn), x). Furthermore, d(y, γ(tn)) + d(γ(tn), x) = d(x, y), and d(γ(tn), zn) +

d(zn, x) = d(γ(tn), x). It follows that d(y, zn) + d(zn, x) = d(x, y). But d(zn, x) = t, since

(X, d) is M -convex then we have that zn = z. Since d(γ(tn), zn) −→ 0, γ(tn) −→ z.

We now define γ(t) = z. This establishes the extension of γ from Q to [0, 1]. But γ is an

isometry on Q. Hence γ is continuous (and an isometry by construction) on [0, 1]. This

completes the proof of the theorem.

We give the characterisation of an M-convex metric space.

Theorem 3.4.17. ([11, Theorem 1.2]) Let (X, d) be a metric space. Then (X, d) is M -

convex if and only if any two points x and y in X can be joined by a unique curve of length

d(x, y).

Proof. Let (X, d) be M -convex, and x, y ∈ X, with d(x, y) = λ. By Theorem 3.4.16, there is

a curve of length λ joining x to y, namely G[x, y]. Let γ be another curve of length λ joining

x to y. Since γ is connected and (X, d) is M -convex, it follows that zt = xt + (1 − t)y ∈ γ
for all t ∈ [0, 1]. Hence G[x, y) ⊂ γ. Now, since l(γ) = l(G[x, y]) = λ. Hence γ = G(x, y).

Conversely, let (X, d) be such that any two points of X are joined by a unique curve of

minimum length. If x, y ∈ X, d(x, y) = λ, let γ be the unique curve of length λ joining x to

y. Let E(t) = Cd(x, (1−t)λ)∩Cd(y, tλ), 0 ≤ t ≤ 1. Since γ is connected, E1(t) = γ∩S(x, (l−
t)λ)) 6= ∅, E2(t) = γ∩S(y, tλ) 6= ∅. We claim that E(t) 6= ∅. For if E(t) = ∅ then there exists

z1 ∈ E1 and z2 ∈ E2 such that d(z1, z2) > ε > 0. The set {γ−1(x), γ−1(z1), γ
−1(z2), γ

−1(y)}
is a partition of the domain of γ. Hence

l(γ) ≥ d(x, z1) + d(z1, z2) + d(z2, y) > d(x, y) + ε.

Hence E(t) 6= ∅. Now, we claim E(t) ⊆ γ. Let z ∈ E(t). By the hypothesis, there exist

unique curves γt1 and γt2 joining x to z and z to y, respectively, such that l(γt1) = d(x, z)

and l(γt1) = d(z, y). We may assume by using a standard scaling down method that the

domain of γt1 is [0, (1 − t)λ], and the domain of γt2 is [(1 − t)λ, λ]. Consider the function

γt0 : [0, λ] −→ X , defined by

γt0(s) =

γt1(s) on [0, (1− t)λ]

γt2(s) on [(1− t)λ, λ]

Then γt0(0) = x, γt0((1− t)λ) = z, γt0(λ) = y. Also γt0 is continuous, and l(γt0) =l(γt1)+ l(γt2) =

d(x, y) = l(γ). Consequently, γt0 = γ, for all t. Hence E(t) ⊂ γ. Finally, E(t) consists of one
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point for each t ∈ [0, 1]. For otherwise, one can easily see that l(γ) > d(x, y). Thus (X, d) is

M -convex.

3.5. Best Approximation in Metric Spaces

In this section, we recall the concept of best approximation in a convex metric space (X, d)

and give some properties of the metric d in terms of proximinality and Chebychevity of some

subset G of X.

Definition 3.5.1. Let G be a closed subset of a metric space (X, d). For a given x ∈ X \G,

a best approximation or nearest point to x from G is an element y ∈ G such that

d(x, y) = dist(x,G) = inf
z∈G

d(x, z).

The set of all best approximations to x from G is denoted by PG(x). That is

PG(x) = {y ∈ G : dist(x,G) = d(x, y)}.

Definition 3.5.2. Let G be a closed subset of a metric space (X, d). Then;

(i) G is called Proximinal if each x ∈ X has a best approximation in G i.e PG(x) 6= ∅
for each x ∈ X.

(ii) G is called Chebyshev if each x ∈ X has a unique best approximation in G. i.e the set

PG(x) consists of a singleton point.

(iii) A set valued function p : X −→P(X), mapping each x ∈ X to the set PG(x) is called

the nearest point map or a metric projection.

We now give some properties of the metric d in terms of proximinality and Chebyshevity of

some set in G.

Theorem 3.5.3. ([11, Theorem 2.1]) Let (X, d) be a Menger convex metric space. Then

the following are equivalent.

(i) (X, d) is M-convex.

(ii) Cd(z, r) is Chebyshev for all z ∈ X, r > 0.

(iii) PA(x) ∩ PA(y) = ∅ for x 6= y and all closed balls A in X.

Proof. (i) =⇒ (ii) Let Cd(z, r) be any closed ball. Let x ∈ X \ Cd(z, r) and d(x, z) = s =

r + λ. Then dist(x,Cd(z, r)) = λ. Since X is M -convex, then Cd(x, λ) ∩ Cd(z, r) = {y} for

some y ∈ X. This implies that PCd(z,r)(x) = {y} and so Cd(z, r) is Chebyshev.

(ii) =⇒ (iii) Suppose that PA(x) ∩ PA(y) 6= ∅ for some A = Cd(z, r) and some x, y ∈ A,

then ω ∈ PA(x) ∩ PA(y),

d(ω, x) = d(ω, y) = dist(ω,A).
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Then we have that x and y are best approximating elements of A = Cd(z, r) and therefore,

contradicting (ii). Hence, PA(x) ∩ PA(y) = ∅ for some x, y ∈ X and x 6= y.

(iii) =⇒ (i) Let x, y ∈ X and d(x, y) = λ. By convexity of (X, d), there exists a t ∈ [0, 1]

such that Cd(x, (1− t)λ) ∩ Cd(y, tλ) = E(t) 6= ∅
If z1, z2 ∈ E(t) and z1 6= z2, then

x ∈ PA(z1) ∩ PA(z2) 6= ∅

where A = Cd(y, tλ). However this contradicts (ii). Hence (X, d) is M -convex.

Definition 3.5.4 ([11]). Let (X, d) be a metric space. For x ∈ X and r > 0, the set

Sd(x, r) = {y ∈ X : d(x, y) = r} is called a sphere centred at x with radius r > 0.

Theorem 3.5.5. ([11, Theorem 2.2]) Let (X, d) be an M -convex metric space. The following

statements are equivalent:

(i) closed balls in X are convex.

(ii) If A is a closed convex subset in X and x /∈ A, then PA(x) is convex.

Proof. (i) =⇒ (ii) Suppose that Cd(x, δ) is convex. Let A be a closed convex subset of

X and x /∈ A. We show that the set PA(x) is convex. If PA(x) = ∅ then it is trivially

convex. Suppose that PA(x) is Chebyshev, that is PA(x) = {z}, then PA(x) is convex, since

every singleton set is convex. Suppose that PA(x) 6= ∅, and let z1, z2 ∈ PA(x) such that

d(z1, z2) = λ. Since z1, z2 ∈ PA(x), we have that d(x, z1) = d(x, z2) = dist(x,A). So that

if dist(x,A) = r, then we have that d(x, z1) = d(x, z2) = r then z1, z2 ∈ Cd(x, r). Since we

have assumed that closed balls are convex, they contain a curve joining the points z1 and

z2. That is, L[z1, z2] ⊆ Cd(x, r). Also since A is convex, we get L[z1, z2] ⊆ A. Consequently,

L[z1, z2] ⊆ Sd(x, r) and so l (L[z1, z2]) = dist(x,A) = r. Hence L[z1, z2] ⊆ PA(x). Therefore,

PA(x) is convex.

(ii) =⇒ (i) Let Cd(z, r) be a closed ball in (X, d) and x, y ∈ Cd(z, r). Suppose that Cd(z, r)

is not convex, that is, Cd(z, (1− t)λ) ∩ Cd(z, tλ) 6⊂ Cd(z, r) where λ = d(x, y). By Theorem

3.4.17 , x and y can be joined by a unique curve of length λ = d(x, y). If γ is this curve, then

by Theorem 3.4.17 γ is a convex closed set in (X, d). By connectedness of γ, there exists at

least two points z1 and z2 such that {z1, z2} ⊆ γ ∩ Sd(x, r). Then z1, z2 ∈ Pγ(z). However,

L[z1, z2] ( Pγ(z). This contradicts (ii), and so Cd(z, r) is a convex.

Theorem 3.5.6. ([11, Theorem 2.3]) Let (X, d) be an M-convex metric space in which every

proximinal convex set is Chebyshev. Then Cd(x, r) is convex for all z ∈ X and r > 0.

Proof. Let x, y ∈ Cd(x, r) with λ = d(x, y). If possible, let {Cd(x, λ−r)∩Cd(y, r)} /∈ Cd(z, r)
for some r ∈ [0, λ]. By Theorem 3.4.17, there exists distinct points z1, z2 ∈ Sd(x, r) such that

L[z1, z2] = γ is not contained in Cd(z, r). Since γ is compact (being the continuous image

of [0, d(z1, z2)]), then γ is proximinal. But z1, z2 ∈ Pγ(z) contradicting Chebyshevity of γ,

since γ is convex. Hence Cd(z, r) is convex.
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Theorem 3.5.7. ([11, Theorem 2.5]) Let (X, d) be a strictly convex metric space. Then

every proximinal convex set in (X, d) is Chebyshev.

Proof. Let G ⊆ X be proximinal and convex. Let z ∈ X \G such that PG(z) contains more

than one element. Let dist(z,G) = r, and consider {z1, z2} ⊆ PG(z). Since {z1, z2} ⊆ PG(z),

then we have d(z, z1) = d(z, z2) = dist(z,G) = r and so {z1, z2} ⊆ Cd(z, r). Let d(z1, z2) = λ.

Since {z1, z2} ⊆ Cd(z, r), it follows from the strict convexity of (X, d) that

w(t) = Cd(z1, (1− t)λ) ∩ Cd(z2, tλ) ∈ Bd(z, r).

The convexity of G implies that w(t) ∈ G. Since every strictly convex space is M -convex,

we have that w(t) is a singleton set. Hence, d(z1, z2) = λ = 0 and so z1 = z2. Hence G is

Chebyshev.
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CHAPTER 4

CONVEXITIES IN

T0-QUASI-METRIC SPACES

In this chapter, we begin investigating convexities in T0-quasi-metric spaces, namely; Menger

convexity, Takahashi convexity, strong and M -convexity. In metric spaces we saw that,

these convexities rely on the concept of betweenness, a fundamental concept in axiomatic

geometry. Therefore, we start by presenting betweenness in the more general setting of T0-

quasi-metric spaces. Thereafter, we present convexities in T0-quasi-metric spaces and some

best approximations for M -convex T0-quasi-metric spaces.

4.1. Betweenness in T0-quasi-metric spaces

In this section, we discuss the concept of betweenness and midpoints in T0-quasi-metric

spaces. This concept was first introduced by Blumenthal ([4]). We show that q-betweenness

does not necessarily imply q−1-betweenness.

Definition 4.1.1. (Compare with Definition 3.1.1) Let (X, q) be a T0-quasi-metric space

and x, y, z ∈ X. Then a point z is said to be;

(i) q-between x and y if and only if x 6= z 6= y,

q(x, z) + q(z, y) = q(x, y).

