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PREFACE,

The material presented here make up a dissertation
submitted in partial fulfilment of the requirements for the
award of degree of Master of Science in Mathematics of the
University of Zambia, It is a review of the avallable
1iterature on some aspects of hemodynamics, Hemodynamics 1is
e branch of Mechanics where concepts from fluild mechanics are
used to study the dynamics of blood flow in the circulatory
system,

The review will be on the literature that seeks to
give a mathematical 1Insight to the functional anatomy of thse
arterial and capillary beds of the circulatory system by
making use of models which take into account the physical
and rheological properties of blood as well as the properties
of the blood vessels, The material 1s organised into filve
chapters, Chapter 1 1s an iIntroduction making a general
view of the subject matter to be covered by subsequent
chapters, Chapter 2 1s on pulsatlile blood flow, This is
flow that takes account of the rhythmical pressure variations
in the arterial bed, The reviewed materials on this chapter
are Womersley'!s(195l1) model of arterial blood flow and Kapur's
(1983) Chapter entitled, 'Problems of Blood Flow in the Human
System,! Chapter 3 is on Shukla, Parihar and Gupta's(1980)
study on the effects of branching, variation of viscosity and
stenosis (an abnormal growth on artery lining) on wall shear
gtress and blood flow resistance; assuming blood to be a
Newtonian fluid, Chapter !} is a study of blood flow in the
arterioles using the non-Newtonlan Casson and power law fluid
models, Materlals reviewed in this chapter are from Shukla,

Parihar and Rao (1980), Chapter 5 1s a review on Lighthill's



ii3

(1968) and Parihar's (1980) investigations on microclrculation,
VMierocirculation is a study of the motion of the red blood

cells in narrow capillaries,
Tn each of these studles, simplifying assumptions are
stated and sultable mathematical models made to investigate

and give a mathematical insight to the blood flow problem

at hand,
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CHAPTER I
GENERAL TNTRODUCTION,

1,1 INTRODUCTION:

In recent years several workers have studied arterial
blood flow using various mathematical models under varying
simplifying assumptions, Early before this, blood circulabery
phenomena had been known for centuries but the complexities of
the blood circulatory system appear to have defied deeper
analytical treatment until fairly recently, during the sedond
half of the 19th century, when the idea of modelling arterial
blood flow to propagation of disturbances along an elastic
tube was established, This early work centred around T e
determining a relationship between pulse wave velocity and
the elastic properties of the arterial vessels, By the early .
fifties J,R, Womersley had developed his mathematical theory
of arterial blood flow in mammals, This stimulated a rapid
growth in the study of blood flow, The period'that immediately
followed saw a rapidly emerging trend that replaced the
descriptive approach that was then prevalent in the biological
sciences by analytical methods that involved more use of
mathematical ideas, A decade later in April, 1963 the First
International Symposium on Pulsatile Blood Flow was held in
Philadelphia, U,S.A,

Numerous other workers have eversince been contributing
to the subject, A number of investigators, Attinger (196L);
Fry and Greenfield, Jr, (196l); Burton (1968); Copley (1968);
Whitmore (1968); Huchaba and Hahn (1968); Young (1968);

Lighthill (1968, 1972, 1974); Lih (1969, 1972); Lee and Fung



(1970); Bergel (1972); Fung (1969); Middleman (1972); Rosen
(1972); Lightfoot (197L); MeDonald (1979); Kapur (193 ;
Shukla and Parthar (1975)§8§ SR Rao (1976); Parihar
(1976); Shukla, Parihar and Gupta (1980-a,b); Shukla, Parihar
and Rao (1980); Parihar (1980-a,b) PR, hove studied bloed.
flow in the ceardlovascular system under some simplifying
assumptions by considering blood behaviour as either Newtonian

er non-Newtonlan,

1,2 THE CARDIOVASCULAR SYSTEM:

The cardlovascular system (blood circulatory system) is
a blood distribution and collaction system comprising of the
heart, arteries, veins and tiny vessels known as the capilla-
ries,. All these together form an intricate and complex
branched network ef tuhes with the heart as the pump providing
the pressure forcling the blood to flew through the network,
Initlal flow of blood leaving the heart by the arteries 1s
subdivided after abeut 20 to 30 separate branchings into
hundreds of millions of small individual flows in the
caplillaries with dlameters of less than 10 micrens (1 micron
= 1o'h cm,), The micron, sometimes known as the micrometer,
wlll be denoted by ym, The capillaries eventually join up
to form bigger vessels, the wveins, which carry blood back to
the heart,

The overall erganisation of the cardiovascular system is

diagramatically illustrated below,

PA ST Y

TS T\ — W)
RV, LA
¢
ri\ sy 20 sa | LV
| EE= ,

Figure 1,1: The Cardiovascular System, (Attinger (196l),
Pulsatile Blood Flow, pp,2)



Key to figure: LA = left atrium; LV = left ventricle;

Ao = aorta; SA = systemic arteries; SC = systemic capilla~
ries; SV = systemlc veins; RA = right atrium; RV = right
ventricle; PA = pulmonary artery; PC = pulmonary capilla-
ries; PV = pulmonary veins,

The heart is divided into four chambers, The upper two
chambers are called the right and the left atriums, The lower
two chambers are called the right and the left ventricles,
There is no direct flew communication between the right and
the left side chambers of the heart, The ®wo chambers are
however connzcted through two parallel circulatory sub-systems,
These are the systemic, feeding blood to the body trunk, the
head and the limbs and the pulmonary, feeding the lungs,

Oxygenated blood from the lungs leaves the left ventricle
by the pumping action of the heart and through the aorta to
the arteries, arterioles and finally into the caplllaries,
Blood is in this way distributed to all parts of the body,

As 1t passes through the capillariss it exchanges oxygen for
carbon dioxide, food stuffs and water with the body cells,
After this exchange the blood leaves the capillaries with a
reduced oxygen saturation and a high carbon dioxide content,
It is then collected in the wvenules (tiny veins), the wvenules
collect into the veins and then it flows back to the right
atrium from which it flows into the right ventricle, The
right ventricle pumps the blood through the pulmonary arteries
to the pulmonary capillaries (lungs) where it is re-oxygenated
through an exchange of carbon dioxide with oxygen from the
atmosphere, a process known as respiration, The re-oxygenated
blood is then drained through the pulmonary venous system Into
the left atrium from which it passes on to the left ventricle,

This completes the blood flow cycle through the cardiovascular
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gemiaxes of the elliptic cross~section are given,

As can be seen in the table above there is a substantial
decrease In blood flow velocity from the aorta whers it is
50 cm/sec, to the capillary bed where it is only 0,07 cm/sec,
Several factors are roesponsible for this reduction in velocity
but perhaps prominent amongst these could be the effect due
to vessel bifurcations, To ses how vessel bifurcations
affect flow velocity we consider a special case of symmetrical
bifurcation with half of the wain vessel!s flow going into
each of the two branches, Letting B be the ratio of the
combinad cross-sectional area of the branches to the cross-
sectional arsa of the main vesssl, then velocity in the
branches 1s 1/B of the velocity In the main vessel, The ratio
B has been experimentally found to be less than one only in the
aorta bifurcations, Caro, Schroter and ¥4 tz-Gerald (1971),
but consistently greater than one for. all other bifurcations
in the cardiovascular system, Refering to the tabls agaln 1t

shows a big Increase in the total vessel cross-sectional area



between the ventricular outflow tracts and the capillary
bed, reflecting a corresponding decrcase in velooity, Given
the large number of bifurcations in the cardiovascular
system one can now sce how this affects blood flow velecity
and t&n conclusion add that naturs provided the numerous
bifurcations to facilitate not only blood distribution but
also to slow down flow so that physiologically vital gaseous
and metabolical exchanges occuring in the capillary bed
should be completed,

Anothor important obssrvation from the table 1s the
tremendous reduction in the Reynolds number from 2,500 in
the aorta to only 0,003 in the capillaries, The Rasynolds
number of a fluid is a ratio of tho inertial forces acting
on a fluid under motion to the viscous resistance offered
by the fluid, TIn tiny vesssls,. inertial forces are much
smaller than viscous forces and this explains why the Reynolds
number 1s so small in the capiilaries, Flow in capillaries
is solely determined by the balance betwecen viscous forces
and pressure gradients as inertial e¢ffects are totally
negligible, In the larcer vessesls inertial forces ars more
pradominant than viscous resistance,

1.,k BLOOD COMPOSITION:

Blood is a suspension containing about S50% by volume
of small deformable bodies which arse mainly the red blood
cells, The volume percentags of red cells present in the
blood is called the 'haemotocrit!, For a normal heolthy
{ndividual the haemotocrit is about L5%,  .Red blood cells
are disc shaped bodies of diameter about 8 pm, peripheral
thickness about 2,5 pm and 2 dimpled centec of thickness

about 1,0 mm, There are two other types of cells found in



whols blood and thesc are the white blood cells and very tiny
other particlss known as platelets, The white blood cells
are about 0,17% by volume concentratlion hence their insigni-
ficant role in blood flow problems, The white blood cells
are however much bigger in size than the red blood cells and
have no fixed shape as they can flexibly assume any shape
though they usually become spherical when freely moving
in the blood étream, Platelets are very small in size compared
to red blood cells and form roughly about 5% by volume of
whole blood, Middleman (1972), The three typas of cells are
suspasnded in a transparcent ligquid, called the hlood plasma,
3lood cells under flow tend to shun the walls of the
conducting vessel and concentrate around the central ragilon,
Iih (1969), The viscosity (sec next ssction) of blood
depends on cell concentration being higher when the haemotbtocrit
or cell concentration 1s high, In small vassels of diameter
a fow times that of the cell, the cslls may aggregate and
form chains called rouleax, These ars like coin stucks along
the vessael surroundsd by a cell froe plasma layer, Skalak
and Branemark (1969), This cell free layer has significant
affects on resistance to flow of blood as will be sesn in
Chaptsr 5 on Microcirculation,

1,5 RHEOLOGY OF BLOO0D:

A1l fluids are reasistive to dsforming or shsaring forces,
This resistive powsr known as viscosity 1s an instritic
proparty of any gilvsn fluid and varies from fluid to fluid,
For many ordinary fluids viscosity is given as a ratio of
stress to strain rate, However for ﬁany fluids the stress
may not vary linearly with the strain rate,

Fluids are rheologically divided according to the manner



in which stress varies with their strain rate, The graph
(Figure 1,2) shows stress-strain rate relationships for
different kinds of fluids, Wewtenian fluids are those fluids
for which stress 1s linearly proportisnal to strain rate
(Newtonian law of viscosity). The line marked (1) on the
graph shows ths stress-strain rate rclationship for Newtenlan
fluids, The slope of the line which is constant gives the
fluid viscosity, All other flulds exhibiting stress-strain
rate relationships different from Newbtonian are called non-

Newtonian fluids,

(dynes/em®) ,////
A

stress

b
o

strain rate au/8y(sec™1)
Figure 1,2: Stress-strain rate relationships for various
fluid models,

Non-Newtenian fluids are of various types and the same graph

(Figure 1.2) 1llustrates feur different types, The lines



and curves on the graph are numbered (1) to (5), Considering
one at a time the following obscrvations are made, (see Kapur
(lﬁgg), Knudsen and Katz (1958)):

Curve (2) shows that strsss incroases non-linearly with
stroin rate, The slope of the curve, which defines viscosity,
decroascs with increasing strain rate, The structure of the
curve suggests that the stress is proportional to (strain rate)”
where n%<l, Such fluids are called pssudoplastic, Curve (3)
is for the case when n>1 and here the slope of the curve
(viscosity) increases witl, strain rate, The type of fluid
depicted by curve (3) is called dilatant, When n =1 we have
the case for line (1) (Newtonian) thus (1) is a special case
of (2) and (3), Gases (1), (2) and (3) 211 fall under the

power law model for which the stress and strain rate relation-

ship is given by the squation

n-1 . .
v, - (132)

whera ¥ 18 the stress, du/dy is the strain rate, m is the
consistency and n is the power law index (flow bshaviour)
which ranges between 0,1 and 2,0, When n <1 in equation
(1,1), we have the pscudoplastic case (curve (2)) and when
n?»l, we have the dilatant case (curve (3)), If nz1l then
m= u (viscosity) and equation (1,1) reduces to a Newtonilan

case (line (1)) for which the oguation is
’t:'—p‘é}lo -(102)

Line (L) indicates that the fluid can withstand o -
certain amount of stress, known as the yield stress, below
which the fluid does not deform or strain, Beyond the yield

stress the difference betwesen stress and the yield stress
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is directly proportional to strain rate and viscosity is
constant, Such fluids are known as Bingham plastics and

their rheological equation is given by

'rr*a,:{"”%”w’% - (1.3)
: C , T4 Vs )
whore Te 1s the yield stress, When e 20 equation (1,3)
reduces to (1,2),

Gurve (5) has also a vi:1ld stress but unlike line (l)
the relationship betweon stress and strain rate after the
yield stress is non-linear, Fluids depicted by curve (5)

fall under the Casson flujid model and their rheological

eguation is given by

1
P (= llg-l-l-)ﬁ ,’t'7/h(°
o4+ T { ay (1.1)
0 ,Qfé'zh,

1f T =0, cquation (1,h) reduces to (1,2) which is the
ogquation for the Newtonian case,

Since blood is a nonhcmogeneous fluld with c¢ell concentra-
tions which may under certain conditions vary, it has no
definitive rheological charactoristics, Its rheology may
under certain conditions be approximated to any of the four
rheological models discumsed above, Plasma may with 1little
error be approximated to = Newbonian fluid for shear rates
in the range 0,1 to 1,200 sec'l, Copley and 3tainsby (1960);
Charm and Kurland (1962): Cokslet (1972); Merril, Cokelet,
Britten and Wells (1963), At high shear rates as that
occuring in the arterics, blood may with little error be
treated as a Newbonlan fluid,Attinger( (196ly), At.shear rates
below 20 sec~t several investigators have assumed blood to

bs a power law fluid, Charm and Kurlend (1962); Hershey and



Cho (1966); Huchaba and Hahn (1968), However at shear rates
above 20 sec~l the power law model has been found to be not
aecurate cnough, Charm and Kurland (1965), Blood has also
boon found to exhibit a small yiecld stress (about 0,005
dynes/cmz), Cokelet (1972) and Kapur (1983), In this connsc-
tion, it fits the Casson modsl over a wide range of shear
rates (0,1 to 100,000 sac'l), Casson (1959); Charm and
Kurland (1962 and 1965); Merril, Cokelet, Britten and Wells

