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_ABSTRACT

Let ¢ be a root system in a 2 -dimensional real Euclidean

space V with Weyl group W( ¢), and let W' (&) denote its rotation

subgroup. In {17}, the projective representations of the rotation

subgroup W'(®) have been determined from those of W(¢) for each

root system ¢®. This is done by constructing non-trivial central

extensions of W'( ¢ via the double coverings of the rotation groups

SO(2). This adaptation gives a unified way of obtaining the basic

Projective representations of W'(4¢) from those of W(¢), determined

in [9]. In particular, formulae giving irreducible characters

of these representations are explicitly determined in each case.

Our object here is to apply the fore-going results to

Rotation subgroups of Weyl groups of types D6 and D7, that

is, those groups which have Schur multiplier (Zz)2 ("] 23.

In particular, we give the a -regular classes for the factor

set O considered in [16], as well as obtain basic projective

characters for these groups.

The following is a brief description of the individual

chapters of this dissertation. 1In chapter 1, we give basic

ideas of factor sets and Projective representations of finite
8roups and some of the properties of these representations.
In chapter 2, we present the concept of Schur multipliers
and give the relationship between central extensions and

Projective representations of finite groups. Projective

characters of finite groups and some of their properties,

are given in chapter 3. Chapter 4 is mainly concerned

with Weyl groups and their Rotation subgroups, and Schur



o {ix)

multipliers of these subgroups. The work in these chapters
is applied in chapter 5, to obtain the basic projective
characters of the Rotation subgroups of the Weyl groups of
types D6 and D7. The results are summarized in Tables 11

and 11I.




Y

CHAPTER _ ONE

¢ e vt s s

PROJECTIVE REPRESENTAT}_Q“NS OF FINITE GROUPS

Let G be a finite group, X an algebraically closed field of

characteristic zeirn, and let

8% denote the multiplicative group of K.

1.1. Factor sets

1.1.1. Definition

A mapping w:GxGrK* s called a factor set

X,Y¥,2e G,

e (x,y) dxy,z) =u(x,y2z)a(y,z)

and

a(x’e) = 1‘:(;:(6,)()

where e is the identify element of G.

1.1.2 Definitio__r}

Twe factor sets a, 8 of G are equivalent if there exists a
A resent

mapping u :G*K* such that for all x,y G,

alx,y) = (x) wly (xy}"'lﬁ (x,y)

and

ule) = 1.

1.1.3. Definiticn

A facter set of G is said tc be ncrmalised if for all xe G,

1

a(x,x ) = 1.

1.1.4. Lemmna.

If © is a nermalised facter set, then for all X,¥% G,

a‘l(x,y) =cz(ym1,x“1)

-1
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By definitions 1.1.1 and 1.1.3,

1 -1 1.
a(x,y) alxy,y ") =a{x,yy Dely,y ™)
¢ B BN
=a{x,ela(y,y "))
.‘T. 1.1 et 1
and
- - S
a(xy,y I)O(X,x 1'} aa(xy, y u ]'_‘;a(y 1;;( 1)‘

Therefore, u(xy,y""l) ' .—.Aa(ywl ,'xml) and nence

' uix,y)a(y_l,x—']‘

) = 1, so that tu"l(x,y) = a(yml,x—l).

1.1.5.- Definition

Let o be any factor set of G. An element #eG is said to

be a-regular if
a(x,g) =alg,x), for all xeCG(g), the centralizer of g

in G.

1.1.6. Definition

A conjugacy class in O is said to be an ao—-regular class

if all its elements are a-regular.

1.1.7. Lem‘m_‘g_ .

If g is an e-regulgr element of G, then so is every element

in the conjugacy class containing [

Let g be in the same conjugacy class as h. Then x‘{gx = h

tor some xeG.




If g is a-regular in G, then
oy.g) =alg,y), for all yeCG(g).

Thus aly,xhx}) - o(xhxml,y), for all yeC.(,(xhx”]), and hence

-1 . - . CoL S
xhx ~ is @-regular. Thereciore £ is "a~regularc io G,

1.1.8. Lemmé

1f is an g-regular eleiment of ¢, then it is also a 3-regular
g 8

. element, for all factor sets 8 equivalent to a .

Proof.