(ii) q−1-between x and y if and only if x 6= z 6= y,

q(y, z) + q(z, x) = q(y, x).

(iii) qs-between x and y if and only if x 6= z 6= y,

qs(x, z) + qs(z, y) = qs(x, y).

(iv) q, q−1-between x and y if and only if x 6= z 6= y,

q(x, z) + q(z, y) = q(x, y) and q(y, z) + q(z, x) = q(y, x).

(v) q+-between x and y if and only if x 6= z 6= y,

q+(x, z) + q+(z, y) = q+(x, y),

where q+ = q + q−1.
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We shall symbolize these relations in Definition 4.1.1 by [xzy]q, [xzy]q−1 , [xzy]qs , [xzy]q
−1

q

and [xzy]q+ respectively. Also, since q is a T0-quasi-metric, then [xzy]q implies x, y, z are

pairwise distinct, since q(x, y) > 0.

Remark 4.1.2. The following example shows that q-betweenness does not necessarily imply

q−1-betweenness.

Example 4.1.3. Let X = {1, 2, 3, 4} be a four point set, and let q be a T0-quasi-metric

defined by the distance matrix

M =


0 1 2 1

1 0 1 2

2 1 0 1

2 1 1 0


that is, q(i, j) = qi,j whenever i, j ∈ X. We show that 3 is q-between 2 and 4 but 3 is not

q−1-between 2 and 4. We notice that q(2, 4) = 2, q(2, 3) = 1, q(3, 4) = 1. Hence

q(2, 3) + q(3, 4) = q(2, 4).

This implies that 3 is q-between 2 and 4.

On the other hand, q(4, 2) = 1, q(4, 3) = 1 and q(3, 2) = 1. Hence

q(4, 3) + q(3, 2) 6= q(4, 2).

Therefore, 3 is not q−1-between 2 and 4.

The following Example shows that qs-betweenness does not necessarily implies q−1-betweenness.

Example 4.1.4. Consider again the four point set X = {1, 2, 3, 4}, and let q be a T0-quasi-

metric defined by the distance matrix

M =


0 1 2 1

1 0 1 2

2 1 0 1

2 1 1 0


that is, q(i, j) = qi,j whenever i, j ∈ X. Then, one sees that qs = q ∨ q−1 is defined by the

matrix

M s =


0 1 2 2

1 0 1 2

2 1 0 1

2 1 1 0


We show that 3 is qs-between 2 and 4. To see this we notice that, qs(2, 4) = 2, qs(2, 3) = 1

and qs(3, 4) = 1. Hence,

qs(2, 3) + qs(3, 4) = qs(2, 4).

Therefore, 3 is qs-between 2 and 4.
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Remark 4.1.5. We notice in Example 4.1.4 above that 3 is qs-between 2 and 4 but 3 is

not q−1-between 2 and 4. In general, we note that qs-between x and y does not necessarily

imply q−1-between x and y.

Proposition 4.1.6. Let (X, q) be a T0-quasi-metric space and x, y, z ∈ X. If z is q, q−1-

between x and y, then z is q+-between x and y.

Proof. Suppose that z is q, q−1-between x and y, then q(x, z)+q(z, y) = q(x, y) and q(y, z)+

q(z, x) = q(y, x). Adding the two equations q(x, z) + q(z, y) = q(x, y) and q(y, z) + q(z, x) =

q(y, x) gives

q(x, z) + q(z, x) + q(z, y) + q(y, z) = q(x, y) + q(y, x).

Therefore,

q+(x, z) + q+(z, y) = q+(x, y)

and so z is q+-between x and y.

We now introduce the concept of midpoints in T0-quasi-metric space.

Definition 4.1.7. (Compare with Definition 3.1.3) Let (X, q) be a T0-quasi-metric space

and x, y, z ∈ X. Then z is said to be a

(i) q-midpoint of x and y if x 6= z 6= y,

q(x, z) = q(z, y) =
1

2
q(x, y).

(ii) q−1-midpoint of x and y if x 6= z 6= y,

q(y, z) = q(z, x) =
1

2
q(y, x).

(iii) qs-midpoint of x and y on (X, qs) if and only if x 6= z 6= y,

qs(x, z) = qs(z, y) =
1

2
qs(x, y).

(iv) q, q−1-midpoint of x and y if and only if x 6= y 6= z,

q(x, z) = q(z, y) =
q(x, y)

2
and q(y, z) = q(z, x) =

q(y, x)

2
.

Let us note that the second condition in Definition 4.1.7 is just the first condition formulated

for the dual T0-quasi-metric. Evidently Definition 4.1.7 is analogous to Definition 3.1.3.

Remark 4.1.8. We notice that the following example shows that a point z can be q-midpoint

of x and y but not necessarily q−1-midpoint of x and y.

Example 4.1.9. Let X = {1, 2, 3, 4} be a four point set, and let q be a T0-quasi-metric

defined by the distance matrix

M =


0 1 2 1

1 0 1 2

2 1 0 1

2 1 1 0
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that is, q(i, j) = qi,j whenever i, j ∈ X. We show that 2 is q-midpoint of 1 and 3 but 2 is

not q−1-midpoint of 1 and 3. We notice that q(1, 3) = 2, q(1, 2) = 1, q(2, 3) = 1. Hence

q(1, 2) = q(2, 3) =
1

2
q(1, 3).

This implies that 2 is q-midpoint of 1 and 3.

However, q(3, 1) = 1, q(3, 2) = 1 and q(2, 1) = 1. Hence

q(3, 2) = q(2, 1) 6= 1

2
q(3, 1).

Therefore, 2 is not q−1-midpoint of 1 and 3.

Example 4.1.10. Consider again the four point set X = {1, 2, 3, 4}, and let q be a T0-quasi-

metric defined by the distance matrix

M =


0 1 2 1

1 0 1 2

2 1 0 1

2 1 1 0


that is, q(i, j) = qi,j whenever i, j ∈ X. Then, as before qs is given by the matrix

M s =


0 1 2 2

1 0 1 2

2 1 0 1

2 1 1 0


We show that 2 is a qs-midpoint of 1 and 3. To see this we notice that, qs(1, 3) = 2, qs(1, 2) =

1 and qs(2, 3) = 1. Hence,

qs(1, 2) = qs(2, 3) =
1

2
qs(1, 3).

Therefore, 2 is a qs-midpoint of 1 and 3 on (X, qs).

Remark 4.1.11. We notice in the Example 4.1.16 above that 2 is a qs-midpoint of 1 and 3

but 2 is not a q−1-midpoint 1 and 3. In general, we note that qs-midpoint of x and y does

not necessarily imply q−1-midpoint of x and y.

We now generalize a well known result introduced by Blumenthal [4] in metric spaces to the

setting of T0-quasi-metric spaces.

Theorem 4.1.12. (Compare with Theorem 3.1.4)

Let (X, q) be a T0-quasi-metric space. Then the relation of q, q−1-betweenness has the

following properties:

(i) If [xzy]q
−1

q then [yzx]q
−1

q (symmetry of the outer points).

(ii) If [xzy]q
−1

q then neither [xyz]q
−1

q nor [zxy]q
−1

q holds (special inner points).

(iii) [xzy]q
−1

q and [xys]q
−1

q are equivalent to [xzs]q
−1

q and [zys]q
−1

q .
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(iv) If x, y ∈ X, the set B̄q−1

q (x, y) = {x} ∪ {y} ∪Bq−1
q (x, y), where Bq−1

q (x, y) is the set of

all points q, q1-between x and y is τ(qs)-closed.

Proof. (i) If [xzy]q
−1

q then x 6= z 6= y, q(x, y) = q(x, z) + q(z, y) and q(y, x) = q(y, z) +

q(z, x) and so by definition, we have that [yzx]q
−1

q .

(ii) Since [xzy]q
−1

q implies x 6= z 6= y,

q(x, z) + q(z, y) = q(x, y) (4.1)

and

q(y, z) + q(z, x) = q(y, x) (4.2)

Also, [xyz]q
−1

q implies x 6= y 6= z,

q(x, y) + q(y, z) = q(x, z) (4.3)

and

q(z, y) + q(y, x) = q(z, x) (4.4)

Adding Equation 4.1 and Equation 4.3 we obtain

q(z, y) + q(y, z) = 0 (4.5)

Adding Equation 4.2 and Equation 4.4 gives

q(y, z) + q(z, y) = 0 (4.6)

Furthermore, adding Equation 4.5 and Equation 4.6 we have

2(q(z, y) + q(y, z)) = 0.

This implies that q+(z, y) = 0. Since q+ is a metric, z = y. This contradicts that

z 6= y. Hence, [xyz]q
−1

q does not hold. Similarly, [zxy]q
−1

q cannot hold too.

(iii) Suppose that [xzy]q
−1

q holds, then we have that x 6= y 6= z,

q(x, z) + q(z, y) = q(x, y) (4.7)

and

q(y, z) + q(z, x) = q(y, x) (4.8)

Also, suppose that [xys]q
−1

q holds, then we have that x 6= y 6= s,

q(x, y) + q(y, s) = q(x, s) (4.9)

and

q(s, y) + q(y, x) = q(s, x) (4.10)
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Adding Equation 4.7 and Equation 4.9 obtain the equation

q(x, z) + q(z, y) + q(y, s) = q(x, s) (4.11)

Also, adding Equation 4.8 and Equation 4.10 we have

q(y, z) + q(z, x) + q(s, y) = q(s, x) (4.12)

Now, applying the triangle inequality to Equation 4.11, we have

q(x, s) = q(x, z) + q(z, y) + q(y, s)

≥ q(x, z) + q(z, s)

≥ q(x, s)

which implies that q(x, s) = q(x, z) + q(z, s). Now, substituting this result in Equation

4.11, we obtain q(z, s) = q(z, y) + q(y, s). Similarly, applying the triangle inequality to

Equation 4.12, we obtain q(s, x) = q(s, z) + q(z, x) and also substituting this results

in Equation 4.12 we have q(s, z) = q(s, y) + q(y, z). Since each two points are pairwise

distinct and q(x, s) = q(x, z) + q(z, s) and q(s, x) = q(s, z) + q(z, x), then we have

that [xzs]q
−1

q . Also, since each two points are pairwise distinct and also q(z, s) =

q(z, y) + q(y, s) and q(s, z) = q(s, y) + q(y, z), then we obtain [zys]q
−1

q . The converse

follows directly from above argument.

(iv) We show that if z is a τ(qs)-accumulation element of B̄q−1

q (x, y), with x 6= z 6= y, then

z ∈ B̄q−1

q (x, y). Since z is a τ(qs)-accumulation point, there exist a sequence {zn} that

is τ(q)-convergent and τ(q−1)-convergent to z, where zn ∈ B̄q−1

q (x, y). Therefore,

q(x, zn) + q(zn, y) = q(x, y)

and

q(y, zn) + q(zn, x) = d(y, x)

for all n ∈ N. From the continuity of the T0-quasi-metrics q and q−1, we obtain

q(x, z) + q(z, y) = q(x, y)

and

q(y, z) + q(z, x) = q(y, x).

Therefore, z ∈ B̄q−1

q (x, y) and so B̄q−1

q (x, y) is τ(qs)-closed.

.