(1963) and Cokelet (1972),



CHAPTER IT

PULSATILE BLOOD FLOW,

2,1 INTRODUCTION:

A realistic and more accurate mathematical model of
arterial blood flow should incorporate its pulsatile
character, The pulsatile character of arterial blood flow
1s due to the rugular beating of the hseart, the rosult of
$ts pumping action, Each time the hoart beats a pressurs
wave (or pulse) is transmitted throuch the cardiovascular
system, Pulsatile pressure variations in the arterial bad
ranges from a maximum of 120 mmHg to a winimum of 80 mmHg,
(Attinger (196l1), pp.10), The transmission of the pressure
pulse 3s a function of the physical properties of the blood
and blood wviessel walls, The pressurc pulse is propagated
at a specd which is bten to twenty times greater than blood
flow velocity, When the heart beats flow in the aorta surges
forward for about half of the cycle, transmitting o pressure
and flow peak into the arterial bed, to bs followed by a
lower pressurs and weaker flow during the remsinder of the
cycle, Small localized flow reversals do occur im. the aorta
and other proximal parts of the arterial bed during minimum
pressure but valve action in the vessels prevents total flow
from becoming negative, Both praessure and flow peaks becoms
progressively woaker towards the peripheral due to valve
action and the damping effect on the pulse by blood and the
vessel wall, It is for this rcason that pulsatile flow
sharacter of blood is of little or no importance in the
capillary and venous flow,

This chapter, on pulsatile blood flow, is a survey on

12
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two contributions to the subjsct by an auther and two co-
authers, The first part of the survey is on Womersley's

model, which was a contribution by D,L, Fry and J,C, Greanfield
Jr, to the Pirst International Sympossium on Pulsatile Blood
Flow held in Philadelphla, U,S.A,,(secec Attinger (196l),
Pulsatile Blood Flow, pp,.85), The second part of the survey

is on an article by J,N, Kapur (1953) of the Indian Institute
of Technology in Kanpur, India,

2,2 SURVEY OF WOMERSLEY'S MODEL:

2.2,1 ASSUMPTTONS AWD BASTIC SQUATTIONS:

Assumptions are important in: reducing equations,
describing a given physical system, to simpler form, However
in applying assumptions to any prescribed system one has to
be mindfull of the error introduced there by the assumptions,
In constructing his model Womersley used the following
assumptions:

(1) Blood is an incompressible Newtonian fluid,

(2) Flow is laminar, symmetrical and fully developed

with no tangential velocities,

(3) The blood vessel wall thickness is very small

compared to its radius,

(lt) There is no slip vclocity at the wall of the vessel,

(5) Temperature is constant throuchout the system

under investigation,

(6) The vessel is an elastic cylindrical tube which

does not taper between branchss,

(7) Axial and radial displacemsnts of  $he inner wall

are small,

(8) The physical properties of the vessel wall material

are all linearly related and are the same in all
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directions,

(9) The vessel wall material 1s more elastic than it

is wviscous,

(10) Radius of the vessel is small compared to the

wavelength of the pulse wave,

(11) Blood flow velocity 1s much smaller than pulse

wave velocity,

(12) There is no raflectad wave,

(13) Inertial forces ars small comparad to friectional

or viscous forces,

(1lY) The density of blood is nearly squal to that of

the vessel wall material,

The, two basic equations In problems of fluid flow are
the momentum and the continuity ecuations, The momantum
equation is an c¢xpression of Newton's sccond law of motion,
It expresses the balance of forces at any point within the
fluid and its boundariss, The continuity equation is an
expression of ths conservation of mass within the system,
Under assumptions (1) and (2) the momentum and continuity

equations are given by

z-direction; g% 1-u§§ + ng z %.gﬂ ?{r 3 (Paw)
: o+ %g_g-} , - (2,1)

r-direction; g—% + u%-l% + w% = - ;:»%E + ;;EE;PL- %;(I’-g—‘r%)
-2 _g_;zl_}, - (2,2)
13y Qs - (2.3)



where r and z are the cyndrical coordinates, p is the blood
pressure, p is the blood viscosity, t is the time, w is the
axial blood velocity componsnt, u 1is the radial blood veléclty
gcomponent and.P ig the blood density, Seme authers prefer
using the symbcl V (kinematic viscosity) in place of p{P
but the latter shall here be mainbtained,

Using assumptions (3), (7) ard (8) Womersley derived
two equations déscribing the balance of forces at the bound-
aries of ths flowing fluid, The equatlons aras:

Zg - \ ECh ch g \_
PW%2 P+ 1_(<2(R a,, R2

W
O
|

(2.14)
and

whore € and § ars the radial and axial vessel wall dislace-
monts, respectively, h is the vesssl wall thicknoss, PW is
the dsnsity of the wall substancs, 1 is the weighted volums
of the wall substance, K is tho wall material spring constant,
R 1is the radius of the wvesszl, 6 is tho complex Poissonts
raotio and Ec is the complox elastic modulus of the vessel
21l materinl, Tho real pdarts of- 6 and Ec are the usual
Poisson's ratio and Young's modulus, respoectively, Ths
imaginary parts of dc and EC ruprasent the viscous constants
of the wall matori=l,

2.,2,2 ANALYSTIS:

By assumption (13), cguation (2,1) and (2,2) are

linsarlized and reducs to

aw 1% . nfl3d 3w a2y ' l
as }33 +P{ anl ar)+§;"}’ - (2'6),



au 5 - l ap + {l Qe (li_ail— ) - E K L
at .P ar pir ar ar e Azl
Equations (2,3), (2,6) and (2,7) are

the variable r by the substituvtion y

u} )
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(2,7)

nondimensionalised in

= r/R, giving the result

. 2
aw . -1, 0302 yivx)Jr?!g}, - (2,8)
at pa p Rey 8y &7 @y,
du_ _ 1939 wnrl B ,,Qu. - u 32y | (2.9)
= = == 5+ Tizoo —(Ve— 5 + - 3 .
at 3? Ay P Rey @y dy R2y2 ' 932
L3 (yu)y B _ (2,10)
Ry Ay az

Womerslay assumad both the pressurse and flow veloclties

to be sinusoidal %travelling wave functions having the same

arguments,

variables, he obtainsd

w(z,y,t) = W(y) exp{in(t - z/o)]
u(z,v,t) = U(y) exp {in(t - z/e )l
p(z,t) = P exp{in(t - z/c)} ,
whers ¢ 1s the complex wave velocity

Eo]

frequency (or wave number) and T

modulus, Ths
squations (2,8) and (2,9) becauss

U(y)/c?

Under this assumption and using separation of

(2,11)
(2.12)
(2,13)

s, n is the radiun -’

is the sinusoidal pressure
torms A°w/3z2 and 32u/3z2 will bs neglocted in

they conbain W(y)/c? and

which by assumption (11) arc too small, On neglecting
the two terms oquations (2.,8) and (2,9) bocome
aw _ _ 1 Bp u Aw
at p 3z PRE ay( ay’ ¢ "
du
By substituting the sxpressions for w, u and p from equations
(2,11), (2,12) and (2,13) into equations (2,10), (2,1l) and

(2.15), the result is
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W' (y) + Lut(y) + (i3R2nP/u)W(y) = - 1RZnp , - (2,16)
N e

" + 1y . (1°R2 - 1/v23y1( R 2 - (2,17,

U(:>r)+y (v) + n}v/u /32 )u(y) ‘ﬁﬁ%

and

U (y) + %T.U(y) - ,i%_rz,W(y) = 0 - (2,18}

Note that the solutions of the homogeneous parts of equations
(2,16) and (2,17) are Bessel functions of orders O and 1,
respectively, The simultensous selutions of equations

(2.,16), (2,17) and (2,18) are:

w(z,7,t) = [A‘To(o‘iyzv) + P Jexp{in(t - z/c)} , - (2.19)
Jo@xi3/2) f@

alz,y,t) = [mf 2nd) (@13/25) J,li}] exp{in(t-z/0)},- (2,20)
2elpc13/2; (413/2 }30

where 2 =-R2?P/p , ~= (2,22)
18 the Bessel function parameter, The quantities w(z,y,t)
and u(z,y,t) determined here are the complex blood flow
velocitics, the r=sal parts of which give the instanteneous
axinl and radial blood flow veloclities, respectively, =2t
any time t and point (y,z) in the blood stream, Howsver
equations (2,19) and (2,20) do not completely determine w
and u since the squntions still combtain the unknown constant
A and pressure modulus P, Boundary conditions (2.lt) and (2,5)
are ussd to determine those unknown gquantities,

At the boundaries, ie, on the vsssel wall, y =1 and

the volocltics w and u become

w(z,1,t) = [A +'F§:}exp{in(t - z/c& s -~ (2,22)
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2¢ Bc

u(Z,l,t) - 1_1:1_11[ ?_AJ]_(CXiB/Z) } eXD{iP t - '7/0)} 3)

Bquations (2,22) and (2,23) give the axial and radial blood
velocity at y= 1, ie, on the vessel wall, axial (45 and
radial (i) wall displacements are also assumed sinusoidal

travelling waves, given by

6 =3 exp{in(t - z/c)} | L (2,2L)
and ‘
é =D xp{vn ~z/c) } , ' © = (2,25)

where B and D are arbitrary constants, Using cquations

(2.,24) and (2,25) in equations (2.l1) and (2,5), the result is

2 " Ea.h,D 1nben .
Hn®D + P - _Beh D _ inCeB g o - (2,26)

28 - KB - 1 n°REP _ 132027 (c13/2)

P . .
R 203},, Cci3/‘3Jo(zxi3/2)

- Boh ne :
M e R 1n0,Dy - (2,27)
1-Oc c Re

At the vessel wall, we have the following:
3¢ w o | \
w(r,1l,t) = 3 % inB axp{ln(t - z/c)} s - (2,289
ul(z,1,%) = %—g s inD exﬁp{in(t - z/c')‘} . - (2,29)
3t
From equations (2,22), (2,23), (2,28) and (2,29), w2 have
5 “ P
inB ® A + —'é' , - (2.30)
D= R _2aNE@1¥2) . - (2.31)

Detormination of the constants P (pressurs modulus), ¢

{complex wave veloeity) and A (an intsgration constant)
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will onabls us to determine axial and radial volocitios w
and u ontirely in torms of known quantitics, Womersley first
determined ¢ as follows:

Equations(2,26), (2,27), (2,30) and (2,31) form up a
system of four homogensous linear equations in four unknowrs
A, By D and P, From the thsory on application: of determinants
to solve systems of linear cquations, the coefficient determl-
nant of the four equations should be ogqual to zero to satisfy
ths consistency requirement, Ths determinant contains ¢ but
not any of the four unknowns A, B, D and P, Solving this
coefficient determinant for c, he obtained

1 .1 fE(l—ég)x" 217
I=11 c =1 {x-1v}, - (2.32)

where ¢4 = (*QE) - (2,33 a)
23P '
(1-09%=c_ tVe?2 - (1-06)2m - (2,33 b)
o= /M= 0oy kit 4+ 6, -1/ - (2,33 o)
1-T 2

o= LB 2K g - (2,33 d)
1 - Py

k! = ﬁiﬁ(i =% 2) s - (2,33 8)
o P

L (®13/2

P (G T - (2,33 1)

cti3/2go(d.13/8)

where E is Young's modulus and ¢, is the fheorstlecal pulse
wave velocity In a frictionless system,
Of thoe two velocity components w and u, only w, the

axial velocity component, is significant, To determine w



20

we need an expression for 4 and this can be obtained using

equations (2,27), (2,30) and (2,31), giving the result

A s P_lé\ , .- (2.3l)

P
where 17} = 2 . - —£~:—§93 - (2.35)
X(Flo - 26,) Fio - 24, .