Let g be a-regular in G. Then g, %) ::u(;&,';.;) for all
xaCG(g).
Ifa is equi.valeﬁt; to A’B; ‘t.hen» by 1.1.2,
a(g,x) :u(g)p(x)u(gx)nlﬂ(g,x), for some map u:Grgx.
Since g is a-regular, we have

alg,x) = u(g)ulxiy (gx)‘"ls(g,x) =a(x,g)

= wdu(g)uixg) Y (x,g).

Thus u(g)u(X)p(gX)"l;' (3.x) =~,1(x)u(g),,(xg)"1g(x,{;} so that
8(g,%) =5(x,4) since u(g),y{x) and w(3x) are non-zero numbers

in K*. Therefore § is a-reguiar in G.
Let , be any factor set of @ and define
. e -1
£ 064) =alx,g)a (xgx ™, x) (1.1)
a

,for all @ -regular 8¢G, all x.G.
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1.1.9. Definition

The factor set a is said to be simple if
(i) f (x,g) = 1. for all a -regular ge G, allX€ G.

(ii) ' a(x,x"vl) = 1, for all xeG.

We now state and prove some results which will be neceded
in proving that each factor sct of a group G is eguivalent to a

simple factor set (see Theorer: 1.!.13},°

_1 .1.10 Lemma

Let ¢ be any factor set of G and ¢ any u -regular element,

Let x,yeG be such that xgx“l = ygy""l. Then f'"(x,g)::fx(y,g).

(84

_P roof

Let x,y,geG satisfy the above conditions. Then

a(x,g )c_:_(_;_z_g_y“1 ,¥)

£ (x,g)f (y,g)7! - -
@ dy,gla(xgx ~,x)

_a (x,8)a (xg, x Ve (xgx7ly)

alx,x 1)y (y,g)

alX,a );s.z..(_i_l_z.;z?,g(}.s;;»_‘»{’_lx_l

s (x7 1 x)aly,g)

sy)alg, X—ly )z (x,gx"ly) .

a Gt

a (x71 yXJauly,g)

Now xnlyeCG(g) and g is u-regular. Thus u(g,xmly) ra(xuly,g)

_1 -
and a(x,gx “y) = a(x,x lyg.)-




Hence

1 -1 -1
£00g) £y, = X ay)alc yagle(xTyg)
i alx ",x)(y,g)

:cz(x"*l_,yg):s(y,g)a (x,xwlyg}
ax"1 % (y.g)

_a .V(“x.-l,yg) rx(x,xwlyg) _u(x,xvi -
- -1 PR DD R
a (x 7,x) a{x 7,x

1.1.11. Lemma

Let o be®ly factor set of G, and g be a-regular. If

f,(x,g) =1 for all xeG, then f (x,ygyol) = 1 for all
o4 6

X,¥e G.

Proof_ .

Let x,y,4¢G satisfy the above conditions of the lemma. Then

2t ygy Habygy™y) = alygy™Ly)s (x,y)
and
S = L
alxyygy "x x)alxygy v) =alx,ylalxygy Ix, Xy).
1) = V:(»]éy 9}’){}".)(,}16)

a(x,y)a(xygy”lx_l » Xy}

Thus £ (x,y;y~

_ a_(_ygy“l,y)a(xy,g) .
PR N | .
\:L(Xy("?y X ., Xy);:(y,g)

. -1

= I (xy,g)f @y.g/
o <

= 1.

_l d.12. _ ’Lexnmc'g

B — N s s e

Let = be any factor set of G, and let f (x,g) = 1 for all

-~ : -1 - -1 -
xeG, all a-regular geG. Then alg,g ) =ulxgx 1, Xy 1x 1)

for all a-regular ¢35, all xe G.



For all x,yeG satisfyiny the conditions of the lemma, we have

-1 -1

a(x gx’l, xg “x a{x,x; :d(xgulx",lx)u(xgxul,xg—l).

Since 7 is a-regular, 4~

b

is also g-regular, for xECG(é;*I)

implies gﬁlxe‘ Cslg) and

ax,g) alg™h0 ™ cote g e (g g - 1L

Thus f_,\.(x,gwl)z I and f { xgwlyg) = 1 for all xg G, and
hence
alxgx ~,xg Loy =a(xg—1,g)0 (x,‘;fl)

1.1. 13: Theorcm

Let o be any factor set of G. Then there exists g

simple factcr set y of G equivalent to .

We define ,:G*K* as follows.

Let @],“"@t} be an e-regular class of G, and let

t

-1 ..

= {. na ) = KLF . Zhljyeee .