4.2. Menger convexity in T0-quasi-metric spaces

In this section, we generalise Menger convexity, which was introduced by Karl Menger [21]

in 1928, to the framework of T0-quasi-metric spaces.
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Definition 4.2.1. (Compare with Definition 3.2.3) A T0-quasi-metric space (X, q) is said

to be Menger convex if for every distinct points x and y of X and t ∈ [0, 1], there exists a

point z ∈ X such that

(i) q(x, z) = tq(x, y) and q(z, y) = (1− t)q(x, y).

(ii) q(y, z) = (1− t)q(y, x) and q(z, x) = tq(y, x).

We notice that condition (ii) of Definition 4.2.1 is formulated for the dual T0-quasi-metric.

We observe that if q has symmetry, then we have that q(x, z) = q(z, x) = tq(x, y) = tq(y, x)

which implies q(x, z) = tq(x, y). Similarly, q(z, y) = (1− t)q(x, y) = q(y, z) = (1− t)q(y, x)

which implies q(z, y) = (1−t)q(x, y). Hence, obtaining the conditions (i) and (ii) of Definition

3.2.3.

Remark 4.2.2. (Compare with Remark 3.2.4) We notice that a T0-quasi-metric space (X, q)

is said to be Menger convex if for any two distinct points x and y of X, there exists a point

z ∈ X with x 6= z 6= y such that

q(x, z) + q(z, y) = q(x, y) and q(y, z) + q(z, x) = q(y, x).

We notice that we have just added conditions (i) and (ii) respectively in Definition 4.2.1 to

obtain the result in above remark.

Example 4.2.3. (Compare with Example 3.2.5) Let X = Q be the set of rational numbers

and q be a T0-quasi-metric defined by q(x, y) = max{x− y, 0} for all x, y ∈ X. Then (X, q)

is a Menger convex T0-quasi-metric space.

Proof. Let x, y ∈ X, x 6= y, set z = x+y
2
∈ X, then we have

q(x, z) = max

{
x− z, 0

}
= max

{
x− x+ y

2
, 0

}
= max

{
2x− x− y

2
, 0

}
=

1

2

(
max

{
x− y, 0

})
=

1

2
q(x, y)

and

q(z, y) = max

{
z − y, 0

}
= max

{
x+ y

2
− y, 0

}
= max

{
x− y

2
, 0

}
=

1

2

(
max

{
x− y, 0

})
=

1

2
q(x, y)

Thus, q(x, z) + q(z, y) = 1
2
q(x, y) + 1

2
q(x, y) = q(x, y) for all x, y, z ∈ X.

In a similar manner,

q(y, z) = max

{
y − z, 0

}
= max

{
y − x+ y

2
, 0

}
= max

{
2y − y − x

2
, 0

}
=

1

2

(
max

{
y − x, 0

})
=

1

2
q(y, x)
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and

q(z, x) = max

{
z − x, 0

}
= max

{
x+ y

2
− x, 0

}
= max

{
y − x

2
, 0

}
=

1

2

(
max

{
y − x, 0

})
=

1

2
q(y, x)

Thus, q(y, z) + q(z, x) = 1
2
q(y, x) + 1

2
q(y, x) = q(y, x) for all x, y, z ∈ X. Therefore, by

Remark 4.2.2 (X, q) is a Menger convex T0-quasi-metric space.

The following Proposition is adapted from Proposition 3.2.6, but here we use the property

of double balls.

Proposition 4.2.4. Let (X, q) be a T0-quasi-metric space. Then (X, q) is Menger convex if

and only if for every x, y ∈ X with x 6= y we have

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) 6= ∅,

where q(x, y) = λ1, q(y, x) = λ2 and 0 ≤ r ≤ λ1 and 0 ≤ s ≤ λ2.

Proof. Suppose that for every x, y ∈ X with x 6= y we have

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) 6= ∅,

where q(x, y) = λ1, q(y, x) = λ2 and 0 ≤ r ≤ λ1 and 0 ≤ s ≤ λ2. Let x, y ∈ X, t ∈ [0, 1]

with λ1 = q(x, y) and λ2 = q(y, x). Then 0 ≤ tλ1 ≤ λ1 and 0 ≤ tλ2 ≤ λ2. Let r1 = tλ1 and

r2 = λ1 − tλ1 = (1− t)λ1. Also, let s1 = tλ2 and s2 = λ2 − tλ2 = (1− t)λ2. There exists

z ∈ Cq(x, r1) ∩ Cq−1(x, s1) ∩ Cq(y, r2) ∩ Cq−1(y, s2),

so that q(x, z) ≤ r1, q(z, x) ≤ s1 and q(y, z) ≤ s2, q(z, y) ≤ r2.

Consider

q(x, y) ≤ q(x, z) + q(z, y)

≤ r1 + r2

= λ1 = q(x, y).

Then q(x, y) = q(x, z) + q(z, y). Also,

q(y, x) ≤ q(y, z) + q(z, x)

≤ s1 + s2

= λ2 = q(y, x).

Then q(y, x) = q(y, z) + q(z, x). Therefore, we have

(i) q(x, z) = r1 = tq(x, y) and q(z, y) = r2 = (1− t)q(x, y)

(ii) q(y, z) = s1 = (1− t)q(y, x) and q(z, x) = s2 = tq(x, y).
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Hence (X, q) is Menger convex.

Conversely, suppose (X, q) is Menger convex. Let x, y ∈ X be such that q(x, y) = λ1 and

q(y, x) = λ2. Let r ∈ [0, λ1] and s ∈ [0, λ2]. We want to show that

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) 6= ∅.

Let t = r
λ1

, then t ∈ [0, 1], and by the Menger convexity of (X, q) there exists z ∈ X such

that

q(x, z) = tq(x, y) = tλ1 = r

and

q(z, y) = (1− t)q(x, y) = (1− t)λ1 = λ1 − r.

Also, by letting t = s
λ2

, we have t ∈ [0, 1], and by Menger convexity of (X, q), there exists

z ∈ X such that

q(y, z) = (1− t)q(x, y) = (1− t)λ1 = λ2 − s

and

q(z, x) = tq(x, y) = tλ2 = s.

This implies that

z ∈ Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s).

Hence

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) 6= ∅.

4.3. Takahashi convexity in T0-quasi-metric spaces

We now recall the definition of Takahashi convexity in T0-quasi-metric spaces. This was

extensively studied by Künzi [19]. We will later show the relationship between Takahashi

convexity and Menger convexity in T0-quasi-metric spaces.

Definition 4.3.1. (Compare with Definition 3.3.1) Let (X, q) be a T0-quasi-metric space.

A mapping W : X ×X × [0, 1] −→ X is said to be a Takahashi convex structure (TCS) on

X if for all x, y ∈ X and λ ∈ [0, 1], the following two conditions are satisfied:

(i) q(u,W (x, y, λ)) ≤ λq(u, x) + (1− λ)q(u, y) and

(ii) q(W (x, y, λ), u) ≤ λq(x, u) + (1− λ)q(y, u) whenever u ∈ X.

The T0-quasi-metric space (X, q) together with a convex structure W is called a convex

T0-quasi-metric space.

We note that condition (ii) is formulated for the dual T0-quasi-metric and so by definition

if W is TCS for (X, q), then it is also a TCS for (X, q−1).
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Definition 4.3.2 (Compare with Definition 3.3.3 ). Let (X, q) be a T0-quasi-metric space

with TCS W on X. A subset K of X is said to be convex provided that W (x, y, λ) ∈ K for

all x, y ∈ K and λ ∈ [0, 1].

The following proposition shows that the intersection of convex subsets in T0-quasi-metric

spaces is convex:

Proposition 4.3.3. (Compare with Proposition 3.3.8) Let (X, q) be a T0-quasi-metric space

with a TCS on X. Let {Kα}α∈A be a family of convex subsets of X, then
⋂
α∈AKα is

convex.

Proof. Follows in the same way as Proposition 3.3.8.

The following proposition shows that the closed and open backwards and forward balls in

T0-quasi-metric space with TCS are convex:

Proposition 4.3.4. (Compare with Proposition 3.3.9) Let (X, q) be a T0-quasi-metric space

with W as TCS on X. Then for any x ∈ X and δ > 0 the open balls Bq(x, δ) and Bq−1(x, δ),

and the closed balls Cq(x, δ) and Cq−1(x, δ) in X are convex subsets of X.

Proof. Follows in the same way as Proposition 3.3.9.

Proposition 4.3.5. ([19, Remark 2]) Let (X, q) be a T0-quasi-metric space with W as TCS

on X, then W is a TCS for the metric q+ = q + q−1 on X.

Proof. Let x, y ∈ X and λ ∈ [0, 1]. Since W is a TCS on (X, q), then we have that

q(u,W (x, y, λ)) ≤ λq(u, x) + (1− λ)q(u, y) (4.13)

and

q(W (x, y, λ), u) ≤ λq(x, u) + (1− λ)q(y, u). (4.14)

Also, since W is a TCS on (X, q−1) we have that

q−1(u,W (x, y, λ)) ≤ λq−1(u, x) + (1− λ)q−1(u, y) (4.15)

q−1(W (x, y, λ), u) ≤ λq−1(x, u) + (1− λ)q−1(y, u). (4.16)

Now, adding (4.13) and (4.15) we obtain

q+(u,W (x, y, λ)) = q(u,W (x, y, λ)) + q−1(u,W (x, y, λ))

≤ λ
(
q(u, x) + q−1(u, x)

)
+ (1− λ)

(
q(u, y) + q−1(u, y)

)
= λq+(u, x) + (1− λ)q+(u, y).

Hence we have q+(u,W (x, y, λ)) ≤ λq+(u, x) + (1− λ)q+(u, y).

Similarly, adding (4.14) and (4.16) we obtain q+(W (x, y, λ), u) ≤ λq+(x, u) + (1−λ)q+(y, u)

and so W is a TCS with the metric q+.
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Proposition 4.3.6. ([19, Remark 4]) If W (x, y, λ) is a TCS on a T0-quasi-metric space

(X, q), then W−1(x, y, λ) := W (y, x, 1 − λ) whenever x, y ∈ X and λ ∈ [0, 1] is a TCS on

(X, q).

Proof. Let x, y ∈ X and λ ∈ [0, 1]. Since W (x, y, λ) is a TCS on X, then

q
(
u,W−1(x, y, λ)

)
= q (u,W (y, x, 1− λ))

≤ (1− λ)q(u, y) + (1− (1− λ))q(u, x)

= λq(u, x) + (1− λ)q(u, y),

and similarly,

q
(
W−1(x, y, λ), u

)
= q (W (y, x, 1− λ), u)

≤ (1− λ)q(y, u) + (1− (1− λ))q(x, u)

= λq(x, u) + (1− λ)q(y, u),

whenever u ∈ X. Hence, W−1(x, y, λ) is a TCS on X.

The next two results give some general properties of a Takahashi convexity structure in

T0-quasi-metric spaces:

Proposition 4.3.7. (Compare with Proposition 3.3.11) Let (X, q) be a T0-quasi-metric space

with TCS W on X. Then we have the following for all x, y ∈ X and λ ∈ [0, 1]:

(i) W (x, x, λ) = x and

(ii) W (y, x, 0) = x and W (y, x, 1) = y.

Proof. We note that the proof of these properties relies on a T0-property:

(i) To see this, let x, y ∈ X and λ ∈ [0, 1], then q(x,W (x, x, λ)) ≤ λq(x, x) + (1 −
λ)q(x, x) = 0. Similarly, q(W (x, x, λ), x) ≤ λq(x, x) + (1 − λ)q(x, x) = 0 and so

W (x, x, λ) = x by the T0-property of (X, q).