Substituting the expression for i from ecuation (2,3l) into
equation (2,19) and integrating the resultant expression

between limits vy # 0 and y # 1, gives

7 zF.g(l +qf ) exp{in(t - z/c)} - (2.36)

where W 1s the average axial blocd velocity across the vessel
at any time t and axial position z in the blood stream, The
radial velocity u 1s also complotely determined by substitutig
for A from equation (2,3L) into (2,20), however as sarliler
indicated, u is small compared to w and is usually ignored

in blood flow problems,

Tn arriving at equation (2,36), Womersley assumsd no
reflected pressure waves in the system, how:ver Fry and
Greenfield, Jr, (196l1) argued that in a real situation both
the forward and the reflected waves always exlst, 1In
the presence of a reflected wave and assuming a linear
superimposition of the waves, the pressurs p is given by
p = Py oxp{in(t - z/o& + Py uXp{in(t + z/cﬁ; s - (2.37)
where Pl is the pressure modulus of bhe forward wave, P2 is
that of the reflscted wave and 4 z/c indicates that the
reflected wave is travelling in the negative z-direction,

On simplification and re-arrangemcont of terms, averags axial

velocity W now becomes
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=1

= 1 : . - . XS
fiz§(l-+1ggﬂ){1n/cbﬁ_sxpﬁuﬂt:~ z/c)

- P exp{in(t = z/c>}]j , - (2.38)
The epression in the braces of esquation (2,38) is -a8p/3z for
p given by (2,37), which is the complsx pressure gradient,

At any given point z = z,, the complex pressure gradient is

given by
- gE z A! exp{int}, - (2,39)
7

, ]
where A! z-in/c[?l exp&—lnzo/d} - T axp{inzo/c}J, - (2,L0)
Tke quantlty A' is the complex modulus of the complaX pressure
gradiesnt at the given point z = z, Substituting the «
expression for -8p/dz from equation (2,39) into (2,38), one

obtains
% =_A' (1 + xFg) exp{int} ., - (2.41)

By squation (2,40), Fry and @reenfisld, Jr,(196l1) established
that given pressure gradient —ap/az at any point, onz can
dotermine the instantancous average blood velocity in the
presencs of reflected waves at that polnt,

2,3 SURVEY OF KAPUR'S ARTICLI,

J, N, Kapur (19880 In an article cntitled 'Problems of
Blood Flow in the Human 3System! discussed pulsatile blood
flow under assumptions already listed in Womersley's model,
His artlcle is in two ssections, In the first section hs
agsumed the arbterinl vessel wall to be rigid, TUnder this
assumption he dotormined the axial vaelocity w as a function
of v (nondimensionalizod radial displaccement) and time t, He

also determined pulsatile volumstris flow rate g, * In the
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second part of his article, he assumed the arterial vessel
wall to be elastic, Tinder this assuﬁption he analysed the
harmonics separately and linearly combined the solutions fer
the different harmonics into gerles solutions for pressure
and axial veloclty,

2.3.1 RIGID VESSEL:

It 1s assumed that the vessel wall 1s rigid and that
radial -velocity 18 nogligibly small, Under this condition

equation (2,7) reduces to
2 =0 - (2.42
3 . (2,42)

Thus by equation (2,42) pressure p i1s a function of z only,
The vessel 1s assumsd to be a cylinder of uniform cross-
section and flow is symmetrical, Under these assumptions,
we have Aw/Az % 0, implying w, the axial velocity , 1is
independent of the axial displacement 2z, Kapur assumed both
the pressure gradient and axial velocity to be sinusoidal

waves with the -same argument given by
L= P exp 1nt¥ ’ - (2,43)
z

w(r,t) = W(r) exp{int} , - (2,4)
where n 1s the sinusoidal wave number and P is the pressure
gradient modulus, From equations (2,6), (2.13) and (2,Lk),
we have

W'(r) + 1/rW(r) - (1op/p)W(r! = - P/n - (2.45)
The homogeneous part of equation (2,k5) 1s Bessel's equation
of order zero, A general solution of (2.,15) is

Py

W(r) = AJ0(13/2(n}v/u)zr) + BYO(.«LB/?(n}o/u)%‘r») - 4B, - (2,46)
n

F
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where J, 1s the Bessel funtion of the first kind of order zero
end Y, is the Bresel function of the second kind of order
zero, For the velocity W(r) to be finite at r = 0, B must
be zero, Equation (2,46) becomes

3/2 3 1P
W(r) = AT (1 (n};/p)zr) - =i, . - (2,47

P

Using the no slip velocity on the vessel wall, assumption

" (4), le, W= 0 at r % R, Kapur obtained

- 1P .
= AP, S - (2.48)
npJ (13/2) i

where ¢, 1s as gilven by equation (2,21), »Nondimensionalizing
the variable r by the substitution y = r/R, equation (2.47)
becomes

w(y) = - 181 - Io(13/2¢¢ v) ) " - (2.49)
T,(13/2 )

Using equations (2,14}, (2.47) and (2,21), wo obtain

w(y,t) = - 3.?5; 1 - Jo(1¥/2ay) y exp{int} . - (2,50)
ne 3. (13/2ec) ‘

Equation (2,50) determines the complex flow velocity the
real part of which 1s the instantansous axial flow veleclty
at any time t and radial position y, Flow is independent of
aXxial displacement z,

Volumetric flow rate Q 1is given by

1
= 2Jr5orw(r,t)dr = 2RR‘2§wa(y,t)dy | - (2,51)

which on substituting equation (2,50) for w(y,t) and integra-
ting, gives

) oxp{int} , - (2,52)

mmh(l . 23101322
1325, (13/2 )
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Writing the Bessel functions in equations (2,52) in series

form, we have

b -x2 b
q = HMER fl - 1-x%/8+ xt/38) - } expfint} , - (2.53)
nc 1 - 1-x2/h+‘xll-/6u - eee

where X = 13/2(;,; . The expression in the square brackets of
eqﬁation (2.53) 1s deneted by X(Q) and when this 1s expanded

in a power series, the result 1is

2 <y 6
X)) o xS o T8 o), - (2,5
() - 3oL + ola™) (2,5h)
On substituting equation (2,5&) into (2,53),the result is
Q :‘[ pRlt + B(OCH)} exp{int} - (2,55)
Bn

As n 5 0, & _),O and Q_;,QO where

% =’.S.§B” , - (2.56)
- on

which is the volume flow rate under steady state and constant

pressure, known as the Polseuille equation, On the other

hand, X(&) can be broken up into its real and imaglnary parts

and a graph of the real and imaginary parts of X(X) against

o can be tabulated using tables of Bessel functions, Such

a graph is given by Figure 2,1,

Re (X(a) )4 N Im( X))
0.8 L "Re (X(xX)) 40.8
0.6 4 0.6
O.u- o - Ooh‘
0.2 | ~In(X@) 0.2
O N }\__,_

I 8 12 16 e

Figure 2,1: ¢« against Re(X(®)) and Im(X(x)), (sse!Problems
of Blood Flow in the Human System!, Kapur (1983)),
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Figure 2,1 shows that the difference in magnitude between the
real and imaginary parts of X(X) increases with increasing «,
Phase shift @, between pulsatile flow rate Q and the pressure

gradient 1s given by

ton ¢ & §m<§(§” - (2.57)

For values of & Dbeyond li on the graph, Re(X(X)) is increasing
while Tm(X()) is decreasing, By equation (2,57) this implies
phase difference @ increases with « , Figure 2,2 is a graph
of ¢ against &,

A
100° &
90°
80 L
60° L
ho® |
20° L
0° i { ( { [ >
0 l 8 12 16 (44

Flgure 2,2: « against ¢ (Kapur (19%8))

The graph shows that ¢ increases with & and levels off to
900, Since by equation (2,21), & increases with vessel
radius R, it is expected that phase difference ¢ should be
higher in larger vessels,

Impedence Z is defined by
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7 = - 9pfdz = P/q exp{int} . - (2,58)
Q

As @ 50, n 4,0 and Z 4 Z,, Whore

To ® P/Q o - - (2,59)

To see how volume flow rate Q varies with the pulsatile
character of blood flow, consider a graph of IZI/ZO against

@, shown in Figure 2,3,

21/2, = Qo/tai = 8IX@ = «®/8 | - (2.60)

&

izt /24

0

12

1zl /2,

10

0 L ! S B i >

0 h 8 12 16 x

Figure 2,3: |21/2_ against o, (Kapur (1943)),

Figure 2,3 shows that {Zl /Z, increases with  which by
equation (2,60) implies that |Z| increases fast relative

to 2, and |Q} deereases fast relativé to Qp, as &« inoreasss,
Thus, Kapur was able to show that the pulsatile character

of blood flow implies a reduction in veolume flow rate campared



with steady state flow rate and equation (2,21) implies that
this reduction 1is greater for large R, ie, in the big vessels;

From equations (2,58) and (2,53), we have

7 =(- B2, - (2,61)
R4 X(K)

Dimensionless impedence 1is given by

7= 1%2 5 {8+ o} + /32 4 o(a‘.h)} ) - (2.62)

XTec)
The approximation to X(@) given by equation (2.51) leading
to the value given for 7 1in equation (2,62) holds only for
small values of o ,. For large values of &K , Kapur used the

asymptotic series of the Bessel functions and obtained

7 = {Jéoc+ 3+ 2¥2/¢ + @(OL"Z)} + 1011{1 - 2/&c
+9£’£-§ + o(oc‘3)} . - (2.63)
&2

The real part of Z in both equations (2,62) and (2,63) glves
the resistance to flow contributed by viscous forces and the
imaginary part 1s the resistance due to inertial forces,
Using equation (2,62) for small values of ¢, Kapur
noted that for o2 4 2/3, viscous resistance is predominant
being over 90% of total impedence effect, TUsing equatlon
(2.63) for larger values of X, he notsd that for «Z3162,
tnertlal resistance 1s predominant being over 90% of total
impedence, For blood flow, u/? = 0,0l ewS/sec, 27/n = 60/72
and using equation (2,21) for xZ = 2/3 and 162 we have
2R = 1,3 mm and 2 cm, respectively, Thus for small vesssels
of diameter less than 1,3 mm, 1o, arterioles down to the
capillaries, inertial effects are small compared to viscous
forces and energy dissipation mainly occurs there, For

vassels of diameter greater than 2 cm inertial forces dominate
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and much of v¥iscous dissipation occurs in the large arteries,

2,3.,3 ELASTIC VESSEL:

The vessel is here assumed to be elastic and Kapur used
the relations between symmetric strsss tensor and vesscl wall
displacements to derive squations governing fluid flow and

wall movement et the fluid/wall interface, These equations

aro :
fw:ig - gx{z G{%i‘g * %9‘% - %2“' ig} ) - (2.6l)
ngzg = g”;z-kqgrc +r'ar g_z‘?ﬁ(“ _ (2.65)
gg +5§ ' % o - (2,66)

where g and § are as used prraviously, G is ths shear modulus
of the vessel wall material, JL 1s the external force on the
inner vessel wall, Due to continuity of motion at the

fluid/wall interface, we have

-5 ag
u = , x =2 ot = R+ - (2,6
At TTay T TI (2.67)

where Ry i1s the inner radius of the vessel, From continuity

of shear stress and radial stress at ths inner wall, we have

-

{au . {aﬁ ac} )

3z T Aar oz
and at r = RI (2,68)
du ag
- 2psd - + 26
o 2 s i |

Assuming that the external wall is free of any external

constraint, we have

G{%S'ag}zO and - - +2G—§ t r = R - (2,69)
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where Rp 1s the external radius of the vessocl,

th

To determine the k' + harmenic soltibions Af equations

(2,3), (2,6) and (2,7), the method of separation of variables

1s applied as follows:

wie(z,r,t) = We(r) exp{i(nkt - ykz)} ’ - (2,70)
uk(z,r,t) z Ug(r) exp{i(nkt - ysz} s - (2,71)
pk(z,r,t) = Pk(r) GXp{i(nkt - ykz)} s - (2.72)
where Ty 1s the kth harmonic propagation constant, wy and

v, are the kth harmonic axial and radial velocity components,

regpectively and Py is the kth harmonic pressure, Substituting
expressions for w , W and Py from equations (2,70), (2.71)

and (2,72) into equations (2,3), (2.6) and (2,7), the result

is

Wir) + L/r Wi(r) - xp W (r) = ~(17,/30P (7) , - (2.73)

Ui(r) + 1/r UL(r) - (x5 + /220 (r) = 1/p BPL() , - (2,70)
and

ﬂU&(r) + 1/r Uk(r) —viyka(r) =0 , - (2,75)

2
wharo Xk = yi + 1n?F/ﬁ, The solutions of the homogeneous
parts of equations (2,73) and (2,74) are Bessel functions

of orders 0 and 1, respectively, Let the tentative solutilons

ba
We(r) = &KqJT,(1yr) + XoJ,(1x,r) - (2,76)
and
Uplr) = B JUye) + Bydy (Axpr) . = (2,77)

where K4, OcZ’.Pi end B, ars arbitrary -senstants, The two

glven possible solutions satisfy

[

wile) + 1/r W(r) - xgwk(m = ~(1(K1nk'1p/p)Jo(iy?r) - (2,78)

k]



and
Uﬁ(r) + 1/r U&(r) - (xi +~1/r2)Uk(r)== -(;ﬁlngr/u)Jl(iykr).

- (2,79)
Solving equations (2,73) to (2.79) simulteneously, we have
he(e) ® = 1{agy 3 (1y,0) + Agkao(ixkr)} , - (2.80)
U () * - tfary 3 Gy E) + Ay 3 () - (2.81)
and
Pk(r) 2 - iAlymPJo(iykr) . - (2,82)

Kapur replaced the arbitrary constants @, and (12 by -iykAl

1

and «iy A_, respectively, He then assumed the general

k 2
solutions to be a linear combination of the harmonic solutions

and obtailned the results

= 3
w(z,r,t) = -éii{Alyka(iykr) + Agkao(lxkrzkeXp{i(nkt—ykz)},

k=0 - (2,83)
@ 3
u(z,r,t) = fzg;{Alyle(iykr) + Agyle(ixkr)jexp{i(nkt~ykz)}
k=0 - (2,84)
and
m .
plz,r,t) = —ESiAlnkPJo(iykr) exp{i(nkt - ykz}} . - {2.85)
k=0

To determine the unknown constants Al and Ag, consider
squations (2,6l) to (2,66) together with the boundgry -
conditions (2,67) to (2,69), The structure of equations
(2,6L) to (2,66) suggests that solutions for 3§/t and AS/At
are similar to those for w and u, The solutlons are of the

following form:

A T0y9,(1y, ) + B, 7, (1x 0) (nket ) 2.86
il :5§>1 1(1vyr) + Byg (1, r } exp{i(nkt - T2l = (2,86)
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%%_z Ei{DZJO(iykr) + Esz(ixkr)}v eXp{i(nkt - ykzi}‘ - (2.,87)
k=0

The aix unknown constants Aq; A2, Dl’ D2, E1 and Ez,are te-

be determincd using boundafy conditions (2,67), (2,68) and

(2,69), These boundary conditions goncratc six linear

hom;geneous cquations in the six unknown constants, from

which Crammer's rule can be applicd to determine the constants,
It has dlready been noted that the pulsntile nature of

arterial blood flow progressively becomes weaker away from

the heart, It becomes nogligibly small in the capilllaries

and veins, It may be desirous to determinc the factor by

ﬁhich the pulse attenuates in travelling a given distgnce:

z in a given reglon of the arterial bsd, To do this we necd

yk, the complex propagation constant, which can be obtainsd

from the consistency requirement of the coefficient matrix

of the system of homogeneous equations in the unknown: constants

specified earlier, The resulting oxprossion for yk cén be

separated into real and imaginary parts, Suppose we have |

v, = Bk-lﬁ_iﬁ‘k .‘ ‘ o - (2,88)

Tho axial variation of the pulse for ‘the k™ harmontc is
given by
exp{—iykz} = eXp{-inz}exp{ sz} . - (2,89)