G = Y xiCG(gl) such that 45 X;8y%; 0 (=1, ,t)
i=1

We call 8 the representative element of ihe a ~regular class

containing it. Define p(gi) = (xi,gl) fer i=1,...,t. By

lemma 1.1.10, M is well defined for any choice of
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{xl,...,xt}. Similarly, we define p on the other a-regular

classes. Further, set u{x) = 1 if x is not a ~regular.

Define a(x,y) =p(x)p(y)p(xy)“1a {(x,v) for all x,yeG.
Then for all z G, we have fa (z,gl) = 1, and hence by

lemma 1.1.11, f3{z,g} = 1, for all g-regular geG, all zeG.

i
Now define &8(z) --—B(z,z‘”l)_2 for all zeG: and set

y(x,y} r—-G(x)é\‘(y)é(xy)mla {x,y) for all x,ye G. Then

}.\

Wzoz ™) = s () sz Dster ez, 27}

I

1 1

Blz.2™!) (g (2,2 )g(z,270)) 2

i

il

1, for all =G,

and if g is a-regular, fy(z,g) = 1 for all z G, by lemma

1.1.12. Thus, Y is a simple factor set of G equivalent to &K

1.2. Projective representations

In this section, we define a projective representation
of a finite group G and consider certain properties of these

representations.

Let V be a vector space over X, GL(V) be a group
of non-singular linear transformations on V and GL(n,K),

a group of non-singular nxn matrices over X.

1.2.1. Definition

A mapping P:G>GL(V) is called a projective representation

of G with factor set « and representation space V over

K if for all x,yeG,




P(x)P(y) == (x,y)P(xy)
and

P(e) = IVD

where Iv is the identity linear transformation. The

properties of factor sets in Definition 1.1.1 are now clear

from our definition of a projeciive representation of a group.

The following is an alternative definiticn te 1.2.1.

1.2.2. Definition.

A matrix projective representation P of G with factor

P(x)P(y) =a (x,y)P(xy}, for all x,yeG
and

P(e) = ln,

where I,‘ is the nxn identity matrix.

If ais a trivial facter set of G, that is, if u(x,y) =1

s ——

for all x,yeG, then the above representation associated with

a is the linear (ordinary) representation.

.1.2.3 Definition

1 and P2 of G with factor

sets g and a, dre said to be projectively equivalent if

Two projective representations P

there exists a non-sinsular matrix T such that for all xeG,

11 P, ()T = P,(x).



if Pl and P? are equivalent, we shall write Pf Pz.

1.2.4. Defintion

A prcjective representation P of G with representation

space V and factoer seta is said to be reducible if there

exists & proper subspace U of V such thai for vel,

P(x)u€l.

Otherwise, P is irreducible.

Let @ be a factor set of G and define (KG)
a

={ 5 Vv Y(x);v_eK} where {r(x)|xeG} is a set of

G X X
elemenis in 1-1 correspondence with the elements of G. Define
addition and scalar multiplicaticn on (KG)Cz componentwise

and multiplication of elemenis of (KGL by

( 2y vix) ( zn _v(y)) = > n_o(x,yly(xyl.
x G X yeG ¥ x,yerX y

We prove the following simple result.

1.2.5,___ Lemma.

(KG), as defined abcve is an associative algebra over
e

K, with identity y(e).

Proqf

(KG), is an algebra (e.g. see[5]).
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To show that (KG)‘ﬁ is associative, let z “x'Y(X) .
- X G

: n,v(y) and g _vyiz) : N

yeG ¥ G 2 0" be any elements in (KG), .

Then

¢ v o Y(x)M( x n vy )y(E EY(Z)}}
x€G * yeG Y Y 22 G2

= (x "uxy(x){ oz n“‘yg z"‘*(y’z% (yz)]
xe G Yere G -

- z \)xnyf_‘zu(y,z)a (ngZ)Y(XyZ).
¥,z G

Alsc,

Oz v v(x) € 1 noy(y))]H
e Ny , I gy(2))
xe G veG 7eG

=7 5 v.nos(xylwxy)l{ & £ y(2))
= o
Lx,yeG xy 2eG z

It

Iy £ olx,y)a(xy,z)y (xyz).
x,y,zeG X'y z

Hence, (E(G}a is asscciative over K.

1.2.6. Definiticn

(KG)a as defined above is called the twisted group

algebra assaciated with the facter setq of G.

We ncw prove the folluowing result.




- 11 -

1.2. 7;_Lemma

There is a 1-1 corirespondence between Projective representa-
tions of G with. factor set 4 and the ordinary representations
of (KG) .