(ii) Let x, y ∈ X and λ ∈ [0, 1], then we have that q(x,W (y, x, 0)) ≤ 0.q(x, y) + (1 −
0)q(x, x) = 0 and also, q(W (y, x, 0), x) ≤ 0.q(y, x) + (1 − 0)q(x, x) = 0 and so by

T0-property we have W (y, x, 0) = x. Similarly, q(y,W (y, x, 1)) ≤ 1.q(y, y) + (1 −
1)q(y, x) = 0 and also q(W (y, x, 1), y) ≤ 1.q(y, y) + (1 − 1)q(x, y) = 0. Thus by

T0-property we have W (y, x, 1) = y.

Proposition 4.3.8. (Compare with Proposition 3.3.10) Let (X, q) be a T0-quasi-metric space

with TCS W . For any x, y ∈ X and λ ∈ [0, 1], we have

q(x, y) = q(x,W (x, y, λ)) + q(W (x, y, λ), y)

and

q(y, x) = q(y,W (x, y, λ)) + q(W (x, y, λ), x).
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Proof. Let x, y ∈ X and λ ∈ [0, 1]. Since W is a TCS on T0-quasi-metric space (X, q), then

by the triangle inequality we have

q(x, y) ≤ q(x,W (x, y, λ)) + q(W (x, y, λ), y)

≤ λq(x, x) + (1− λ)q(x, y) + λq(x, y) + (1− λ)q(y, y)

= (1− λ)q(x, y) + λq(x, y)

= q(x, y)

and thus q(x, y) = q(x,W (x, y, λ)) + q(W (x, y, λ), y).

Similar argument shows that q(y, x) = q(y,W (x, y, λ)) + q(W (x, y, λ), x).

From the conclusions of the above Proposition 4.3.7, we can also derive the following results.

Proposition 4.3.9. (Compare with Lemma 3.3.12) Let (X, q) be a T0-quasi-metric space

with TCS W . For any x, y ∈ X and λ ∈ [0, 1], we have

(i) q(x,W (x, y, λ)) = (1− λ)q(x, y) and q(W (x, y, λ), y) = λq(x, y).

(ii) q(y,W (x, y, λ)) = λq(y, x) and q(W (x, y, λ), x) = (1− λ)q(y, x).

Proof. (i) Since X is a T0-quasi-metric space with TCS W , for any x, y ∈ X and λ ∈ [0, 1],

we have

q(x,W (x, y, λ)) ≤ λq(x, x) + (1− λ)q(x, y) = (1− λ)q(x, y)

which implies

q(x,W (x, y, λ)) ≤ (1− λ)q(x, y) (4.17)

Using the triangle inequality and the fact that W is a TCS, we have that

q(x, y) ≤ q(x,W (x, y, λ)) + q(W (x, y, λ), y)

≤ q(x,W (x, y, λ)) + λq(x, y) + (1− λ)q(y, y)

= q(x,W (x, y, λ)) + λq(x, y)

which gives

(1− λ)q(x, y) ≤ q(x,W (x, y, λ)) (4.18)

Hence, combining 4.17 and 4.18 gives q(x,W (x, y, λ)) = (1−λ)q(x, y) whenever x, y ∈
X and λ ∈ [0, 1]. A similar argument shows that q(W (x, y, λ), y) = λq(x, y) for all

x, y ∈ X and λ ∈ [0, 1].

(ii) Similarly, for any x, y ∈ X and λ ∈ [0, 1] we have that

q(y,W (x, y, λ)) ≤ λq(y, x) + (1− λ)q(y, y) = λq(y, x)
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which gives

q(y,W (x, y, λ)) ≤ λq(y, x). (4.19)

Using the triangle inequality and the fact that W is a TCS, we have that

q(y, x) ≤ q(y,W (x, y, λ)) + q(W (x, y, λ), x)

≤ q(y,W (x, y, λ)) + λq(x, x) + (1− λ)q(y, x)

= q(y,W (x, y, λ)) + (1− λ)q(y, x)

which implies

λq(y, x) ≤ q(y,W (x, y, λ)). (4.20)

Hence, combining 4.19 and 4.20 we have that q(y,W (x, y, λ)) = λq(y, x) for all x, y ∈
X and λ ∈ [0, 1]. A similar argument shows that q(W (x, y, λ), x) = (1 − λ)q(x, y)

whenever x, y ∈ X and λ ∈ [0, 1].

Takahashi [28] does not require any continuity in his definition of convex structure for metric

spaces. However, we can sometimes make the assumption that W satisfies some additional

properties of continuity. We next give a result for a general convexity structure of T0-quasi-

metric space that is analogous to a well known result in metric spaces.

Proposition 4.3.10. (Compare with Theorem 3.3.18) Let W be a TCS on a T0-quasi-metric

space (X, q). Then for any x ∈ X and λ ∈ [0, 1], W is continuous at (x, x, λ) in X×X×[0, 1]

where X carries the topology τ(q) or τ(q−1).

Proof. Let ((xn, yn, λn)) be a sequence in X × X × [0, 1] converging to (x, x, λ) where X

is equipped with the topology τ(q). By Proposition 4.3.7, we have that W (x, x, λ) = x,

so it suffices to show that W (xn, yn, λn) converges to x. Since the sequence (xn) converges

to x with respect to the topology τ(q), for any ε > 0, there exists N1 ∈ N such that

q(x, xn) < ε for all n ≥ N1. Also, since (yn) converges to x with respect to the topology

τ(q), for any ε > 0, there exists N2 ∈ N such that q(x, yn) < ε for all n ≥ N2. Now, for all

n ≥ N := max{N1, N2} and using condition (i) of Definition 4.3.1 we have

q(x,W (xn, yn, λn)) ≤ λnq(x, xn) + (1− λn)q(x, yn)

< λnε+ (1− λn)ε

= λnε+ ε− λnε

= ε.

Hence, we have that W (xn, yn, λn) converges to x with respect to topology τ(q) . Similarly,

by condition (ii) of Definition 4.3.1 the analogous results holds if we work with the topology

τ(q−1) on X.
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We now look at the standard convexity structure in an asymmetric normed real vector space

X.

Definition 4.3.11. ([19, Definition 2]) Let (X, q) be a T0-quasi-metric space with TCS W

on X, then W is said to be synchronised if W−1(x, y, λ) = W (x, y, λ) whenever x, y ∈ X

and λ ∈ [0, 1].

Definition 4.3.12. (Compare with Definition 3.3.26) We say that a TCS W on a T0-quasi-

metric space (X, q) has condition (C) if W (x, y, λ) = W (y, x, 1− λ) whenever x, y ∈ X and

λ ∈ [0, 1].

Example 4.3.13. ([19, Example 4]) Let A be a convex subset of a real vector space X

equipped with the asymmetric norm ||.|. Then S(x, y, λ) = xλ + (1 − λ)y for all x, y ∈ A
and λ ∈ [0, 1] defines a synchronised convex structure for the T0-quasi-metric space (A, q)

where q(x, y) = ||x− y| whenever x, y ∈ A.

Proof. For any x, y ∈ A and λ ∈ [0, 1] we have

q(S(x, y, λ), u) = ||S(x, y, λ)− u|

= ||xλ+ (1− λ)y − u|

= ||xλ+ (1− λ)y − (uλ+ (1− λ)u)|

= ||λ(x− u) + (1− λ)(y − u)|

≤ λ||x− u|+ (1− λ)||y − u|

= λq(x, u) + (1− λ)q(y, u)

Hence, condition (i) of Definition 4.3.1 is satisfied by S(x, y, λ). Similarly, for any x, y, u ∈ A
and λ ∈ [0, 1],

q(u, S(x, y, λ)) = |u− S(x, y, λ)||

= |u− xλ− (1− λ)y|| = |(uλ+ (1− λ)u)− (xλ+ (1− λ)y)||

= |λ(u− x) + (1− λ)(u− y)|| ≤ λ|u− x||+ (1− λ)|u− y||

= λq(u, x) + (1− λ)q(u, y)

Hence, condition (ii) of Definition 4.3.1 is also satisfied. Therefore, S(x, y, λ) is a TCS on

A. To show that S(x, y, λ) is synchronised convexity structure on A, we need to show that

S(x, y, λ) = S(y, x, 1− λ) whenever x, y ∈ A and λ ∈ [0, 1]. To see this, we have

S(x, y, λ) = λx+ (1− λ)y

= (1− 1 + λ)x+ (1− λ)y

= (1− (1− λ))x+ (1− λ)y

= S(y, x, 1− λ)

Hence, indeed S(x, y, λ) whenever x, y ∈ A and λ ∈ [0, 1] is a synchronised convexity struc-

ture on A.
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Remark 4.3.14. ([19, Remark 7]) We note that the crucial property in the preceding result

is the condition that S(x+ u, y + u, λ) = S(x, y, λ) + u whenever x, y, u ∈ X and λ ∈ [0, 1].

Such convexity structure W in a real vector space X is said to be translation-invariant.

Proposition 4.3.15. ([19, Remark 8]) Suppose that W (x, y, λ) and W ′(x, y, λ) are convexity

structures in an asymmetric normed space (X, ||.|), then for each α ∈ [0, 1], Wα(x, y, λ) =

αW (x, y, λ) + (1 − α)W ′(x, y, λ) is also a convexity structure for a T0-quasi-metric space

(X, q) where q(x, y) = ||x− y| whenever x, y ∈ X.

Proof. We show that Wα(x, y, λ) satisfies the two conditions of Definition 4.3.1. For any

x, y ∈ X and λ ∈ [0, 1], we have

q(Wα(x, y, λ), u) = ||Wα(x, y, λ)− u|

= ||αW (x, y, λ) + (1− α)W ′(x, y, λ)− u|

= ||αW (x, y, λ) + (1− α)W ′(x, y, λ)− (αu+ (1− α)u)|

≤ α||W (x, y, λ)− u|+ (1− α)||W ′(x, y, λ)− u|

= αq(W (x, y, λ), u) + (1− α)q(W ′(x, y, λ), u)

≤ αλq(x, u) + α(1− λ)q(y, u) + λ(1− α)q(x, u) + (1− α)(1− λ)q(y, u)

= αλq(x, u) + λ(1− α)q(x, u) + α(1− λ)q(y, u) + (1− α)(1− λ)q(y, u)

= λq(x, u)(α + 1− α) + (1− λ)q(y, u)(α + 1− α)

= λq(x, u) + (1− λ)q(y, u),

proving (i) of Definition 4.3.1. A similar argument shows that Wα(x, y, λ) satisfies inequality

(ii) of Definition 4.3.1. Therefore, Wα(x, y, λ) is a TCS on X.

Definition 4.3.16. (Compare with Definition 3.3.13) Let (X, q) be a T0-quasi-metric space.

We say that (X, q) is said to be strictly convex if for each x, y ∈ X and λ ∈ [0, 1], there

exists a unique w(x, y, λ) ∈ X such that

(i) q(x,w(x, y, λ)) = (1− λ)q(x, y) and q(w(x, y, λ), y) = λq(x, y)

(ii) q(y, w(x, y, λ)) = λq(y, x) and q(w(x, y, λ), x) = (1− λ)q(y, x).

From Proposition 4.3.9, we observe that, any TCS W satisfies the conditions of Definition

4.3.16, and see that a strictly convex T0-quasi-metric space admits at most one convex

structure.

In the following example, we show that a T0-quasi-metric space (X, q) may be strictly convex

but (X, qs) is not strictly convex. Therefore, we can conclude that strict convexity on (X, q)

does not necessarily imply strict convexity on (X, qs).