In travelling a distance z the wave is damped by the factor
exp{ Skz}, In a wavelength ;\k’ the damping factor is

exp {Sk Q\k} The quantity B, is called the wave number and
1s given by

B = 2MA, - | | - (2.90)
The damping factor in a wavelength is then given by

OXp{ 8‘1{ Ak} = exp{ZK SK/BK} . - (2,91)



CEAPTER TTI,

EFPECTS OF STENOSIS ON ARTERIAL BLOOD FLOW,

3.1 INTRODUCTION

Stenosis is an abnormal growth 4n the lumen of a bleod
vessel, The actual causes of stenosis are not well established,
but its effects on blood flow in the cardiovascular system has
been investigated by several workers, Texon (1957); May,
DeWeese and Rob (1963); Fox and Hugo (1966); Rodbard (1966);
Spain (1966);Fry (1968, 1972); Young (1968); Eklof and
Schwartz (1971): Forrester and Young (1970); Lee and Fung
(1970); Young and Tsal (1973); Lee (197h); Rodkiewicz (197l);
Nerem (197l1); Bergel, WNerem and Schwartz (197l); Morgan and
Young (197l); Shukla and Parihar (1975); Parihar (1976);
Richard, Young and Chalvin (1977); Shukla, Parihar and Gupta
(1980-n,b); Shukla Parihar and Rao (1980),

This chapter is a review of the litorature from Parihar
(1976 and 1980) and from Shukla, Parihar and Gupta (1980-a)
which is on effects of stenosis growth on arterial blood
flow, considering blood as a Newtonian fluild, The <ffects
of stcnosis growth on resistance to flow and wall shear stress
(ie, shearing stress at wall of vesscl) were investigated by
the named workers,

3,2  BASTC EQUATIONS:

Blood is assumed to be an incompraessible, Newsonian
fluid and that flew is steady, axially symmetrical, laminar
and fully developed with no tangential velocities, Viscosity

is assumed to vary only with radius, Under these conditions

32



and ignoring inertial forces, the

reduce to

ap/ar‘ s 0.,
- 19 aw\
ap/dz = = a;(pp(r)arA

and the continuity equation is

13 (ru) + QW =g
r ar Az

where r and z are the cylindrical
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Navier Stokes squations

- (3.1)

- (3.2

- (3,3)

coordinates, w and u are

the axial and radial velocity components, respectively, p is

the blood pressmare and u(r) is the viscosity function,

equation (3,1) pressure p 1s a function of z only,
no slip velocity at the wall of the vessel and also

Poiseiulle flow profile the boundary conditions are

w =0 at r = R(z) 1
and £
dw/Ar =0 at r =0

where R(z) 18 vessel radius to be specified later,
egquation (3,2) with respect to r and using boundary

(3.4),

givos
R(z)
w = (- 2dp/dz

flow flux § is given by

R(z)
rwdr ,
0

th

Q- 2]
which on integpation by parts, gilves
R(z)
q = 7§ r2(-du/dr)ar
0

and using equation (3,5) =ives

By
Assuming

agsuming

- (3.4)

Integrating

conditions

- (3.5)

- (3.6)

- (3.7)
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R(z

Q = (= K 9Py 27 gp, - (3,8)
2 ( 2 da)iﬁzrj '

By using the continulty equation (3,3), we show that Q 1s

constant with respect to z, Solving for dp/dz, the pressurs

gradient, from equation (3,8), we obtain

dp _ . 29 - (3.9)
dz T1(z)

R(z)
where T(z) = éﬁ%%)dr . - (3,10)

The boundary condltions for pressure at the end points of the
vessel system are given as follows:

Pp=p, at z =0 and p = at z =1L, - (3.,11)

Pr,
where L 1s the total length of the vessel system under
investigation (see Figure 3,1)., Integrating equation (3,9)
using boundary conditions (3,11), gives

- = 2QF --(3,12
Py Po= = . (3.12)

L

1
ém)dz . - (3.13)

i

wherc R

Resistance to flow A ; is given by, Burton (1968) and Young
(1968)

A= o L - (3.1k)

Substituting for 1P pL from equation (3,12) into (3,1l), the

result is

2 22, - (3,15)
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Tt is clear from squation (3,1l) that A, the resistance to
flow,is directly propertional to total praessure drop and
inversily wroportional to flow flux Q,
The shape and configuration of a stenosis grewth is
not well definsd but it is here assumed to be axially
symmebric as shown in Figure 3,1,
r’y
7 R S A ]
; Ii S
1 ‘R b oy
I | "o ‘R P
{ . 5 | : | LS
i | | 7
| + PL l
| ! i
: \
| \ '/
PSS, VR ————
Figure 3,1: Geometry of Artery with Stenosis,
Variable radius of the vesscl R(z) is piven by
R(Z) _ 1 el 21(5'1 1 + cos %ﬁ(z-d—Lq)} 3 dSZﬁLO"' a
= "o to ) - (3.16 )

0
1l 5 otherwise

where Ly is the lensth of the stonosis, 5; is the maximum

height of the stenosis and Ry is the constant radius of the

vessel, Using squation (3,16) in squation (3,13), we have

¢+ 1L
F=L-Lo (a3 - (3.17)
Io d I(z)
Ro
whore I, = Sﬁf%)dr . -~ (3,18)
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From equations (3,15) and (3,17), the resistange to flow A

is given by

( d+Lo
N = 2L =L dz}. - (3.19
PRt (S{TTE) (3.19)

Resistance to flow 7\ was investigated under two different
viscosity functions, Equatior (3,19) was used to show the
effects of these viscosity functions on i\ .

Wall shear stress 7% is given by
T, = (—- »(r)% r=R(z) - (3,20
Using equations (3,5), (3.9) and (3,20), we get

R Xi(z)

Rguation (3,21) was usad to show thas effects of the viscosity

functions on wall shear stress,

3.3 LINEAR VARTATTION OF VISCOSITY:

It is assumed that viscosity variation across the vessel

is linear and is given by:

alr) = pg(r - %}y_) ; Gec 1, - (3,22)
e

where ug is the viscosity of the fluid at r = 0 and 8 is a
constant paramecter, Using n(r) from cquation (3,22) in the
integrals I(z) and I, from (3,10) and (3,18), resvoctively,

we obtain

I(z) = RL*(z){l + Z&@_}}_ﬁg)} - (3.23)
2‘I"HO 5 RO
and
I, = R%{»l n us} - (3.2
o 5 )



3,3.1 CFFECT ON RESTSTANCH:

Yubstituting the expressions for I(z) and I, from

equations (3,23) and (3,2l4) inte (3,19), we have

d_‘+'Lo d')‘Lo
L. Dp ’ d
N = O{L-—L . dz__ - peln - & -+ ——Z——)
nglk| o T ji(R/Ro)L'L ‘5‘8[ ° 2(3/30)3
for << 1, - (3,25)

Substituting for R(z)/RO from equation (3,16) into (3,25)

and making suitable svbstitutions to facilitate integration,

we have
2%
81 L
,). = 110 1 Lo Ln dQ/
: ‘_—_E - = - y :
RS £ XL é’(awo cosg)
2R
_%6[ -Lo+ Lo Y Tj} - (3.26)
T 2L j(a+ b cosff)3
where =7 - 2%(; _ g - Lo, a:l-é;i
Lo BT
and b = Oy, . - (3.27)

2Ro
The two integrals in equation (3.,26) can bs evaluated by
calculus of residunes and the result is

e
-)\ - BIIQ]J 1 - %_C_ +"£9. 8.(2:32 +, 3b2)

- LOR - Loy Lo(2a2+32) 1) - (3.28)
5 L T 2(a2. bz)S/zh

Resistance to flow )\ 1s nondimensionalised by dividing 1t

by the quantity 8M0L/“R%, Nondimensionalised resistancs A

is then given by
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5= Am‘% {1 - IJo + Lo a(222 + 3b°)
8uo i 2{52- b2) 7/2
- 4§11 - Lo 4 Lo(2a2 + b2) -
5 [ T i QW/E} * (3.29)

When 8’: 0, the case without stenosis, equation (3,29) rsduces
to ons obtained by Young (1968),

Bguation (3,29) shows that for a given stenosis size,
rasistance to flow ?R increases with decreasing 6 .. Since 6
deereases with increasing viscosity at the vessel wall, it
can thus be concluded that .i increases with increasing
viscosity at the vessel wall, Graphs of the variation of
resistance :} with 6h/RO are glven on Figure 3,2,

-

b
AN /
b=o0,1
1. ¢
1.3 ¢
1.2
1,1 F
1,0 |
0.9 L& x ‘ ‘ e
0,00 0,05 ¢,10 0,15 0,20

0,/
- ) 0
Figure 3,2: Variation of A with 5h/Ro for different L,/L,

From the graphs on Figurs 3,2 1t is noted that resistance to

flow A incroases with increasing height and length of stsnosis,



3,3,2 EFFECT ON WALL SHEAR:

At maximum height of stenosis (ie, at z = 4 ¥ Ly/2) the

wall shear tress 7' is given by

= )Z_d+LO - (3.30)
2

Substituting for I(z) from equation (3,23) and using the

expression for R(z)/Ry from equation (3,16) in (3,30) gives

,TS - h—qu(l - 6h) gl + -LLQ\ (1L - éﬁ} - (3,31)
*R3 By Ho .

Wall shear stress 't is nondimensionalized by dividing it

by the term MuOQ/T'?g . The nordimensionalized wall shear

stress Ty is given by

T, = shRg = (1 - fSh)—B{l + 4é1 5h‘)}"l - (3.32)
Mo Ro 5 R,

For the case without stenosis O = 0 and the result reduces
to that obtainsd by Young (1968),

Bquation (3,32) shows that for a given stenosis size,
wall shear stress'ﬁ% deereasss with decrease in viscosity at

«
the wall of the vessel and increases with Oh/RO,

3.t 3THPWISE VARIATION OF VI3COSTTY:

In small blood vessels, the tondeney of the cclls to
coneentrate at the centre of the vessel rosults in umegqual
distribution of viscosty across the vessel, The coll free
layer near the wall contains only plasma which has lower
viscosity and the central region w1th a highsr cell concent-
ration has a higher viscosity, In such small vesssls a |
layered mediam of different viscosities across the vessel

can thus be justifiably assumed, Middleman (1972) and Lih
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(1975).

Tn this scction Parihar (1976); Shukla, Parihar and
Gupta (1980) assumed that viscosity across the blood vessel

varies as a step function as follows:

- (3.33)

paripheral layers, raspectively, It is assumed that g >‘n2,
Ry(z) 1s the shape of the contral layer (see Figure 3,3)

assumcd to be given by

- - -~ -
Ry (2) { & - 9_;_{1 + cos gj_‘;(z—-d—_L_o)} ;s dz z £ d+ L,

—_ =z 2Rg Lo 2

B, - (3.3L)

X 9y otherwise

where U 1s the ratio of the central core radius to the tubs
radius in. the-unobstructed region, 61 is the maximum bulgling
of the fluld layer interface at z = d ¥ L,/2 on the stenosis

region,

Mgure 3,3: Geometry of artsrial stenosis with peripheral
layer,

' [
A reclation betwesen Oi and Oy 1s ohtained as follows:
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"he two layers, central and peripheral, have different
axial velocitics denoted by w, and Wy 5 respectivaly, By using

squation (3,33) in (3.5) we and w, are given by

1
.
wo = (<2 )/ 2 art {2 anr
dz lr bl 31”2 4
N ) 2
= (-1 _@_E)&R» - R} [,(RY - r“}} - (3,35)
7, 2 1 2341
Rp
w, = (=3 ) Y Zgp = (-1 ap){R® - 2} - (z
p = () | Zar s el I O (2.36)

whare ﬁg = ng/nl. Flux for the central and periphsral layers,

denoted by Qe and Qp, respectively, aras given by

Ry
Q, = axirwedr = (- X §£)2R§_{Rz - (1 - e)Rg} > = (3,37)
0 8Hgaz S. 1
R
Q = gngrwpdr = (= ;’__t__j_p_)(ﬁg - Hi)z ’ - (3,398)
The total flux Q 1s given by
= i = - ’Iy d 2"' - - 1I LL -
Q=%+ 0= (- & dp)fRt - uaml} . (3.39)

Bﬂedz

The expression for Q can as well be obtained by using equation
(3.33) in equation (3,8), Further, by using the equation of
continuity in separate layers, it can be shown that Qc and %
are constants, Making dp/dz the subjsct of the formular in
equations (3,37) to (3,39) and integra®ting the resultant
equations along the vessel length using pressure boundary

conditions (3,11), we have



ol -
- B_XR 2 2
QW o (Po = By i1 - él - ?2/2)(1‘} > (3.40)
L 1 -Lo+ 41 - (1 -35,/2)x2ls
2 T { / } 1
(py, - pf}"ﬁu 2,2 .
o To" P (-0 - (3.,11)
BusL 1 - Ze 4 (1~ @)%,
T
and
Q . (pg - pL)ﬂR%’ 1- (1 - J’Jwg__)OﬁLL : s - (3.h2)
8u_L 1-Lo+{1- (1~ ﬁgmﬁ}g
d =+ 1L,
where Gy ='l§‘ dz , = (3.43)
Ly 2( Y 2 -
4 + L,
G2 = -jf,s dz . - (3.%)
A{R/R)2 - (R1/R,)2}2
and
a+ L,
G. . x{ daz . - (3,45)

Lalr/Ro)lt - (1 - 5,) (Ry/m )b

o < > r-] S
An expression for Oi can be obtained by the condition

Q= Qe *+ Qp using equations (3.37) to (3,39), giving

1 - (1 - Fo)och N 20¢ 2{’1 - (1 - ¥y/2) 2}
1-Lotf1-(1-5)aMe 1-3 21 - - n,/2)0 2
=° { ( v, } = + (1 - my/2)¢ }Gl
g -a2)” (3.16)
1=-Do 4+ (1 -x2)2g
T 2

The relation Ry(z)= CR(z) satisfies equation (3,46) so that
by equations (3,16) and (3,3l), we have the relation

by = ot by - (3.47)
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3.4,1 IFFECTS ON RESISTANCE TO FLOW:

Under the given defination of the viscosity function
from equation (3,33), I(z) and I, from equations (3,10) and
(3,18) become

Hz) = L {RMz) = (1 - 5.)RY(2) - (3.18)
EI;{ 21 }
and
Iy N
I, = __h;llrz_iﬁo - (1 - nZ)Rl(z)} . - (3,49)

Substituting expressions for I(z) and I, from equations
(3.,48) and (3.119) into equation (3,19) and using the rslation
Rl = (CR, the result is

i

A1« Do +li - -Fyc et , - (3.50)
nggl—(l-ﬁg)cxu} Lov o] } 30

where G 1s now given in terms of (X as

4+ 1,
1 dz . - (3,51)

G =
1 - Q- R ta BAROY

$

),
To nondimensionalise A divide 1t by the quantity 8nlL/WRg,

Whon this is done the result is

- 5, o
AT 532)ocu{1 "ot 1-a- ugml%} . - (3.52)

The iIntegral in G of eguation (3,52) has already been evaluated

in equations (3,25) to (3,28), The final expression for A 1is

- fio .