Example 4.3.17. ([19, Example 5]) Let R2 be equipped with the asymmetric norm ||x| =
max{||x1|, ||x2|} where x = (x1, x2) and the associated T0-quasi-metric q. Let us consider

the points x = (0, 0) and y = (2, 0) in R2. Then we have that

q(x, y) = ||x− y| = ||(0, 0)− (2, 0)| = ||(−2, 0)| = max{|| − 2|, ||0|} = 0.
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Also, we have

q(y, x) = ||y − x| = ||(2, 0)− (0, 0)| = ||(2, 0)| = max{||2|, ||0|} = 2.

Thus, q(x, y) = 0 and q(y, x) = 2. Therefore, we obtain the system of equation at (x, y):

q(x,W (x, y, λ)) = 0, q(W (x, y, λ), y) = 0, q(y,W (x, y, λ)) = 2λ and q(W (x, y, λ), x) =

2(1 − λ) with λ ∈ [0, 1] and W (x, y, λ) = ((W (x, y, λ))1, (W (x, y, λ))2). We now show

that W (x, y, λ) is unique. Since q(x,W (x, y, λ)) = 0, then

0 = q(x,W (x, y, λ)) = ||(0, 0)− ((W (x, y, λ))1, (W (x, y, λ))2))|

= ||(−(W (x, y, λ))1,−(W (x, y, λ))2)|

= max{|| − (W (x, y, λ))1|, || − (W (x, y, λ))2|}.

Now, for max{||−(W (x, y, λ))1|, ||−(W (x, y, λ))2|} = 0, we must have that ||(W (x, y, λ))1| ≥
0 and ||(W (x, y, λ))2| ≥ 0. Also, since q(W (x, y, λ), y) = 0, then

0 = q(W (x, y, λ), y) = ||W (x, y, λ)− y|

= ||((W (x, y, λ))1, (W (x, y, λ))2)− (2, 0)|

= ||((W (x, y, λ))1 − 2, (W (x, y, λ))2)|

= max{||(W (x, y, λ))1 − 2|, ||(W (x, y, λ))2|}.

Now, for max{||(W (x, y, λ))1− 2|, ||(W (x, y, λ))2|} = 0, we must have (W (x, y, λ))1 ≤ 2 and

(W (x, y, λ))2 ≤ 0. Hence, we see that 0 ≤ ||(W (x, y, λ))1| ≤ 2 which can be written as

(W (x, y, λ))1 = 2 − 2λ for all λ ∈ [0, 1] and also (W (x, y, λ))2 = 0 and therefore, we have

W (x, y, λ) = (2− 2λ, 0) for all λ ∈ [0, 1]. Therefore, W (x, y, λ) is unique for each λ ∈ [0, 1]

and so (R2, q) is strictly convex T0-quasi-metric space.

Let us now look at the symmetrised metric space (R2, qs) with the same points x and y.

Then we have two equations qs(y,W (x, y, λ)) = 2tλ and qs(W (x, y, λ), x) = 2(1− λ). Now,

2λ = qs(y,W (x, y, λ)) = ||y −W (x, y, λ)|

= ||(2, 0)− ((W (x, y, λ))1, (W (x, y, λ))2)|

= ||(2− (W (x, y, λ))1,−(W (x, y, λ))2)|

= max{||2− (W (x, y, λ))1|, || − (W (x, y, λ))2|}.

Now, for max{||2 − (W (x, y, λ))1|, || − (W (x, y, λ))2|} = 2λ, implies that ||(W (x, y, λ))1| ≥
2(1− λ) and ||(W (x, y, λ))2| ≥ 2λ for all λ ∈ [0, 1]. Also, similarly

2(1− λ) = qs(W (x, y, λ), y) = ||W (x, y, λ)− y|

= ||((W (x, y, λ))1, (W (x, y, λ))2)− (2, 0)|

= ||((W (x, y, λ))1 − 2, (W (x, y, λ))2)|

= max{||(W (x, y, λ))1 − 2|, ||(W (x, y, λ))2|}.
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Now, for max{||(W (x, y, λ))1−2|, ||(W (x, y, λ))2|} = 2(1−λ), implies that ||(W (x, y, λ))1| ≤
2(1−λ) and ||(W (x, y, λ))2| ≤ 2(1−λ) for all λ ∈ [0, 1]. This gives us (W (x, y, λ))1 = 2(1−λ)

and 2λ ≤ ||(W (x, y, λ))2| ≤ 2(1−λ) for all λ ∈ [0, 1]. Hence, we haveW (x, y, λ) = (2−2λ, 2λ)

if λ ≤ 1
2

and W (x, y, λ) = (2−2λ, 2−2λ) if λ > 1
2

as the solution to these equations. Also, we

have that W (x, y, λ) = (2 − 2λ, 0) with λ ∈ [0, 1] also solves the system of equation. Thus,

the system do not have a unique solution. Therefore, (X, qs) is not necessarily a strictly

convex T0-quasi-metric space.

We now introduce another condition related to strict convexity in T0-quasi-metric spaces in

the spirit of an analogous condition due to Talman [29] in metric spaces.

Definition 4.3.18. (Compare with Definition 3.3.14) Let W be a TCS on a T0-quasi-

metric space (X, q). We say that W is a unique TCS if for any w ∈ X such that there exists

(x, y, λ) ∈ X ×X × [0, 1] with

q(z, w) ≤ λq(z, x) + (1− λ)q(z, y) and q(w, z) ≤ λq(x, z) + (1− λ)q(y, z)

whenever z ∈ X, we have that w = W (x, y, λ).

Lemma 4.3.19. (Compare Lemma 3.3.15) Let W be a unique TCS on a T0-quasi-metric

space (X, q). Then for every x, y ∈ X and α, β ∈ [0, 1], we have

W (W (x, y, β), y, α) = W (x, y, αβ).

Proof. Let x, y ∈ X and α, β ∈ [0, 1]. Then

q(z,W (W (x, y, β), y, α)) ≤ αq(z,W (x, y, β)) + (1− α)q(z, y)

≤ α (βq(z, x) + (1− β)q(z, y)) + (1− α)q(z, y)

= αβq(z, x) + α(1− β)q(z, y) + (1− α)q(z, y)

= αβq(z, x) + (α− αβ + 1− α)q(z, y)

= αβq(z, x) + (1− αβ)q(z, y).

Similarly,

q(W (W (x, y, β), y, α), z) ≤ αq(W (x, y, β), z) + (1− α)q(y, z)

≤ α (βq(x, z) + (1− β)q(y, z)) + (1− α)q(y, z)

= αβq(x, z) + α(1− β)q(y, z) + (1− α)q(y, z)

= αβq(x, z) + (α− αβ + 1− α)q(y, z)

= αβq(z, x) + (1− αβ)q(y, z).

Thus by uniqueness of W , we have that W (W (x, y, β), y, α) = W (x, y, αβ).

The following Proposition is as a result of a theorem in metric setting:

Proposition 4.3.20. (Compare with Theorem 3.3.19) Let (X, q) be a T0-quasi-metric space

with a unique TCS W such that X is τ(qs)-compact. Then the mapping W : X × X ×
[0, 1] −→ X is continuous, with respect to τ(qs) topology.
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Proof. Let x, y ∈ X and λ ∈ [0, 1]. Consider any sequence ((xn, yn, λn)) in X × X ×
I converging to (x, y, λ) with respect to τ(qs) topology τ(qs), and let W be any τ(qs)-

accumulation point of the sequence W (xn, yn, λn). Then for any z ∈ X we have,

q(z,W (xnk
, ynk

, λnk
)) ≤ λnk

q(z, xnk
) + (1− λnk

)q(z, ynk
)

for all n ∈ N. By continuity of a T0-quasi-metric q, we have

q(z,W ) ≤ λq(z, x) + (1− λ)q(z, y).

Similarly, we get that q(W, z) ≤ q(x, z) + (1− λ)q(y, z). By uniqueness of convex structure

in Definition 4.3.18, we get W = W (x, y, λ). We therefore conclude that W (x, y, λ) is the

only τ(qs)-accumulation point of the sequence W (xn, yn, λn) for all n ∈ N. Since X is

τ(qs)-compact, we have W (xn, yn, λn) converges to W (x, y, λ).

It should be noted that the given condition(I) in Definition 3.3.5 is not suitable for a T0-

quasi-metric space (X, q) that is not a metric. To see this, if q is a T0-quasi-metric with

property (C) in Definition 4.3.12 and Property (I) in Definition 3.3.5, then we have

|1− 0|q(x, y) = q(W (x, y, 1),W (x, y, 0)) by property (I)

= q(W (y, x, 1− 1),W (y, x, 1− 0)) by Property (C)

= q(W (y, x, 0),W (y, x, 1)) = |0− 1|q(y, x) by property(I)

for all x, y ∈ X. This implies that q(x, y) = q(y, x) and so q must be a metric. Hence, for a

T0-quasi-metric space (X, q) we suggest that property (I) be formulated to property(I ′) as

follows:

Definition 4.3.21. ([19, p.10]) A T0-quasi-metric space (X, q) with TCS W is said to have

property(I ′) if for every x, y ∈ X and λ1, λ2 ∈ [0, 1], we have

q(W (x, y, λ1),W (x, y, λ2)) = (λ1 − λ2)q(x, y) if λ1 ≥ λ2

and

q(W (x, y, λ1),W (x, y, λ2)) = (λ2 − λ1)q(y, x) if λ2 > λ1.

The following Proposition is a generalisation of a well known result in metric spaces [29]:

Proposition 4.3.22. (Compare with Theorem 3.3.24) If a TCS W on a T0-quasi-metric

space (X, q) is unique, then for every x, y ∈ X with x 6= y the function h : I −→ X defined

by h(λ) = W (x, y, λ) satisfies property (I ′) of Definition 4.3.21.

Proof. Let λ1, λ2 ∈ [0, 1]. We show that the function h : [0, 1] −→ X defined by h(λ) =

W (x, y, λ) for all x, y ∈ X satisfies property (I ′) in Definition 4.3.21. Suppose that λ1 < λ2.
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By Lemma 4.3.19 and Proposition 4.3.9, we have

q(W (x, y, λ1),W (x, y, λ2)) = q(W (W (x, y, λ2
λ1
λ2

), y,
λ1
λ2

),W (x, y, λ2)) by Lemma 4.3.18

= (1− λ1
λ2

)q(y,W (x, y, λ2)) by Proposition 4.3.9

= (1− λ1
λ2

)λ2q(y, x) by Proposition 4.3.9

= (λ2 − λ1)q(y, x).

Thus, the second equality is established.

Similarly, we note that if TCS W on a T0-quasi-metric space (X, q) is unique, then it satisfies

condition (C) in Definition 4.3.12. Now, for λ1 ≥ λ2, we have

q(W (x, y, λ1),W (x, y, λ2)) = q(W (x, y, 1− λ1),W (x, y, 1− λ2)) = (λ1 − λ2)q(x, y),

which proves the first equality. Hence h = W (x, y, λ) satisfies property (I ′) in Definition

4.3.21.

We next introduce and discuss briefly an interesting property of some convexity structures

that will turn out to be very useful in our subsequent investigations. We start with the

following definition of a well-known property (S).

Definition 4.3.23. (Compare with Definition 3.3.16) Let (X, q) be a T0-quasi-metric space

with a TCS W . We say that (X, q) has property (S) provided that

q(W (x, y, λ),W (x′, y′, λ)) ≤ λq(x, x′) + (1− λ)q(y, y′)

whenever x, y, x′, y′ ∈ X and λ ∈ [0, 1].

Proposition 4.3.24. [19, Remark 11]

(i) If a T0-quasi-metric space with a TCS W has property (S) in Definition 4.3.23 together

with the condition that for any x ∈ X and λ ∈ [0, 1], W (x, x, λ) = x then conditions

(i) and (ii) of Definition 4.3.1 hold.

(ii) If we replace q by q−1, then we get a condition equivalent to property (S) of Definition

4.3.23.

(iii) The standard convex structure on a convex set of an asymmetric normed real vector

space X has property (S) of Definition 4.3.23.

(iv) Property (S) of Definition 4.3.23 together with property (I ′) of Definition 4.3.21 for

a TCS W on a T0-quasi-metric space (X, q) imply continuity of W : (X, τ(q)) ×
(X, τ(q))× ([0, 1], τ(us)) −→ (X, τ(q)).

Proof. We only prove (iii) and (iv) as (i) and (ii) follows directly.

(iii) To see this, let W (x, y, λ) = λx + (1 − λ)y and W (x′, y′, λ) = λx′ + (1 − λ)y′ for any
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x, y, x′, y′ ∈ X and λ ∈ [0, 1] then

q(W (x, y, λ),W (x′, y′, λ)) = ||λx+ (1− λ)y − (λx′ + (1− λ)y′)|

= ||λ(x− x′) + (1− λ)(y − y′)|

≤ λ||x− x′|+ (1− λ)||y − y′|

= λq(x, x′) + (1− λ)q(y, y′)

(iv) Let ((xn, yn, λn)) be a sequence in X ×X × [0, 1] converging to (x, y, λ) with respect to

the topology τ(q)× τ(q)× τ(us). By using the triangle inequality, property(I ′) of Definition

4.3.21 and property(S) of Definition 4.3.23, we obtain

q(W (x, y, λ),W (xn, yn, λn)) ≤ q(W (x, y, λ),W (x, y, λn)) + q(W (x, y, λn),W (xn, yn, λn))

≤ |λ− λn|q(x, y) + λnq(x, xn) + (1− λn)q(y, yn)

for all n ∈ N. Since (xn) and (yn) converge to x and y with respect to the topology τ(q)

respectively and λn −→ λ with respect to the topology τ(us), we have that

q(W (x, y, λ),W (xn, yn, λn)) −→ 0 for all n ∈ N and so (W (xn, yn, λn) converges to W (x, y, λ)

with respect to the topology τ(q). Hence, continuity of W follows.

In the following we assume that the T0-quasi-metric space has a TCS W that satisfies

property (S) in Definition 4.3.23. Furthermore, we shall work on the sub-collection CB0(X)

of bounded convex elements of P0(X) (all nonempty subsets of X).

Proposition 4.3.25. ([19, p.13]) If W is a TCS on a T0-quasi-metric space (X, q) which

satisfies property (S) in Definition 4.3.23, then for any A,B ∈ CB0(X) the set W (A,B, λ) =

{W (x, y, λ) : x ∈ A, y ∈ B} is bounded.

Proof. Let x, x′ ∈ A and y, y′ ∈ B. We show that q(W (x, y, λ),W (x′, y′, λ)) < ∞. Now,

since A,B ∈ CB0(X), they are bounded i.e the diameter of A and that of B are finite

(diam(A) <∞ and diam(B) <∞). Further, since W has property (S) in Definition 4.3.23,

we have that

q(W (x, y, λ),W (x′, y′, λ)) 6 λq(x, x′) + (1− λ)q(y, y′) 6 λdiam(A) + (1− λ)diam(B) <∞.

Hence, W (A,B, λ) is bounded.

We now investigate an additional property that allows us to define a TCS on an appropriate

subspace of CB0(X), which is induced by W . We start with the following definition:

Proposition 4.3.26. ([19, Lemma 3]) Let (X, q) be a T0-quasi-metric space with a TCS

Wwhich satisfies property (S) in Definition 4.3.23. If A ∈ CB0(X), then its double closure

clτ(q)A ∩ clτ(q−1)A also belongs to CB0(X).

Proof. We show that clτ(q)A∩clτ(q−1)A is bounded and convex. Suppose that the diameter of

A is less than m (i.e diam(A) ≤ m) and x, y ∈ clτ(q)A∩ clτ(q−1)A. Then for any ε > 0, there
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exists a, a′ ∈ A such that q(x, a) < ε and q(a′, y) < ε and thus by the triangle inequality we

have that

q(x, y) ≤ q(x, a) + q(a, a′) + q(a′, y) = q(a, a′) + 2ε ≤ diam(A) + 2ε < m+ 2ε.

As ε → 0, q(x, y) ≤ m. Hence m is the upper bound of diameter of the double closure of

A. It therefore, follows that the double closure of A is bounded.

We now show that clτ(q)A ∩ clτ(q−1)A is convex. Fix λ ∈ [0, 1]. For a, b ∈ clτ(q)A ∩ clτ(q−1)A,

there exists sequences (an) and (bn) in A such that q(a, an) −→ 0 and q(b, bn) −→ 0.

Furthermore, by property (S) in Definition 4.3.23 we have

q(W (a, b, λ),W (an, bn, λ)) ≤ λq(a, an) + (1− λ)q(b, bn) −→ 0

which implies that (W (an, bn, λ)) converges to W (a, b, λ) with respect to the topology τ(q).

Hence, W (a, b, λ) ∈ clτ(q)A, since (W (an, bn, λ)) ∈ A whenever n ∈ N by convexity of A.

Thus clτ(q)A is convex. Similarly, clτ(q−1)A is convex. Hence the proof is complete.

We end this section by now showing that Takahashi convexity implies Menger convexity

in T0-quasi-metric spaces. The proof of the following follows in the same way as that of

Proposition 3.3.20.

Proposition 4.3.27. (Compare with Proposition 3.3.20) Let (X, q) be a T0-quasi-metric

space. If (X, q) is convex with TCS W, then it is Menger convex.

Proof. Let x, y ∈ X and 0 ≤ t ≤ 1. We need to show that conditions (i) and (ii) of Definition

4.2.1 are satisfied. Let z = W (x, y, 1− t), then by proposition 4.3.9,

q(x, z) = q(x,W (x, y, 1− t))

= (1− (1− t))q(x, y)

= tq(x, y)

and

q(z, y) = q(W (x, y, 1− t), y)

= (1− t)q(x, y).

Hence condition (i) of Definition 4.2.1 is satisfied. Also,

q(y, z) = q(y,W (x, y, 1− t))

= (1− t)q(x, y).

and

q(z, x) = q(W (x, y, 1− t), x)

= (1− (1− t))q(y, x)

= tq(y, x).

Hence condition (ii) of Definition 4.2.1 is satisfied.
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4.4. M-convexity in T0-quasi-metric spaces

In this section, we generalise M -convexity to the framework of T0-quasi-metric spaces. We

begin by introducing the concept of strong convexity in T0-quasi-metric spaces. We notice

that this concept was introduced in [19] for T0-quasi-metric with TCS W where it was called

strict convexity.

Definition 4.4.1. (Compare with Definition 3.4.1) A T0-quasi-metric space (X, q) is said

to be strongly convex if for each pair of points x, y ∈ X and every t ∈ [0, 1], there exists a

unique point z ∈ X which satisfies the following two conditions:

(i) q(x, z) = tq(x, y) and q(z, y) = (1− t)q(x, y).

(ii) q(y, z) = (1− t)q(y, x) and q(z, x) = tq(y, x).

We notice that condition(ii) of Definition 4.2.1 is formulated for the dual T0-quasi-metric.

We observe that if q has symmetry, then we have that q(x, z) = q(z, x) = tq(x, y) = tq(y, x)

which implies q(x, z) = tq(x, y). Similarly, q(z, y) = (1− t)q(x, y) = q(y, z) = (1− t)q(y, x)

which implies q(z, y) = (1−t)q(x, y). Hence, obtaining the conditions (i) and (ii) of Definition

3.4.1.

We now generalise the concept of M -convexity, introduced in [11], to the framework of

T0-quasi-metric spaces.

Definition 4.4.2. (Compare with Definition 3.4.6) A T0-quasi-metric space (X, q) is called

M -convex if for any x and y in X with q(x, y) = λ1 and q(y, x) = λ2 and for every r ∈ [0, λ1]

and s ∈ [0, λ2] there exists a unique point zrs ∈ X such that

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) = {zrs}.

Remark 4.4.3. If r = λ1
2

and s = λ2
2

, then zrs is a midpoint of x and y. Also, if (X, q) is M -

convex, then (X, q−1) is M -convex too. However, M -convexity of (X, q) does not necessarily

imply M -convexity of (X, qs) (see Example 4.4.5).

We now show that for any T0-quasi-metric space (X, q), M -convexity and strong convexity

are equivalent.

Proposition 4.4.4. (Compare with Proposition 3.4.8) Let (X, q) be a T0-quasi-metric space.

Then (X, q) is M-convex if and only if it is strongly convex.

Proof. Suppose (X, q) is M -convex. Let x, y ∈ X with q(x, y) = λ1 and q(y, x) = λ2 and

0 ≤ t ≤ 1. Then 0 ≤ tλ1 ≤ λ1 and 0 ≤ tλ2 ≤ λ2. Let r1 = tλ1 and r2 = λ1 − tλ1. Then

we have that r1 + r2 = λ1 = q(x, y). Also, let s1 = tλ2 and s2 = λ2 − tλ2. Then we have

s1 + s2 = λ2 = q(y, x). Since X is M -convex, we have

Cq(x, r1) ∩ Cq−1(x, s1) ∩ Cq(y, r2) ∩ Cq−1(y, s2) = {zt}.

Since zt ∈ Cq(x, r1), we have q(x, zt) ≤ r1 = tλ1 = tq(x, y). Also, zt ∈ Cq(y, r2) implies that
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q(zt, y) ≤ r2 = (1− t)λ1 = (1− t)q(x, y). By the triangle inequality

q(x, y) ≤ q(x, zt) + q(zt, y) ≤ tq(x, y) + (1− t)q(x, y) = q(x, y)

and so q(x, y) = q(x, zt) + q(zt, y). Therefore, we have

q(x, zt) = tq(x, y) and q(zt, y) = (1− t)q(x, y).

One can use the same argument to show that

q(y, zt) = (1− t)q(y, x) and q(zt, x) = tq(y, x).

For uniqueness, suppose z
′
t ∈ X also exists such that q(x, z′t) = tq(x, y), q(z′t, y) = (1 −

t)q(x, y) and q(y, z′t) = (1− t)q(y, x), q(z′t, x) = tq(x, y). Then

z′t ∈ Cq(x, r1) ∩ Cq−1(x, s1) ∩ Cq(y, r2) ∩ Cq−1(y, s2) = {zt}

and so zt = z′t. Hence, (X, q) is a strongly convex T0-quasi-metric space.

Conversely, suppose that (X, q) is strongly convex. Then we need to show that it is M -

convex. To do this, let x, y ∈ X with q(x, y) = λ1, q(y, x) = λ2, r ∈ [0, λ1] and s ∈ [0, λ2].