A = - {¢ - Lo+ Lo a(2a® + 3b2) }
1= (1-gm)ak E L 2(a2 - p2)7/2°"

- (3,53)

When_ﬁ2 = 1 equation (3,53) reduces to enes obtained by Young
(1968},



Jraphs of A against Sh/RO for various values of L,/L

and ﬁ2 are given in Figure 3.k,

/

A ,
A x = 0,95

1,55 |-

1,25

0,95

0.65

0.35 Lo b b L 0/Ry
0 0,05 0,10 0,15 0.20

Figurs 3,l1: Variation of N with 0,/R, for different i, and
Lo/ L.

The gmaph show that TK increases with 6h/Ro and LO/L implying
that resistance to flow increases with stenosis height and
length, The same graph shows that 1} decreases with ﬁq implying
that resistance to flow decreases with viscosity of the periphe-
ral layer,

3. 0,2 BFFEST ON WALL SHEAR STRESS:

Substituting the expression for T(z) from cquation (3,48)



b

into sgquation (3,30), the rosult 1s

e

o0, 1 - (3,%1)

|
!
"‘RB(Z {1 = (1 - 1, (R:L/mm z =d+Lo/2

2, =

Using the relation Ry = R In equation (3,5l4), the shear
stress T, becomes

~

; - (3.55)

z =4+ Lo/2

v, .| ko)
a =
k“ﬁ (R/l 3{1 - {1 - u?(l ?

| N

which on using equation (3,16), the final nondimensionallized

expresion for shear stress 1s given by

——

Y, . W _ Fip .- (3.56)

@ (1 - 6p/Re) 1 - (- By

When ﬁz = 1 equation (3,56) is the same as onec ekbained by
Yeung (1968),
Graphs of Ty agalnst Op/R, for various valuss of i,

sre glven by Figure 3,5_

r—,. - 4:'
!__,/f//"' ; ///
0,75 — ./’”///’
g
a—*‘/
| "
0,351 ' ey By/R,
0 0.05 0,10 0,15 0.20

Figure 3,5: Variation of Y, with 0, /R, for different fi,.
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The graph shows that "¢, increases with 8£/RO implying that
wall shear stress increases with stenosils height and it also
shows that "€  decreases with,ﬁ? implying that wall shear

stress decreases with the peripheral layer viscosity,

3,5  BRANCHING EFFECTS:

Parlhar (1976 and 1980) assumed the stenosis to be only
in the main artery and not in the branches, Figure 3.6 1s an

{llustration of the physical set up under investigation,

~Figure 3,6: Geometry of a Branching System with stenosis,
(see Parihar (1976), pp.32),

Pressure drep acress the main vessel is obtained by
using equation (3,9) and the result is

- _ 2 QF 'va .
P - P = 1,0 - (3.57)
° 0 TmRh

-ﬁL
dz -
where Fl = é(m'g) ’ P =1 ' - (3.58)

and Q is the flux in the main artery and Py is the pressure

at z = pL, The pressure drop across the branchings is given by



b, - r, TP, ge1,2, e - (3.59)
X1,
]
R,
3TV | LI‘B - ( .60)
where Ij §m 3
0

and pL is the outlet pressure of each branch, Qi ig flux of
the jJ th branch, Rj is the radius of the J th pranch and M
i1s the total number of branches, By continuity of flux at

the branching Jjur.ction, we have
Q = - (3,61)

Using aquations (3,57), (3.59) and (3.61), an expression for

the unknown pressure Py, is obtained as

M

po/F14 PIRG S
pb‘: _ (1:{‘3-)1_1:/_\4(1 . - (3,62)
/F, + R EIj>
(l-ﬁ)Li:‘l

On substituting the expression for 1N from squation (3,62)
into equation (3,57) and solving for the pressure drop

Py = Py, across the system, we have

. ?-QL{‘FJ_ , - 09 - (3.63)
o = pL = 7‘&'{(}; ']::" T_.—“—__T—\

2 s

i=1

Resistance to flow is by cquations (3,1l) and (3,63) given by

"\ 2L ( Fy X RLL 1
R_RE{ _:M—_—j - (3.64)

[(IJ)

'!\/

[

. J=
Using equetions (3.58) and (3,16) in (3.6l), we obtain
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o
A= {4 Hirgmas + S BIY. -es
L La gLX
Iy)
Ly

Equation (3,65) is appliceble for any.éeneral viscosity
function p(r), The model considered linear variation of
viscosity as given by equation (3,22), For the ] th pranch,
Ij is piven by

Ij = 3 ¢

(3,66)
iwo

4

Using exnressions for I(z), To and Tj from equations (3.23),

Y
(3.2) and (3,66) into equation (3,65), simplifying for 0 <<1,.
and nondimensionalizing the resultant expression for A by

dividing it by J’TR%/B}:OL, we have

b

T MRS Lo 4 Lo a(222 + 3b°) 4 M(1 - B)
AF =P-p T3 /2 2
8L 2(a2 - p2) (es)
L 2 2 1
9 ] -
- &6{_}3 - _]: "E (28. + b2)5/2+ M(1 2)’% , - (3.67)
2(a® - b2): (o) @
2 ,.2
where c¥* = MRj/Rd is the ratio of total area of cross sections

of the branches (taking all branches to be of equal radius) to
the cross-sectional area of the main vessel, The average
value of ci is 1,28, McDonald (1979) and ranges over 0.75,
1,02, 1,29 in different parts of the cardiovascular systems
Caro, Fitz-Gerald and Schroter (1971), When B = 1 equation
(3,67) reduces to (3,29), HBguation (3,67) shows that A,
resistance to flow, decrsases towards the wall of the véssel_
Graphs showing the variation of resistance to flow
with 8£/Ro for different values of Lg/L and M are given by
Figure 3,7,
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Figure 3.7: Variation of A with 0 /R, for differont Lo/L

and M,

Figure 3.7 shows that .i , resistanca to flow, increases with
increasing Sh/RO for fixed M, Tt alsc increases with L,/L
for a fized M and with M for a fixed L,/L, The general
conclusion is that resistancs to flow TX increases with the
height 6h/Ro and length L_ /L of the stenosis and it also

increases with the number of branches in the system,

3,6 CONCLUSION:

In this chapter Shukla, Parihar and Gupta investigated

the cffects of varlation of viscosity of the blood across the

artery with stenosis growth on its lining, The results have

ghown that resistance e flow and wall shear stress decrease

as the viscosity of the blood decrcasss towards the wall of
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the artery, The results further showed that the resistance
to flow and wall shear stress increass as the size (ie, height
and length) of the stenosis increases,

The effect of branching is to increase the resistance

to flow in the system,



CHAPTER IV,

EFFECTS OF STENOSIS ON ARTERTAL BLOOD FLOW.

(NON-NEWTONTAN MODEL) ,

4,1 INTRODUCTION:

Chapter IIT 1s avreview of Titerature on effects on
blood flow by a stenosis growth on the lumen of an artery,
considering blood as a Newtonian fluid, However, blood is
a nonhomogeneous £1uid and has thus no definitive rheological
propefty, Hershey, Byrnes, Deddens and Rao (196li); Huchaba
and Hahn (1968) have indicated that in tubes of diameter less
than 0,2 mm, blood can be represented as a power law fluid,
At low shear rates, Casson (1959); Reiner and Scott-Blair
(1959) ; Charm and Kurland (1962 and 1965) have assumed blood
t‘ boe a Casson £IuTd, Parihar (1976); Shukla, Parihar and Rao
(1980) and Shukla, Gupta and Pariher (1980) investigated the
effects on blood flow by a stenosis growth on an artery wall,
eonsidering blood undef two models, the power law and Casson
models, Under the two models they investigated effects of
stenosis on resistance to flow and wall shear stress, This
chapter is a review on the investigations by Parihar (1976)
Shukla, Parihar and Rao (1980),

As in chapter TIIT it is assumed that the sbtenosis 1is
axially symmetric and its height and position depend on axial
distance z, Refer to Pigurs 3,1, from the previous chapter,
for an illustration of the physical set up, The radius of the

artery over the stenosis reglon R(z) is given by, Young (1968)

51
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1 §£{1 + cos 2%(z-d-Lo)} ; déz<ly+4d
R(z) _ J 2R, Lo 2
Ro i ~ (4,1)-

t1 ; otherwise,

where Ly is the length of stenosis and 6h is the maximum

height of the stenosis assumed to be much smaller in comparison
(\.

to the radius of the artery, ie, 04 % Rq,

L2 POWER LAW MODEL,

Ih,2,1 EQUATIONS AND ANALYSTS

Flow is assumed to be laminar, steady and axially
symmetric, MNeglecting inertial and entry region gffscts and
also keeping in mind that 6hﬁ“~R0’ the momentum equations

for the powsr law model in the r and z directions are:

% z 0 - (4,2)

and

dp:.l_é(_ ), - (14.3)
r 3r

where T , the shear stress, 1s given by

T = - o u7 A, - ()

in which m is the consistency and n is the flow bshaviour

index, For flow in a pipe, AIw/Ir € 0 and then equatlon (i h)

bacomss
T = (e AWy
m( E:E‘-) . - (11..5)

Assuming no slip velocibty at the vessel walls, the boundary

conditions are:

A g 4t p =20 and w =0 at r =R(z) - (I, ,6)

ar
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Equation (14.,2) shows that under the given assumptions pressure
p is a function of z only, Substituting the expression for

T from equation (L.5) into equation (L,3) and solving for w
using boundary conditions (ly,6), the result is

L E_ip‘)l/}'l Rl+ l/n - r1+1/n . - (h‘.'?)
2m dz 1+ 1/n

w = (-

Volumetric flow rate Q, is gilven by

R(z)

Q # 2% {rwar , - (1.8)
0

which on using equattéon (14,7), becomes

Q =(-1.9 1/n7(»___'R.3+1/n
L , - (14.9)
M 3z 3+1/n

To show that @ is independent of z it suffices to show

2Q/8z = 0 and can bs established uéing the squation of

continuity., From equation (l1,9), we have

d n

P = op3nt 1)t 1 . - (4.10)

dz
nx R3n+ 1

Integrating cquation (4,10) and using the boundary conditions
for pressure, gilven as

p=p, at 2z %0 and p=py at z =1L, - (1,11)
the result is

p, = pr = (30t 1 N -2mF, - (1,12
© k ( nx Q) aan+1 (h.22)
o]
L
where F_ = 5 9z - (h,13)

O(R/Ro)3n+ 1

and R/R, is glven by equation (l},1), Resistance to flow A ,

is given by
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A = 2o PL - (L.1h)
Q

which on using equation (l4,12), gives
o= (el Q)" 2nF ) - (11.15)
anx QRén'f 1

Tn the case of a normal artery 5h= 0 and R/Ro=1, Then

F,o= L and the resistance to flow for the normal artery,

denoted by >\N’ is given by

A * Bn¥ 1 )" 2nmk . - (4,16)
N nx < gRaC T 1

From equations (1,15) and (l1,16) the ratio }./Xmof resistance

to flow, 18 given by

A/ Ay £ T/ = (14,17)
By using the expression for R(z)/R, from equation (l,1) in
F and uvsing the resulting expression of Fj in equation
(1.17), the rosult is

A d+ 1L,
AN _I_io.’;_ Eog dz s - (14,18)
N L L /la-b cos 2%&(z~d-Lo) 3n+1
d To z
whare a % 1 - 61’1 and b =z Op . - (1t,19)

2R, 2R,

To evaluate the integral in squation (11,19) the following

substitution is made,

g = - 2Nz - a - Loy , - (4,20)
Lo
Bouation (l,18) becomes
A 2%
-X ® 7 - Lo 4 ,LO § ag + ) - (l,21)
N L 2L (a + b cosﬁ)3n 1

o



Tn the casc when n is an integer the intagral in cquation
1,21) can be evaluated by the method of calculus of residuss,

giving the rosult

‘x 3n
Ei =1 - Eo.y Lo (b 021 )~3n~1j§{E 1)5(3n)§(3n-+s)ﬁvs
N Lo Gnlle (s1)2(3n-5))

8 =0 - (lg,22)

Ol

3

2
where ¢ xa/b and Vv = - ¢ F (c” - 1)

= S : L - (4,23)
3(e2 - 1)%

When n = 1 in eguation (l,22), the ratio 1&/;kﬂ i3 the same
as Youngts (1968) result,

Figures l.,1 and L,2 are graphs showing the variation
of :\/:KN with 65/30- Figurc li,1 shows this variation for
different values of.n and Figurs 1,2 shows it for different

values of Lgo/L,

A
1.5+ =
Eo - 1.0 /n 1
I's
{
10“— - / n22/3
{
/
'
1.3 o / / n:l/B
/ 4
4
1.2 - //
's
/7
/
/
1.1 - e
100 z L * ! . ) ! ! }‘ 6h/RO