To show that

Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s) = {zrs},

let t =
r

λ1
and t = s

λ2
, that is t ∈ [0, 1]. Then by strong convexity of (X, q), there exists

a unique zrs such that q(x, zrs) = tq(x, y) = r, q(zrs, y) = (1 − t)q(x, y) = λ1 − r and

q(y, zrs) = (1− t)q(y, x) = λ2 − s, q(zrs, x) = tq(x, y) = s. That is,

zrs ∈ Cq(x, r) ∩ Cq−1(x, s) ∩ Cq(y, λ1 − r) ∩ Cq−1(y, λ2 − s).

For uniqueness, suppose z′rs ∈ X also exist such that z′rs ∈ Cq(x, r)∩Cq−1(x, s)∩Cq(y, λ1−r)∩
Cq−1(y, λ2− s). Then q(x, z′rs) ≤ r, q(z′rs, y) ≤ λ1− r and q(y, z′rs) ≤ λ2− s, q(z′rs, x) ≤ s.

Now

q(x, y) ≤ q(x, z′rs) + q(z′rs, y) ≤ r + λ1 − r = λ1 = q(x, y),

which implies that q(x, y) = q(x, z′rs)+q(z′rs, y) and so q(x, z′rs) = r and q(z′rs, y) = λ1−r.
Similarly, it can be shown that q(y, x) = q(y, z′rs) + q(z′rs, x). Thus q(y, z′rs) = λ2 −
s, and q(z′rs, x) = s.

Since q(x, z′rs) = r = q(x, zrs), q(z′rs, y) = λ1 − r = q(zrs, y) and q(y, z′rs) = λ2 − s =

q(y, zrs), q(z′rs, x) = s = q(zrs, x). Therefore, z′rs = zrs and so

Cq(x, r1) ∩ Cq−1(x, s1) ∩ Cq(y, r2) ∩ Cq−1(y, s2) = {zrs}.
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In the following example, we show that a T0-quasi-metric space (X, q) may be strongly convex

but (X, qs) is not strongly convex. Since M -convexity and strong convexity are equivalent

on any T0-quasi-metric space, we conclude that M -convexity on (X, q) does not necessarily

imply M -convexity on (X, qs).

Example 4.4.5. ([19, Example 5]) Let R2 be equipped with the asymmetric norm ||x| =

max{||x1|, ||x2|} where x = (x1, x2) and the associated T0-quasi-metric q. Let us consider

the point x = (0, 0) and y = (2, 0) in R2. Then we have that

q(x, y) = ||x− y| = ||(0, 0)− (2, 0)| = ||(−2, 0)| = max{|| − 2|, ||0|} = 0.

Also, we have

q(y, x) = ||y − x| = ||(2, 0)− (0, 0)| = ||(2, 0)| = max{||2|, ||0|} = 2.

Thus, q(x, y) = 0 and q(y, x) = 2. Therefore, we obtain the system of equation at (x, y):

q(x, y) = 0, q(z, y) = 0, q(y, z) = 2t and q(z, x) = 2(1 − t) with t ∈ I and z = (z1, z2). We

now show that z is unique. Since q(x, z) = 0, then

0 = q(x, z) = ||(0, 0)− (z1, z2)| = ||(−z1,−z2) = max{|| − z1|, || − z2|}.

Now, for max{|| − z1|, || − z2|} = 0, we must have that ||z1| ≥ 0 and ||z2| ≥ 0. Also, since

q(z, y) = 0, then

0 = q(z, y) = ||z − y| = ||(z1, z2)− (2, 0)| = ||(z1 − 2, z2)| = max{||z1 − 2|, ||z2|}.

Now, for max{||z1 − 2|, ||z2|} = 0, we must have ||z1| ≤ 2 and ||z2| ≤ 0. Hence, we see that

0 ≤ ||z1| ≤ 2 which can be written as z1 = 2−2t for all t ∈ I and also ||z2| = 0 and therefore,

we have z = (2 − 2t, 0) for all t ∈ I. Therefore, z unique for each t ∈ I and so (R2, q) is

strongly convex T0-quasi-metric space.

Let us now look at the symmetrised metric space (R2, qs) with the same points x and y.

Then we have two equations qs(y, z) = 2t and qs(z, x) = 2(1− t). Now,

2t = qs(y, z) = ||y − z| = ||(2, 0)− (z1, z2)| = ||(2− z1,−z2)| = max{||2− z1|, || − z2|}.

Now, for max{||2− z1|, || − z2|} = 2t, implies that ||z1| ≥ 2(1− t) and ||z2| ≤ 2t for all t ∈ I.

Similarly

2(1− t) = qs(z, y) = ||z − y| = ||(z1, z2)− (2, 0)| = ||(z1 − 2, z2)| = max{||z1 − 2|, ||z2|}.

Now, for max{||z1 − 2|, ||z2|} = 2(1− t), implies that ||z1| ≤ 2(1− t) and ||z2| ≤ 2(1− t) for

all t ∈ I. This gives us z1 = 2(1− t) and 2t ≤ ||z2| ≤ 2(1− t) for all t ∈ I. Hence, we have

z = (2 − 2t, 2t) if t < 1
2

and z = (2 − 2t, 2 − 2t) if t > 1
2

as the solution to these equations.

Also, we have already seen that the other solution to these equations is z = (2− 2t, 0) with

t ∈ I. Thus, the system does not have a unique solution. Therefore, (X, qs) is not necessarily

a strong convex T0-quasi-metric space.
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Definition 4.4.6. (Compare with Definition 3.4.9) Let (X, q) be a T0-quasi-metric space

and A ⊂ X. Then A is said to be convex if for every x, y ∈ A,

Cq(x, (1− t)λ1) ∩ Cq−1(x, (1− t)λ2) ∩ Cq(y, tλ1) ∩ Cq−1(y, tλ2) ⊆ A

for all t ∈ (0, 1), λ1 = q(x, y) and λ2 = q(y, x).

Definition 4.4.7. (Compare with Definition 3.4.10) Let (X, q) be a Menger convex T0-quasi-

metric space. Then (X, q) is said to be strictly convex if for any x, y ∈ Cq(z, r1)∩Cq−1(z, r2)

with z ∈ X we have that

Cq(x, (1− t)λ1) ∩ Cq−1(x, (1− t)λ2) ∩ Cq(y, tλ1) ∩ Cq−1(y, tλ2) ⊆ Cq(z, r1) ∩ Cq−1(z, r2)

where q(x, y) = λ1, q(y, x) = λ2 and all t ∈ (0, 1).

Theorem 4.4.8. (Compare with Theorem 3.4.11) Let (X, q) be a T0-quasi-metric space. If

(X, q) is strictly convex, then (X, q) is M -convex.

Proof. Let x, y ∈ X with q(x, y) = λ1 and q(y, x) = λ2. By strictly convexity of (X, q), we

have

E(t) = Cq(x, (1− t)λ1) ∩ Cq−1(x, (1− t)λ2) ∩ Cq(y, tλ1) ∩ Cq−1(y, tλ2) 6= ∅

for all t ∈ (0, 1). Suppose that z1, z2 ∈ E(t), then

q(x, z1) ≤ (1− t)λ1, q(z1, x) ≤ (1− t)λ2, q(y, z1) ≤ tλ2, q(z1, y) ≤ tλ1

and

q(x, z2) ≤ (1− t)λ1, q(z2, x) ≤ (1− t)λ2, q(y, z2) ≤ tλ2, q(z2, y) ≤ tλ1.

Now

q(x, y) ≤ q(x, z1) + q(z1, y)

≤ (1− t)λ1 + tλ1

= λ1 = q(x, y).

Thus q(x, y) = q(x, z1) + q(z1, y) and so q(x, z1) = (1− t)λ1 and q(z1, y) = tλ1

Similarly, we have q(y, x) = q(y, z1) + q(z1, x) and so q(z1, x) = (1− t)λ2 and q(y, z1) = tλ2.

And also, for the point z2, we have q(x, y) = q(x, z2)+q(z2, y) and so q(x, z2) = (1− t)λ1 and

q(z2, y) = tλ1 and q(y, x) = q(y, z2) + q(z2, x) and so q(y, z2) = tλ2 and q(z2, x) = (1− t)λ2.
Then by strict convexity of (X, q), we have

Cq(z1, (1− s)k1) ∩ Cq−1(z1, (1− s)k1) ∩ Cd(z2, sk1) ∩ Cd(z2, sk2)

⊆ Cq(x, (1− t)λ1) ∩ Cq−1(x, (1− t)λ2) ∩ Cq(y, tλ1) ∩ Cq−1(y, tλ2)

for all s, t ∈ (0, 1), where q(z1, z2) = k1 and q(z1, z2) = k2. Since the points z1 and z2 are

q, q−1-between x and y, then we have

q(x, y) = q(x, z1) + q(z1, z2) + q(z2, y) and (4.21)

q(y, x) = q(y, z1) + q(z1, z2) + q(z2, x), (4.22)
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and

q(x, y) = q(x, z2) + q(z2, z1) + q(z1, y) and (4.23)

q(y, x) = q(y, z1) + q(z2, z1) + q(z1, x), (4.24)

Now, from 4.21 we obtain, q(z1, z2) = q(x, y) − q(x, z1) − q(z2, y), but q(x, y) = q(x, z1) +

q(z1, y). Hence, q(z1, z2) = |q(z1, y)− q(z2, y)| = |tλ1 − tλ1| = 0.

Also from 4.23, we get q(z2, z1) = |q(z2, y)− q(z2, y)| = |(1− t)λ2 − (1− t)λ2| = 0.

Since X is a T0-quasi-metric space and q(z1, z2) = 0 = q(z2, z1) =⇒ z1 = z2 then we have

that (X, q) is an M -convex T0-quasi-metric space.

4.5. Best approximation in T0-quasi-metric spaces

In this section, we introduce the concept of best approximations in T0-quasi-metric space,

this notion was introduced in metric spaces by Khalil [11], in 1988:

Let (X, q) be a T0-quasi-metric space and A ⊂ X. Due to asymmetry, we consider two

distances from x to A:

q(x,A) = inf{q(x, y) : y ∈ A}

q(A, x) = inf{q(y, x) : y ∈ A}

Observe that q−1(x,A) = q(A, x). Also, let the set valued maps PA : X −→ 2A and

P−1A : X −→ 2A be defined as follows:

PA(x) = {y ∈ A : q(x, y) = q(x,A)}

P−1A (x) = {y ∈ A : q(y, x) = q(A, x)}

denote a metric projection on A. An element y ∈ PA(x) is called a q-nearest point to x in

A. While an element ȳ ∈ P−1A (x) is called a q−1-nearest point to x in A. The set A is called

(i) q-proximinal if PA(x) 6= ∅ for every x ∈ X.

(ii) q-semi-Chebyshev if n(PA(x)) ≤ 1 for every x ∈ X, that is every x ∈ X has at most

one q-nearest point in A where n(PA(x)) is the number of elements of the set PA(x).

(iii) q-Chebyshev if n(PA(x)) = 1 for every x ∈ X, that is every x ∈ X has exactly one

q-nearest point in A where n(PA(x)) is the number of elements in the set PA(x).

The corresponding notion for the conjugate T0-quasi-metric q−1 are defined similarly.

We now give some properties of the T0-quasi-metrics q and q−1 in terms of proximinality and

Chebyshevity of some set A (compare with properties in [11]).

Theorem 4.5.1. Let (X, q) be a Menger convex T0-quasi-metric space. Then the following

are equivalent.

(i) (X, q) is M -convex.
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(ii) Cq(z, r1) ∩ Cq−1(z, r2) is q-Chebyshev and q−1-Chebyshev for all z ∈ X and r1, r2 ≥ 0.