0,00 0,05 0.10 0,15 0.20 0.25

Plgure li,1: Variation of A/ Ay with 8,/R, for different n,
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Figure l1,2: Variation of 7\/?\N with Sh/Ro for different Le/L.
The two graphs show that the ratio of resistances )‘/;\N
increases with Sh/RO, The varlation of n on Figure li,1 shows
thatlk/7\g decreases with decreasing n, The variation of Lg/L
on Figure li,2 shows that the ratio‘x/;\N decreasss with
decreasing Lo/L, The gencral conclusion is that the resistance
to flow increascs with stenosis size (hsight and length) but
the non-Newtonian charactasr of blood tsnds to dacrease this
resistance,

The shoaring stress, T[4 on the wall of an artory is

given by

Ty = dnl- Qﬂ)n} = .
& Jr=R

which on using equation (l,10), becomss

nof

dp = (1} O
o (h.2l)



— 3n + 1 n o1 _ .
TS -~ m(“""‘r‘l’}:‘“ Q,) -1-{3?1- . ()4.35)

The ratio between the wall shears for the stenosis artery

and normal artery Ty, is given by

~

s/ Ty = (RQ/R)Bn

- (L,26)

Using the expression for R/R, from squation (L,1) in equation

(l..26), wa hava

Ly ~ —~ 37
qé/A(N = {1 - 22 il + cos éﬁ(z-d—goig 32 . - (h,27)
2R4 Lo 2 2

At maximum sbonosis height, z = d + Lo/2 and the ratio QE/KYN’

becomos
. -3n
T/ Ty = (1 - gy , - (4. 28)
o

When n = 1 (Newtonian) the result is the some =28 that obtalned
by Young (1968), The variation of the ratio Ty/y with Sh/ﬁo

is plotted on Figure 4,3 for valucs of n descreasing from unity,

Ts /U
A
1.5 " ln= 1
/
4 n=2/3
1-’-" B (/ /

1,3

1.2

1.1

> 6‘h/Ro

1,0
0.00 0,05 0,10 0,15 0.20 0.25

Figure L 3: Varlatlon of Y/~ with 0,/Ro for diffsrent n,
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The graph shows that the ratio ’fs/ﬁfN increases from unity
with SE/RO increasing from zero and that ’fs/'tN decreases
with n decreasing from unity, The general conclusion is that
wall shear increases with stenosis size but the non-Newtonian
character of blood has the effect of reducing wall shear,

I,2,2 EFFECTS OF BRANCHING:

Tt 1s assumed that stenosis only develops in the main
artery and the branches are normal, Parihar (1976), For a
diagramatic 1llustration of the physical set up refer to
Figure 3,6 from the previous chapter, Pressurec drop across

the main vessel 1s obtained by using equation (l,10) and the

result 1s
+ n
po - Pp * BLz) L )", - (4.29)
Ro
BL 4
where I(z) = S——-—Z:— s P &1 - (h,30)

and Q is the flux in the main artery and py 1s the pressurs

at z = BL, The pressure drop across the branchings is given

by

- 2m(l = B)L,3n + 1 n
Py pL LS RBn’i'l ( R QJ) s J zl, 2,0y M - (I, 31)
J
where py 1s the outlet pressure of each branch, Qj is the
flux of the j PP branch, Rj 1s the constant radius of the
3 ™ pranch and M 1s the number of branches, By contiuity
of flux at the branching junction, we hawve
M
Q = zQJ - ' - (’4-.32)

sl

On using equations (4,29), (4,31) and (4,32) an expression

for the unkwown pressure p, 1s obtained as
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M
.po + _PL (}:Oﬂ?+l/rl>n

pb = .ﬁ (1“'B) j
iy
B

) 3+1/n \n
(1-;3)( *13 )
3:!

where C{.j = R]-/RO, On substituting the expression for Py from

- (4.33)

equation (lt,33) into equation (4,29) and solving for the

pressure drop p, = Py, across the system, we have

2mL 3n + 1 nji(z) . 1l - ‘B - ()4' 3ly)
) - = , Il . .
p. pL RBH‘I' 1 nx Q’) + 3 +1/n\n ’

° (2.057)
where I(z) 1s still to be determined, It can be dstermined
by using the expression for R/R, from equation (4,1) in
equation (l,30), Parihar (1976), the result is

3n
__ﬁ_) = Io + I b\/ 2.7 ) ~3n-1N ( 1)3(311)’ (3n+3)
P- L (35 (s 2(3n- STS
=0 - (1,35)

The resistance to flow across the system is thus given by

™~ 3n A~ - {1
A Qn3n+ l( -{_—3%71/11) {.36)

From equations (1,17) and (L, 36) the ratio )/)\ 1s given by

A2y . - 4, 37)

J”
When all the branches have the same radli (OCJ" ), 1etting

MX 2= e, McDonald (1979) and using the expression for T(z)/L
from equation (l,35), the ratio '}\/?‘N becomes

~ ' 31’1
__/_\__ = p - %o+ LC) b‘} § -1 ) -3n- 1 ( 1)8(31'1) (31’1‘*‘ S)'
Ay (3n' (s!) (Bn-s’
1 s =0,
+ u(n+1/2, ) - (14,38)

(c%é)(3n+ 1)/2
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When B = 1 equation (lt,38) reduces to equation (h,22), The
variation of A/ Ay with §p/R, for different values of Lo/L
1s 1llustrated by Figure U l,

A/Mx n=2/3 M=3
B=0,75 e%=1,28

1,60

| :O,E
1,45 |

Lo =
- 0,1

1,30 i L
1,15 b
1,00 ! : 1 b Sh/Ro

0,00 0,05 0.10 0,15 0.20

Figure li,lr: Variation of'R/CAN.with 6£/RO for different L,/L,
The graph in Figure l i shows that the ratio ’>\/>\I\T increases
with By /R, and variations of Lo/L show that 1t also increases
with Lo/L . The conclusion 1s that resistance to flow
increases with stenosis height and length,

1,3  CASSON MODEL,

h.3.,1 EQUATIONS AND ANALYSTS:

An 1llustration of the physical set up is shown in
Figure 1.5,

.
o

| //// ’////// /////// \ Sz
[/ /‘/»Q

Figure .5t Geometry of tube with stenosis (Shukla, Parihar
and Rao (1980))



Flow is assumed to be steady, laminar and axially symmetrical,
Blood is assumed to be an incompressible Casson fluild, The

stress-strain relation for the Casson fluid model is given by

2 Y )
T L

g

_ iw.. . 0 ; ’\t i ’Yu = (L‘-039)

where "o is the yleld stress and n is the consistency of the
fluld, The shear stress U can be given in terms of pressure

gradient as follows, Bird, Steward and Lightfoot (1960),
,l"c--x.‘.-q':e- . "(h--h—o)
2 dz

Denote the shear stress at the wall of the wvsssel by wa so

that at the wall of the vessel equation (l,1}0) becomes

ht T - R g'cB - 1
w 35 (4, h1)
Elliminating dp/dz from equations (l4,40) and (I4,41), the
result is
r=2R, - (b.42)
Tw

Volumetric flow rate Q 1s given by

R(z)
Q = Eﬁfsrﬁdr - (4.143)
0

which on integrating by parts and using boundary condltions

w=0 at r = R(z), glves the result

R(z)
= X 2 - aW -
Q CS)r» (- Pyar | (b, 4ly)

Substituting the expression for (-dw/dr) from equation (l,39)
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into (I Lly) and using equation (l,h2) to express r in terms

of ¥, equation (I, li)i) becomes

Cw
3 L
g = Bos | (YEo) dY
nilw 7,
_ ®R3 Yo, 16,%s\E o I ;
= WTW{1+ %("rw)"' =(7)" - 21 2) } . - (.45)

~ 1 G,
For To/ ", <& 1, the term - EI(TZ) in equation (l,}45) can

be neglected and the squation approximated to

. AR3 L 372
QNR w(l-??%)z] . - (I1.1h6)

Elliminating ’tw from equation (li,li6) by means of equation
{4, 1y1), the result is

3 % 112
Q = B [(- %%’é) - QTE} . - (h.l7)

b

Solving for the pressure drop dp/dz from equation (I ,47), the

result is
d 2 (87
2o 22T agyt] " - 8

Q 1s indspendent of z as can bs shown by using the equation
of continulty, Integrating equation (l,1i8) using pressure

boundary conditions (li,11), the result is

2
_ 128 ¢ o 810 g 6hn
P - Py = == + + (
° L 9R, oL xRS 2 730/2 %)

Wi

Gy, - (,49)

dz
R/R,

L
where Gy = s - (1,50 a)
0
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"2 7 é(ﬁ/ﬁo)u
L
e | L
37 JR/Re) /2

Resistance to flow :‘\ is gilven by

P -B

f . 1287
hoaR,

where

1
641 T2
and h = .—?—E}—-Rg—a)

-
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- (1,50 b)

- (4,50 c)

- (L4,51)

- (4,52 a)

- (.52 v)

- (4,52 ¢)

For the case without stenosis 8h = 0, R ::RO and Gl= GZ:QB:L,

Then resistance to flow for the case without 'stenosis,is given

by

Ny#(e+g+nr ,

- (4,53)

The ratio A /)N i1s from equations (13,51) and (lt,53) given by

}.:fGl+ gCp, + hog

—tire

Ay,  (f+ g+ nL

- (14,51)

Substituting the expression for R/Ry from squation (li,1)

into equations (1,50 'a, b, c¢); the equations become

d+ Lo

Gy = L=Lo+ § gz

d [a - b cos §_§(z-d—?o

Lo

- (4,55 a)
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d +Lg dz 55
B L s
G, = L~ 1L + é {? - b cos %g(z—d—%O{]h )
a+1Lg (l,55 ¢)
dz . T e ©
Gz = L - Lo + g [a - b cos %f(z-d~Lo)5/2

Making the substitution given by equation (1,20) in the

integrals of equations (L..55 a, b, ¢), the results are:

2x
G - 1 L. + Log'."“"‘c}g"“"“ ’ '-(Ur,56 "l)
1 ° = Lo Eﬁro;é-+ b cosy
(g (1,56 b)
X T L ] - h_. 6 b
2 = Lo kot 2 g -
2X
- Lo af . - (4,56 D)
63 = L-Lo 4 'é‘%f‘é(a )5/

The integrals of equations (}4,56:a, b) can now be evaluated

by the method of calculus of residuss, giving the result

L .
Gy = L = Lo+ o ’ -(L;..S?a)
1 [e) R
(a2 - p2)3
2
Gp = L-To+ Loal2a®® 307 - (1,57 b)

2(a2 - v2)7/2

To evaluate the integral in equation (I,56 ¢), make a
binomial expansion of the integrand up to torms of O(b/‘a)tL

It 1s assumed that b/a € 1, Equation (l1,56 ¢) becomes

2%

: L _ 5., 35 2 2
G, = L - L, + 0 1 =(b i/ + 2= c
3 © Ekgg;zg{ 2( /av)COS B(b/a) cos ¢

3 ] J,
- éig(b/a) 0083¢ + 2%%g(b/a)hcoshﬂ +-O(b/a)%}d¢



6>

=L-To ¥ {ﬂ§72{ + Biv/e) + ggggwa)”} s (11,57 o)
a

From equations (4,54), (4,57 a, b, c) the ratio )/')\N becomes

A L1 Lo+t Lo{fGl + 863 t hGB} -~ (1.58)
‘AN E L +g + h
where Gi: > 1 5.2 0 - (1,59 a)
(a€ = b=)”
' - a(2a + 3b ) -
ST Iy VL oo
and 03 = _§72{1+ Lo/ + 2200/0) } - (.59 o)

when T, =0 (Newtonian case), f=h=0 and Parthar's result

for the patio >\/AN 18 the same as that obtained by Young (1968)
Figure li,6 and li,7 are graphs showing the wvariations of

>‘/AN with Sh/Ro" Pigure li,6 shows this variation for different

values of ¥, and Figure l,7 shows the variation for different

values of Lg/L,

7\/>\N A
1.5+
1.hf
. Q = 0,001 om3/sec
Ry = 0,05 cm
1.2 ¢ Q?=:0.035 dyne om™sec
1,1 r
1,0 : b s By/Ry

0,00 0,05 0.10 0.15 0,20
Flgure L:. 6: Variation of- 7*/'\ with 8111/120 for different Z,,



= 0,001 cm3/sec

AR
106 ' ..
R, = 0,05 cm %0:1‘0
2 ' -2 '
=. 0,035 dyne cm™“sec
_ e ;0,02 dyne cm”
1.k Loxg 5
L
1.3
Lo =0,1
1,2 L
1,1
, *
1.0 > 0,/R,

0.00 0,05 0,10 0.15 0.20

Figure li,7: Variation of )\/;\N with 6£/Ro for different L,/L,
The twc graphs show that resfstance 50 flow ratio .A/7\N
increases with 0y/R,, The variations of ¥, on Figure I 6
ghows that the ratio :ﬂ/?\N decreases as Q% increases,
Variations of L,/L on Figure li.7 shows that >\/}\N increases
with Lo/L, The general conclusion is that resistance %o
flow in the artery increases with increase in stenosis size,
le, helght and length and that the non-Newtonian character
of blood (posscssion of yield stress) has the offsct of
reducing this resistance,

To determine the effects of stoenosis on shearing strsss
v elliminated dp/dz from squations (I, 41) and (4, 4B8) and
solved for <7, ,:obtaining the rosult |

o
T, = ngtf + g(R/R)3 4 h(RO/R)3/2} . - (k,60)

In the case of no stenosis, Sh.z.o and R = R,s the wall shear

atress ';N, is given by
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r . |
Ty = 9_2_0 £+ g+ 1J . - (i,61)

r

The wall shear stress at maximum height of stenosis,(ie, at

z = d 4+ Lg/2), denoted by T, 1is given by

s ~ ' _61’1 "3" _6h "3/2

The ratio Ts /7y can be determined by dividing equation i

(LL,62). by equation (I1,61) giving the result

,:ié = 1 j j 6 "3 i 6 “3/2
T (£+ g+ h)lfwL B - §i) "R "S) } - (h.63)

Pigurs 1,8 1s a graph showing ths variation of ’Z’S/"‘L’N
with 01 /R, for different values of (.,

s /YN
4 @ = 0,001 cm3/sec

2,0k R, = 0,05 cm
an x 0,035 dyne cm~2sec V

Q‘

1.8 + .
1,6

1.h

1,2

s SR

1,0
0,00 ( 0.10 © 0,15 0,20

Figure L ,8: Variations of ,Yss/'\(N with Bh/Ro for different "¢
(Shukla, Parihar and Rao (1980)).