(iii) PA(x)∩PA(y) = ∅ and P−1A (x)∩P−1A (y) = ∅ for all x 6= y and all double balls A in X.

Proof. (i) =⇒ (ii) Let Cq(z, r1)∩Cq−1(z, r2) where z ∈ X, r1, r2 > 0 be double closed balls.

Let x ∈ X \ Cq(z, r1) ∩ Cq−1(z, r2) and

q(x, z) = s = r1 + λ1

and

q(z, x) = m = r2 + λ2.

Then

q(x,Cq(z, r1) ∩ Cq−1(z, r2)) = λ1 and q(Cq(z, r1) ∩ Cq−1(z, r2), x) = λ2.

Since (X, q) is M -convex, we have that

Cq(x, λ1) ∩ Cq−1(z, λ2) ∩ Cq(x, r1) ∩ Cq−1(z, r2) = {y}

for some y ∈ X. Thus PA(x) = P−1A (y) = {y} where A = Cq(z, r1) ∩ Cq−1(z, r2) for

z ∈ X, r1, r2 > 0 is a double ball. This implies that Cd(z, r1)∩Cq−1(z, r2) is q-Chebshev and

q−1-Chebyshev for all z ∈ X, r1, r2 > 0.

(ii) =⇒ (iii) Suppose that PA(x) ∩ PA(y) 6= ∅ for some A = Cq(z, r) ∩ Cq−1(z, r2) for some

z ∈ X, r1, r2 > 0 and x, y ∈ A. Then ω ∈ PA(x) ∩ PA(y),

q(ω, x) = q(ω, y) = dist(ω,A).

Then we have that x and y are q-nearest element of A and therefore, contradicting (ii).

Hence, PA(x)∩PA(y) = ∅ for some x, y ∈ X and x 6= y. A similar argument also shows that

if (ii) holds, then P−1A (x) ∩ P−1A (y) = ∅.
(iii) =⇒ (i) Let x, y ∈ X and q(x, y) = λ1 and q(y, x) = λ2. Then by convexity of (X, q),

there exists a t ∈ [0, 1] such that

Cq(x, (1− t)λ1) ∩ Cq−1(y, (1− t)λ2) ∩ Cq(x, tλ1) ∩ Cq−1(y, tλ2) = E(t) 6= ∅

If z1, z2 ∈ E(t) and z1 6= z2, then

x ∈ PA(z1) ∩ PA(z2) 6= ∅

where A = Cq(z, r1)∩Cq−1(z, r2) for z ∈ X, r1, r2 > 0. However this contradicts (iii). Hence,

(X, q) is M-convex.

Definition 4.5.2. (Compare with Definition 3.4.15) Let (X, q) be a T0-quasi-metric space

and X be M -convex, then for every x, y ∈ X such that q(x, y) = λ1, q(y, x) = λ2 and each

t ∈ [0, 1], we define

L(x, y) =
⋃

0≤t≤1

(Cq(x, (1− t)λ1) ∩ Cq(x, (1− t)λ2) ∩ Cq−1(y, tλ1) ∩ Cq−1(y, tλ2))

=
⋃

0≤r≤λ

(
Cq(x, r) ∩ Cq(y, λ1 − r)

)
∩

⋃
0≤s≤λ2

(
Cq−1(x, s) ∩ Cq−1(y, λ2 − s)

)
.
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Theorem 4.5.3. (Compare with Theorem 3.5.5) Let (X, q) be a T0-quasi-metric space.

Suppose that (X, q) is M -convex in which all double closed balls are convex. If A is a double

closed convex set in (X, q) and x /∈ A, then PA(x) and P−1A (x) are convex subset of X.

Proof. We prove that PA(x) is convex, the proof of P−1A (x) is similar. Suppose that A is

a double closed convex set in (X, q) and x /∈ A. If PA(x) = ∅, then it is trivially convex.

Suppose that PA(x) 6= ∅, and let z1, z2 ∈ PA(x) and q(z1, z2) = λ1 and q(z2, z1) = λ2. If

q(x,A) = r1 and q(A, x) = r2, then z1, z2 ∈ Cq(x, r1) ∩ Cq−1(x, r2). Since we have assumed

that closed balls are convex, then L[z1, z2] ⊂ Cq(x, r1)∩Cq−1(x, r2). Also since A is convex, we

get L[z1, z2] ⊆ A. Consequently, L[z1, z2] ⊆ Sq(x, r1) ∩ Sq−1(x, r2). Hence L[z1, z2] ⊆ PA(x).

Therefore, PA(x) is convex.

Theorem 4.5.4. (Compare with Theorem 3.5.6) Let (X, q) be a T0-quasi-metric space. If

(X, q) is M -convex in which every q-proximinal convex set is q-Chebyshev, then Cq(z, r1) ∩
Cq−1(z, r2) is convex for all z ∈ X and r1, r2 > 0.

Proof. Let x, y ∈ X, q(x, y) = λ1 and q(y, x) = λ2. Let

{Cq(x, (1− t)λ1) ∩ Cq−1(x, (1− t)λ2) ∩ Cq(y, tλ1) ∩ Cq−1(y, tλ2)} /∈ Cq(z, r1) ∩ Cq−1(z, r2)

for some t ∈ [0, 1]. Suppose that there exists distinct points z1, z2 ∈ Sq(z, r1) ∩ Sq−1(z, r2)

such that γ = L(z1, z2) is not contained in Cq(z, r1) ∩ Cq−1(z, r2). Since γ is compact

(being continuous image of [0, q(z1, z2)]), then γ is q-proximinal. Bet z1, z2 ∈ dist(z, γ),

contradicting the q-Chebyshevity of γ, since γ is convex. Hence Cq(z, r1) ∩ Cq−1(z, r2) is

convex.

The following theorem is analogous to Theorem 3.5.7 in metric settings, but here we use the

property of double balls.

Theorem 4.5.5. Let (X, q) be a strictly convex T0-quasi-metric space. Then every q-

proximinal convex set in (X, q) is q-Chebyshev.

Proof. Let G ⊆ X be q-proximinal and convex. Let z ∈ X \G such that PG(z) contains more

than one element. consider {z1, z2} ⊆ PG(z) and q(z1, z2) = λ1 and q(z2, z1) = λ2. Since

{z1, z2} ⊆ PG(z), then we have q(z, z1) = q(z, z2) = q(z,G) = r1 and q(z1, z) = q(z2, z) =

q(G, z) = r2. Thus {z1, z2} ⊆ Cq(z, r1) ∩ Cq−1(z, r2). Since {z1, z2} ⊆ Cq(z, r1) ∩ Cq−1(z, r2),

it follows from the strict convexity of (X, q) that

w(t) = Cq(x, (1− t)λ1)∩Cq−1(x, (1− t)λ2)∩Cq(y, tλ1)∩Cq−1(y, tλ2) ∈ Cq(z, r1)∩Cq−1(z, r2).

The convexity of G implies that w(t) ∈ G. Since every strictly convex T0-quasi-metric

space is M -convex, we have that w(t) is a singleton set. Hence, q(z1, z2) = λ1 = 0 and

q(z2, z1) = λ2 = 0 and so z1 = z2. Hence G is q-Chebyshev.
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CHAPTER 5

DISCUSSION

In this thesis, several results concerning convexities, namely; Menger convexity [21], Taka-

hashi convexity [19] and M -convexity [11] were extended from metric spaces to general

T0-quasi-metric settings with minor or no modifications to both the assumptions and proofs.

We observed that all these convexities are a generalization of convexities in a linear spaces,

but the converse is not true. We refer the reader to Example 3.2.5, Example 3.3.4 and Ex-

ample 3.4.3.

In chapter four, we started our own investigations. Since these convexities rely on the con-

cept of betweenness, a fundamental concept to the study of axiomatic geometry. Therefore,

we started our discussion with the concept of betweenness and midpoint in T0-quasi-metric

spaces which was introduced by Blumenthal [4]. We discussed that q-betweenness does not

necessarily imply q−1-betweenness. Thereafter, we also discussed that q, q−1-betweenness

implies q+-betweenness in T0-quasi-metric space. We finalised this section by discussing a

well known result [4, Theorem 12.1] for the relation of betweenness in metric spaces, to the

setting of T0-quasi-metric spaces.

In the second section, we discussed the concept of Menger convexity [21] from metric setting

to the framework of T0-quasi-metric spaces. We extended Proposition 3.2.6 to T0-quasi-

metric setting with minor modification to both the assumption and the proof. We failed

to extend Theorem 3.2.14 to T0-quasi-metric spaces due to the fact that it does not use

symmetry in its proof.

In the third section, we recalled the convexity structure in the sense of Takahashi in T0-

quasi-metric spaces. We discussed various important results about convexity structures in

metric spaces can generalised to the quasi-metric settings. We also showed that convexity

structures naturally occur in asymmetric normed real vector spaces. We ended this section

by discussing the relationship between Takahashi and Menger convexity in T0-quasi-metric

spaces.

In the fourth section, we discussed the concept of M -convexity [11] from the metric set-

ting to the framework of T0-quasi-metric spaces. We started by introducing strong convexity

in T0-quasi-metric spaces, and thereafter, we showed that a T0-quasi-metric space is strongly

convex if and only if it is M -convex (see Proposition 4.4.4). We also showed that a T0-

quasi-metric space (X, q) may be strongly convex but (X, qs) is not strongly convex. Since

M -convexity and strong convexity are equivalent on any T0-quasi-metric space, we concluded

that M -convexity on (X, q) does not necessarily imply M -convexity on (X, qs) (see Example

4.4.5). We ended this section by showing that if (X, q) is strictly convex T0-quasi-metric
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space, then it is M -convex. In the fifth section, we generalised the concept of best ap-

proximations in M -convex metric spaces. Then we showed that if (X, q) is an M -convex

T0-quasi-metric space, then the double closed ball Cd(x, δ) is convex if and only if there is

a closed, convex subset G of X and x /∈ G such that q-proximinal and q−1-proximinal sets

are convex. We ended this section by showing that, if (X, q) is an M -convex T0-quasi-metric

space in which double closed balls are convex, and A is a double closed convex set in X and

x /∈ A, then PA(x) and P−1A (x) are convex subsets of X.

In this dissertation we did not manage to answer the following questions:

Problem 1. Is it possible to generalize Menger convexity [21] which was introduced by Karl

Menger to asymmetric normed spaces?

Problem 2. Is it possible to generalize M-convexity [11] which was introduced by Rashido

Khalil to asymmetric normed spaces?

Problem 3. Under what conditions can the Fundamental Theorem of Menger convexity be

generalised to T0-quasi-metric spaces?

Problem 4. Under what conditions can we say that a T0-quasi-metric space (X, q) is M-

convex by considering a unique curve of length q(x, y)?
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CHAPTER 6

CONCLUSION

This study has revealed that a number of results on convexities in metric spaces can be readily

generalized to T0-quasi-metric spaces with minor or no modifications to both the assumptions

and the proofs. There are, however, some results which could not be generalized meaningfully

from metric setting to the general context of T0-quasi-metric spaces (see Theorem 3.4.15,

Theorem 3.4.16 and Theorem 3.2.14). We notice that these theorems do not depend on

symmetry, hence making them impossible for us to extend them to the quasi-metric setting.

In conclusion, we find a surprising fact that many classical results about convexities do not

make essential use of the symmetry of the metric and, therefore, making more interesting

observations in quasi-metric setting.
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