The graph shows that the shear stress ratio /Yy
increases with increase in Sh/Ro- The graph shows that the
ratio ACS/’ZN decreases with increasing "fo, It is thus
concluded that shear stress increases with the height of
stenosis,

I.3.,2 BFFECT: OF BRANCHING:

As in section 1,2.2 it is assumed that only the main

68

artery has stenesis growth and the branches have no stenosis,

Figure 4.9 illustrates the physical sat up.

jﬂ772727hx

Pigure l1,9: Geometry of a Branching System with stonosis,

7 // /774 /;/gé%/%, ;}/ *_m_z/-“ 7 }
§ / /////7///// / / / /n p fﬁ%é{/ff !1///14& z

As previously done Parihar dsterminsd the pressure drop across

the main artery P, = Py by using equation (L,18) and obtained

Py = Py = O FEL 4 Ty 4 hz3} , - (4,6l)
BL
d
where I = s 57% R - (1,65 a)
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? dz - (4,65 b)
0

p dz
_ - (1,65 c)
é(B/R )572

and Q is the flux in the main artery, On substituting ths
expressions:for f, g.and h from equations (14,52 a, b, ¢),
using oquation (l,1) in Iy I2 and I3 and integrating, the

result is

2 , 1
P, " Py » 128%pt1 | EUOM 6&@1(10%2 , - (L,66)
pL )J,QR JIR% 7R§ %R,
where aj = I =1 - EQ~+ Lo S i - (L.67 a)
BL PL  PBL (a2 - p2)%
T Lo , Lo a(282+ 309) ‘
by = 22 =1 .04 28 -~ (4,67 b)
YRR T TR P 2(a2 - p2)7/2 ’
c_ o1l L (1 Bin/a)© 3Lbo(y, A)
and oy = 5 T 2372< 7 /a) % lOZM( /ao‘
- (L,67 ¢)

For the case without stenosis, I = 12 = I3'3 ﬁ@, Since the
branches are assumsd to be free of stenosils, the pressure
drop across cach branch having the same length (1 - B)L, is
given by

Pp - P, = (1= pIL {Tl?B‘to 4 g0g —EEL:IQ—J)'} - (4,68)
LoR; TCR% 13

Solving cquations (1,66) and (L ,68) for Qj and Q, the result

is
< 2 { 128 T, 2cl - 31b1).+ o = Py
_ 16cq1,2 X, %{128“&' 5 D -p]’%
212 20y (2¢ - a.b )+ _0 b s = (L,69)
7T bR, Uh9Rep, 1 171 PL
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!

e ot .
Q5 = JUR3 128'704_ Py = Pq, _}_Q[Z"L’O Py - Pp ~(1.70)
Wy G-e TURy T '
Substituting expressions for Q and Qj from equations (1,69)
and (14,70) into the flux continuity equation (},32), the

result is

M
H 128 T L 1 2¢5 - a;b N
X“bﬁ'ﬂ“hJr 49R, § “{ lbzll-ng
LD L X ; 1 71
e J=1 s
J162TLE o (18 %,L ey - agpy , H T
7" Ro Bl N\__,O:'% | U-9RO b% blﬁ
?2.1‘_ M
4 16(2 "foL)%‘. ¥ S /2 - (4,71)
Ry on 4,15
where X . P, = Py - H ’ - (1.72)
1-p

2 q ¢
and H _BL{T—-O 1 ¥ ﬁ%%o{ 7R3(7(R ) cyQ & (b,73)

Equation (Ii,71) is a guadratic in X, from which the pressure
drop P, = Pp, can be determined, TIf a2ll the branches are of

equal radius, pressure drop is given by

2(1 - B)L 8("(0% 2n. ]2
R, 7"&) - (

Po ™ P 7 M'IR

+ pLa(a;f + byg + cqh) - (4. 74)

Resistance to flow is given by

L % 12
A . Po~Pr. [ )~ en ¢ 1\ “}

BL(ayf + byg + clh), - (lg,75)




The resistance to flow for a normal artery, denoted by XN’

is given by

>\.N = L(f +g + h) , - (l,76)

since 811: 0, aq = bl-: cq= 1 and B= 1, Thus the ratio A /7\ N»
2 -

from equations (I,75) and (l4,76) and using MOZ c¥#, 18
given by
2(1 - p) | ;M ¥ 5, oo 1
N = ,O [-,?-(E*) (EO) + ?(ﬂg) J + ﬁ(alf+b1g+clh),
A (r+ g +n)
- (L,77)

which reduces to equation (L,58) whenip =1 (no branching
case),

The variation of resistance to flow ratio 7\/)‘N with
Gh/Ro for differenﬁ values of Lo/L is plotted in Figure §,10,

_%0:1.0
Mist proas wes

0,02dyne o2
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I,15 L Ry = 0.05 em

n- = 0,035 dyne em™Csec

‘ &
u—-oo L ! 4 : /7 Oh/R..
6,00 0.05 0,10 0.15 0,20

Figure 1;,10: Variation of A/} with §y/Rj for different Lo/L,




The graph shows that the ratio ‘k/>\N increases with stenosis
height 8, /R, and with stenosis length Lo/L, It is thersfore
concluded that resistance to flow increases with stenosis
gize, 1c, helight and length,

L.y  CONCLUSION:

In this chapter, the effects on blood flow by a stenosis
growth in the lumen of an artery were investigated by conside-
ring blood as a non-Newtonian powsr law and Casson model,

The rssults have shown that both the resistance to flow and
wall shear stress increase with increase in the size of the
stenosis in cach of the two non<Newtonian models, In both
models the non-Newtonian behaviour of blood tended to reduce
resistance to flow and wall shear stress, Since reduction in
these factors is desirable for normal functioning of the
system it thus appears that the non-Newtonian behaviour of
blood is helpful in the functioning of diseascd arterial
vassels,

Bquations (l4,38) and (L4,77) show that in both models
the cffoets of branching is to incrcase the resistancse to

flow in the system,



CHAPTIR V,
MICROCIRCULATTON,

5.1 INTRODUGTION:

Miéroeirculation is the term applied to blood flow in
small vessels mainly the dapillaries with diameters ranging
from 50 pm down to 5 pm, (1 um = 1070 cm), This is the region
where, as earlier indicated, most of the pressure drop occurs
in the cardidvascular system, Attinger (196l), It has been
observed that blood flow through very narrow'vassels,
(capillaries) involves the passage of individual red blood
cells in single file along the vessel, each separated from
the one in front by plasma, It is cxpected that under these
conditions both the cell and the vessel may undergo some
elastic deformations to allow cell motion through the vessel,

This chapter rovisws some materials on problems ef
blood flow in the capillarics, Many investigators have in
past years studied microcirculation flow assuming either
Newtonlan or non-Newtonian behaviour for plasma, Green (194}
fiaberman and Syre (1958); Reiner and Scott-Blair (1959);
Prothero and Burton (1991); Wang and Skalak (1967); Whitmore
(1968); Lighthtll (1968, 1972, 197L); Fitzrald (1969 - a,b);
Skalak and Branemark (1969); Lew and Fung (1969, 1970); Fung
(1969) and Parihar (1980) f. In mest of these studies,
the workers assumed that blood cells are of simple analytic
shapes such as spheres, sphoroids, ¢llipsoids and discs,
Among some of the well known investigations are those by Wang
and Skalak (1967) who analysed flow in - cylindrical tube
containing a line of spherical bodies, Furthermore Skalak

and some other co-workers demonstrated importance of the gap

72
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between the particles and the tubs wall on the drag on
particles, The offect of tho neighbouring particles was
shewm to be Important only when the distance between the
particles 1s sufficiently small, This chapter covers soms
of the material submitted to the Journal of Fluid Mcchanics
by Lighthill (1968) and also covers contributions to the
same subjeet by Parihar (1980),

5.2 LIGHTHILL!'S PAPER,

5.2,1 BASIC EQUATIONS:

Lighthill (1968) investigated the behaviour of deform-
able tightly fitting pellsts being forcsd by a prossurs
difference to move slowly along a distensible tube filled
with viscous Newtonian fluld, Using the assumptions of
hydrodynamic lubrication thesory, he analysed flow behaviour
of the thin £film of fluid between the pellsect and the tube
and finally discussed applications of his results to flow in
the capillaries,

The pellet and the tube are assumed axis symmetrical
with a reasonable approximation to a good fit botwsen the
It is only parts of the pellet surface at a distance

two

from the axis nearly equal to the tube radius which influences

the lubrication problem of the psellet, Assuming &imple
elastic properties for the psllet and tube, Lighthill approxi-

mated these parts by the relation
L 2 4
r,o=r - 3Kx - B(p - p,) - 5.1)

whers p 1s the local pressurac, P, is the external pressure,
rp 1s the distance from ths axls of the tube to the pellet
surface, X is dlstance measured axlally downstream from the

point where the distance from the axis to the pellet surface
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is a maximum denoted by r ., K 1s the curvaturs of the pellet's
meridian section at the point where ry, = Ty and finally B 1s
the radial compliance of the pellet, The innsr radius of the

tube Ty is given by

rowT 4 & (p - py) - (5,2)

where (¢ is the radinl compliance of the tube, The difference
between rp and ry is the film thickness h and this can be

detormined using equations (5,1) and (5,2) giving the result

h = (X + B)p - py) + 3Kx® , - (5.3)

Phe term (¢ + B)(p = P,) in equation (5,3) is the clearance
of the pellet in the tube which may be negative or positive
at a local pressure p depending on the sign of (p - p.),
Pressure distributions with (p = po) > 0 correspond tn pellets
whose maximum diameter is less than the internal diameter of
the tube, but distributions with (p - p,) < 0 correspond to
tubes whose diameter is in placos less than the pa2llet's
maximum diamster,

The pellet is assumed to move at sonstant velocity U
along the tube, Tf the frams of refersnces is taken to move
together with the pellet, the bube wall is than ssen to move
at velocity =U in tho x~direction relative to the pellet,
Denoting the distance across the film by v, with v = 0 on
the pclleﬁ surface, the momentum squation without inertial

terms takes the form

Ot—%%—_gg, , -(S,lj.)

whers “C 1s the shear stress given by
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T =2% - (5.5)

n is the fluild viscosity and u is the veslocity component
along the x-direction, From aquations (5,l) and (5,5),

momentum equation may be written in the form

‘a®u  ap - (5.6)
n —— = 2,
ay2 dx

The boundary conditions are:

uz0 at y=0 and u=x-U at y =z h , - (5.7)
Bquation (5,6) implies that u is a quadratic in y, Wo can

thus write

u = A(x)y° + B(x)y + O(x) - (5.8)
where A(x), B(x) and C(x) are suitable functions of x, Using
boundary conditions (5,7) and substituting the sacond
derivative of u with respect to y from squation (5,8) into
(5.6), A(x), B(x) and C(x) are determincd giving the cxpresgse

ien for u as

d h d

u = (55 350y h gndx

. - (5,9)

The continuity equation may be given in the form

h
gudy ¥ - Q ~ (5.10)

0

where 2% r,Q 1s the rate of leakback of fluid past the pellet,
It is shown that Q 1s independent of x as follows:

The usual form of tRe continulty equation is given by

Adu av '
ax+'é'§°o’ - (5,11)

where v 1s the velocity component in the y direction, The



boundary conditions for v are

ve0 at y&0 and v = -1T EE at y =+ h - {5.,12)
X

Integrating equation (5,11) with resspect to y between limits

¥y =0 and ¥ = h and using boundary conditions (5,12), the

regsult is

h
vdh o {3 gy - (5,13)
ax ax
Now
h h 5
d {uav = (du . .oh
aQuy és;; S NCINR-
h
-~ gl!‘.d -~ g—-}}-‘ . - (5,1)
- éax 7 K ax *

By equation (5,13) the R,H,S, of asquation (5,1ly) is gero, 1le.
d_fuay = o ., - (5.15)

Finally, equations (5,10) and (5,15) establishes the result

that

49 = o© - (5,16)
dx

Thus ¢ is indspsndent of x,
Substituting equation {(5,9) into (5,10) and integrating

a8 Indicated, the result is

3 2
—q =G L Uy pl dln - (5.1
Q= (5 Bk {h + s BT . (5.17)

. d
Elliminating (%ﬁ 5=)-between squations (5,9) and (5,17), tho

b



rsosult is

u = 1‘5{2(57/10) - 3(y/h)2} - é@{w/h) - <y/h>2§ . - (5,18)
: h

Substituting the expression for u from cquation (5,18) intd

(5.6), the result is

dp w . OnU 4 1210 - (5.19)

The pellet is in iguilibrium sine: it 1s moving at
constant wvelocity U, To determine the unknown quantity Q
use the equilibrium requirement demanding that the skin
frictlonal or shear strsss force Fy balance the axial force

F . The skin frictional force is given by

LA

Py T 2Ry (V). - (5,20)

whore (T)y o , the shear stross on the pellet's surface, 1s

by equations (5,5) and (5,18) given by

V) % —p(duy = 200 4 6ng -
( )y-O Jl("d-y)yf-o h ——;1? (5,21)
From equations (5,20) and (5,21), the frictional force F, is
given by
Oo
Fg = 27z {(- 289 + 6uOygx - (5,22)
O.So, h 1o )

The axial force F, 1s given by

20 °°
Foo= Rroid ax = Arg((- 69 4 120)ax - (5.23)
‘ o 8x h? n3

- -w -

Equilibrium requires that F, = F,s which from equations (5,22)
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and (5,23) the condition becomus

oo oo

2 1210 - i 2nU 610
mgi(wéi.g ..1;13i.=)dx = 2mrgf(- B+ Phax - (520

The limits X —3.00 and X — —-oo reprosent veluss of x far from
the point of maximum pellet diamcter, The range of valuss of
h that gatisfy equation (5,19) wore found to be severely
restricted by the equilibrium requirement, Pressure gradient
dp/dx has an opposite sign to the shear stress (?ﬁyto, since
the two forces act 1n opposite dircctions, If dp/dx €0

then (V) 0, Applying these incqualities on the integran

>
v:0
of equation (5,2l1), the result is

20/U <& h 430/U - (5,25)

The integral en the L, H,S, of 2quation (5.2l) is simply the
differenco p(=%) - p(®) between the upstream and downstream

pressures, The aguation can thus be written as

00
Krf p(=0) - p(e@) = QJCI'O;(_ 2l 4 6u0)y gy . _ (5.26)
-0 h h?

5.2.2 REDUCTION T0O NONDTMEN3TONAL FORM:

The quantity 2Q/U is used as the typical measure of
film thickness h and is here usced in nondimensionalizing the

variables h, p and x as follows:

1
H » h P = (():'+.B)(p"p) X:(L-r—l}r—-z'o 52
20/ 20 o) 2 (02T
Equations (5,3) and (5,19) transform to
4 2 (g3 - B?) anda H =D+ iE - (5,28)

aX
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1
—

L Gt p) | - (5.29)
(20/v)"/ 2P

whers

We introducs a nondimensional quantity C determined by

C = -2_('2‘ ’ - (5'30)
Ur

which is a ratio of gtandard film thickness 20/U to the
maximum pellet radius r . The differential squation to be
selvad for H and P is only accurate for 0 < ¢ <% 1, In

torms of C and nondimensionalizing, squation (5,26) becomes

(]

P(-0) - P(o0) = L S(H"2 - %H"l)dx - (5,31)

~00
Determination of the valuss of H and P at any given X rsqulre
solution of cquation (5,28), The solution will be in torms
of L and specificatiénAof U and Q completely determines this
solution, If the downstream prcssure P(e0) 1s specified then
P(-=0@) - P(00), the pressurc difference motivating the motion
of the pellet, can bs determined, whon this is used in
equation (5,31) 1t fixes §, After this, Lighthill analyses
the solution in ths limiting cases when Li—s 0 and L —3 00
by mzans of psriturbation theory and numerical analysis, to
dsmonstrate how restrictions on the bounds of h satisfy the
regquirement on C, This model may throw somc light on blood
flow in narrow capillariecs with red blood cells boing squcez-
ed through them in singlce file, lubricated by plasma, In
applying rosults of his model to blood flow in the capillar-~
ries, taking the pellots as the red blood cells, he used
rosults obtained by Rand and Burton (196l) on the estimation
of B, the compliance of the red cell, which was cstimated to

be about 6 ym/mb, e value for (C, ths compliance of the



capillory vessel, was found to be much smaller compared to BB
so that 1ts contribution in & + P can be ignored; For
details of the analysis refer to Lighthillts article in
Journal of Fluid Mschanics (1968), volume 3lj, part 1, pages
12l - 143,

5.3 PARIEAR'S (1980) PAPER,

5.3.1 BASIC BQUATIONS:

Whoreas Lighthillt's (1968) analysis assumesd blood
plasma to be a Wewbtonian fluld however, savernl othsr egxperi-
menters suggested it to be non-Newtonian, Whitmore (1968),
Madow and Bloch (1956); Reiner and Scott-Blair (1959); Copley
and Stainsby (1960); Charm and Kurland (1962); Bugliarello,
Kepur and Hsiao (1965); Copley (1968); Scott-Blair (1969);
Scott-Blair and Spanner (1974) and Parihar (1980) investigate
plasma flow in the capillaries taking blood plasma as a power
law model, Copley (1968); Whitmore (1968) and Scott-Blair
and Spanner (197l) estimated that the parameter 'n'! of the
power lew model for blood plasma lies between 0.95 and 0.995
and 1ts viscosity was approximated to 1lis bstween 0,011 and
0,016 poiss under normal conditions, What follows 1s a revie
on Parihar's Technical Report No, 5/1980 on microcitrculation,

Assumptions made in this analysis ars:

(1) The suspended cell has its flat sides verpendict
lar tc the vessel axils and that the axis of the
cell coincides with that of the vesssl,

(2) Flow is laminar,

(3) The reynolds number is small snough se that the
inertial terms can be neglected in the equations
of motion,

(1) Plasma is a non-Newtonian power law fluid,



(5) Axternal forces such as gravity ote, are
negligible  compared to pressure and shear forces
(6) The cell and the walls of the vessel are rigid,
(7) Volocity at the vessel wall is zero (no slip
conditien),
(8) Flow is only in the x«direction (sse Pigure 5,1)
The physical set up of the rad blood cell inm a ecapillary

vessel 1is drawn in Figure 5,1,

yl\
~U wall of capillary
h
. > X
N N\\\\\\\\
red cell U —>s
— -l e - e [ SES J— v~ — ._.\‘./... -t P — Py . —-— — o N o e
- 8/2 Central line 2/2

Figure 5,1: Geometry of tube and csll,
The frame of reference is taken to be moving topether with
the cell at constant velocity U, The powsr law stress-strain

relationship under the given assumptions is

T o« - pidu/®l Bu |
= m[ay (ay) , - (5.32)

where m 1s the consistency and n is the flow behaviour index,
Under the assumptions the equations governing flow and bound-

ary conditions are given by

av _  ar

P ]

and u =0 at y= 0 - (5,34 a)

¥ =u, at y= &h - (5,34 b)



y - ¥ = - (5 o)
3y 0 at v = €h (5,30 @)
u =z =-U at y=h , - (5,3l a)

whoere Uy is the maximum wvelocity at y = &h, Boundary
conditions (5,3l b,c) represent the continuity of velocity
and shear stress at y = £h, In region I (see Figure 5.,1),
0 &y ¢ &h and Qu/dy > 0, Eguation (5.32) becomes

T oo ow@y - (5.35)
ay

Using (5.33) and (5,35), ws obtain

al . a.u“}:ﬂp. - (5.36)

ay{ ™3y ax

Integrating (5,36) with respect to y and using boundary

condition (5,3l ¢), the result is

Jl/n . - (5.37)

1 p
[( ;n--&—-(éh-y)

Again integrating (5,37) and using the boundary condition

(5.3 a), the result is

1+1 1+1
1 dp)l/h'{(éhJ /n (Eh - v) /%}; 0 ¢vesh
m 14+ 1/n ’ |

- (5,38)

u = (-

&1

In region IT, &h ¢ y £ h and Au/dy <€ 0, Equation (5,32)

bacomes

n
T 5 m(- g.‘&)

3 - (5.39)

From equations (5,33) and (5,39), we have

g;{m(- av) } - ~ (5,10)



Similarly, on integrating (5,&0) and using the houndary

condition (5,3l ¢), we have the result
-EE. = ( ;1‘.
dy T m

which on intsgrating with boundary condition (5,3l d), gives

N1 '
<) (7 - &) & , - (5.41)

2l

the result for velocity profile in region II as

)LM{(h-ihﬁ+lhl-ﬁ7—ﬁm1+h%} -
1 +1/n

.
3

o
1¥
T

3

Q1a

¥} i

En<yseh - (5.42)

To determine the unknown constant € we use the maximum
velocity u, at y = €h which is common for regions T and TIT,
Thus at y= &h the expressions for velocity profiles in the
two regions given by equations (5,38) and (5,12) are equal

and this equality ylelds an implicit expression for € , given

by
- U z (- X éﬂ)l/n _Bij;iif~[ 214‘1/n - (1 - 2)1“*1/n}:
™ dx 1+1/n | 5 1)
- L3

The physical set up shows that the point y = &h is closer

to y £ h, Tt is thus deduced that 2 ¢ & <« 1 and that

(1 - &) <€ 1, Expanding the terms containing € in eguatien
(5.143) and retaining only the first powers of (1 - &), the

result 1s

1/n 1+ 1/n
- U = (-~ l-éf- .ll_.___~ 1 ]
(- = dX) YA 1 - (n-+ 1)1 - €)%y .~ (5.4

Equation (5,lt) determines & explicitly.
The volumetric flow flux per unit length Q is defined

by



h th h

-q = Sudy = sudy +'$udy . ~ (5.145)
0 0 &h

By using equations (5,38) and (5.,42) for u in (5,45), the

flow flux is given by

: 3 2 - 2 +1
-q = (- %il?.)l/{l i {5 ' 1/n+ (1 - &) /n}
m dx 2 +1/n
- Th(1 - &), - (5,46)

Similarly expanding terms containing &€ in equation (5,46)

and retaining only first powers of (1 - €), the result is

1/n 2+ 1/n
_ ~idpy "', B _ (1 _ - _¢
Q% (- = >+ 1/m { (z+2)(1 - &)y - th(1

Elliminating € between equations (5.4l1) and (5.1,7) mives

the final expression for flow flux as

u 1 1/n hZ +‘1/1’}.
“frrT T . —

) - (5.48)

e

(1 +1/n)2(2 + 1/n) ’

which on making dp/dx, the pressure gradisnt, the subject of

the formular, the equation becomes

n

n
dp _ fn+ 1)(on+ 1) Th - (n +1)Q 7

For the case when m = 1 (viscesity) and n = 1, squation (5,19

reduces to the one obtained by Lighthill (1968),

The human red blood cell in the unstressed state 1s a
biconcave disc of diamster about 8 um, but under strass is
rather easily deformed, Prothero and Burton (1961); Rand and
Burton (196l), Many investigators hove assumcd the blood
cell to be of a simple analytic shapo, In this study the red
blood ce8ll 1is assumed to be oither disc¢ like or parabolic in

shape and flow flux O under each of the two assumptions 1is



calculnted,
5.3,2 FLOW FLUX ¢ (DISC-LIKZE CTLL):

The shape of the cgll 1s assumed to be disc-1like and
hencs the film thickness h = hg is constant, Filgure 5.2

gives an 1llustration of the physcal set up,

T a
~U wall of capillary
N 5% X
Ts
red cell U -—>
— . e e e et e e e e Y o o e e e e
- L/E Central line 4/2

Figure 5,2: The rcd czll assuming disk-1like shape,
The axial force F, (dus to pressurc gradlent dp/dx)

acting on the rad blood coll is given by
2—28/2

F, = Ar 49D ax - (5,50

(&5 OSdX . ( )
-2/2

on usinz equation (5.49) to elliminate dp/dx from (5,50) and

integrating, the result is
2 ( & B

= R + 1){(2n + - 8
Fa I&I’Om_l[n )( n 1)] E]h-o (n‘{’ l)ﬂ ) - (5.51>

n3 hi + 1/n

The skin frictional (or shear stress) force on the surface of
the cell is defined by

/2
Fy = 2R r,§(T) . odx - (5.52)
-L/2
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i
e (

where (Tﬁy10 15 the shear stress at v = 0, Using equation

(5,35) and (5,37) at y = 0 gives

() = fhy dp - (5.53)

':O .
7 dx
Flliminating dp/dx from equatiens (5,53) and (5,119), the
result is

n r n
- (n + 1)(2n + 1)] M = (n + 1))
) B Ehonx[ 3 L h2 +1/n ‘

n
- (5.54)

Substitubting equation (5,5l) into (5,52) and then integrating,

the expression for ¥y, the frictional force, becomes

- n
p . Zrgnl L(n+1)(2n+ 1) [nBUho - tn 4 (nH)Q}
2

(n+1)n2" n> D len+a

.ﬁmo-<n+w@nJ' - (5,55)

As obsgerved in Lighthill'!s analysis, we must have ra = Pg

and this results in an cxplicit sxpression for O given by

3

n =z o {:1 } 2n ] - (5.56)
h+l (on+ 1) (n+1)72 + 2(2n+ 1)
'E;'.

Equation (5,56) shows that  increases as the vélocity of the
red cell U, It can also be shown by calculation that §
increasss with ho and increases with n decreasing from unity,

5.3.2 FLOW PLUX Q (PARABOLIC CWLL):

The undistorted meridian section of the cell is assumed
to be parabolic, The blood vessel walls and the cell are both
assumed to be rigid, Figure 5,1 gives an illustration of the

physical set up, The lubricating film thickness h is given by

h s h, + 3Kx® - (5.57)



where ha 1s the film thickness which is constant at x = O,

Tquation (5,57) can be written as
hor ho(l+ kx?) , - (5.58)

whore k = K/2h,, ¥Elliminating h from esquations (5,49) ond

(5,58), the result is

- -~

~ n
ap . (n+1)(2n+1) an 2]

for k 4« 1, - (5.,59)

where X = nUhg _2n+t 1 - (5,60
Uho - (n+1)Q n

Equation (5,59) is substituted into (5,50) to determins P,

and the result is

2 ne @
o= %v%[(n-rl;(zml)] Emo ) (n+1m}n(}+ %}.(5,61)
15° 2

n

By means of aquations (5,52), (5,53) and (5,59), the shear

stress Pgq 13 given by

n
: 2R romi rn+1 @n+l] [ ~o-1
Fq % . -
° (nﬁ*l 2n[~ n3 Cho (n4*1)QJ
(2n+ 1) © 12
3 ™~
where Y = (n-1)Uho - 2 Tho = }
b oo | S fomo - (m+1)g
+ Uh n3 5.6
o[zn”-] - (5.63)

Equilibrium condition requirss that Fy = Fy from which flow
flux Q can be calculated using equations (5,61) and (5,62)
as previously done,

This ssetion has investigated the motion of a red blood

cell &n a narrow capillary by considering blood plaswa as a



G%

non-Nowtonian power law fluvid, The disc and parabolic
approximations to the shaps of the red cell were considesred,
Under cach approximation the flow flux Q was datermined, The
results have shown that @ increases with the red cell velocity
U and it also increases with h, the gap between the red cell
and the wall of the capillary, Flow flux @ also increases

as n, the flow behaviour index, decreases from unity showing
that the non-Newtonian behaviour of blood has the effect of
increasing Q, An obvious application of the,expggssion we
have obtained for Q i1s on the effects of sudden changes of
atmospheric pressure and altitude on the human blood circula-

tion system,
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