Furthermore, there exists a i~} correspondence between
representations of (KG)G and finite~dimensional ieft (KG)a -

modules V.,

Proof
Let < be a factor set of G, and T the linear representation

of (KG) . Define P:G-GL(V) by

a
Pxj = T(y(x)) for all xe G.
Then P(x)P(y) - T{v(x}) Ty (y))
= T(y(x) (y))
= Tlalx,y)vixy))
=a(x,y) T{Y (xy))

=u(x,y)P(xy),
and Ple; = T(y(e)) = I,.

Thus , P is a projective representation of G with Factor set a .

If now P is a projective representation of G with factor
set a, let T(Yix)) = P{x), %xG. Then T is a representation of

(KG), as an algebra.

Now, if V is a finite--dimensional (KG)Q -module, define

P(xlv = Y(xly, for all xG, veV. . A
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Then P(x)P{y)v = a(x,y)v(xylv
= a(xX,y)P(xy)v,

so that P is a projective representation of G with factor set a.

Following directly from (1.2.7), we remark that the
problem of classifying projective representations of  with factor
set 1 reduces to that of clessifying all finite dimensional (KG},E -

modules.

1.2.8. Definition

(KG) - modules Vl and V, are said to be isomorphic if

there exists a wvector space isomorphisia
S:Vl‘* V., sucih that for all x & and vcvl,,
s

S(y{x}v) = v {x)S({v).

1.2.9. Definition

A4 (KG) , -module V is said to be completely reducible if

for each subspace V1 of V, there exisis a subspace V., such
L

that V=V1(i) VZ‘ Otherwise, V is indecomposable.

Having defined indecomposable and completely veducible
(KG):: -modules, we can now generalise MaschKe's. ipeorem to
hJ

(KG)a -modules as foliows.

1.2.10. Thecrem

Every (KG) -module V is completely reducible.



Proof.

Let V, be a non-trivial subspace of V. Then there exists
1

some U such that V::VI(QU. Therefoure, there exists a homomorphism

then Av=v_.

XGHom(V,Vl) such that if V:V1+u, vie\,’, ue U, 1

Let P:V"\I1 be defined by

pv =lg|I! z v(x)xﬂx“l)v.
xX€G

Then Pv =|G|—1J G Av =Av = v, Q.e. P=V. .
) 1 v 1

New, let \D ={v-PviveV}.

Then Y/, is a submodule of V and V - V,®V,, so that V is

completely reducible.

1.2.10. Corollary

If P:G+GL(n,k) is a preicctize representation of G with
factor set a, there exists a matrix Te GL(n,K) such that

’

/ 51 \

§

-1, i C (v \
T P(x)T =/ 5,(x) o

{ /

A . /

& N ]

where each Si(izl,...,r) is an irreducible projective

representaticn of G with facicr set 3.  We write PS iSziﬂ...iSr.

1
Let Mn (K) (i=1,...,5) be the full matrix algebra cof
i
*’ nxn, matrices over K. Then (see [5])
'd - -«
(I\G,“—Mn (K)9...09 M" (K) (1.2)

1 . s
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Furthermcre, there exists s non-isomorphic (KG)Q -todules

Nl""’Ns’ such that each i‘vi'n (K) is iscmorphic to a direct sum
i
of n, ccples of Ni; where n, is the dimension of Ni cver K. That

is

Mni(K) =

IG)...@N. ' (1.3)
i

That is the irreducible projective representation of G of degree
n, which is afforded by the (KG)u -~ module Hi’ appears n, times
as an irreducible component of the projective representation

of G with factor set 2, which is afforded by the (KG)(I -module

(KG)_ .

1.2.11 Lemma (see [5])

Let Z be the centre <f (KG) . Then
93

Z = zZ(M_ (K)o ---@Z{d_ (K)} and hence
1 s

(Z2:K) = S.

froof

It is apparent from above censiderations that

22, (KP9...0 204, (K)).

Furthermore, the only mairices which will commute

with all the matrices Mn (K) are the scalar mutiples of
i
I . Thus (Z(Mn {K):X) = 1, and hence (Z:¥) = S.

n.
1 1

1.2.12 Lemma

Let , be a simple facter set of G, and let {gl,...{]xt} be

the set of z-regular classes <f G. Define Ci-:- roY(x),
xeh

i
i = 1,...,t.
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Then {C]""”Ct} is a . K-basis for Z.

P ron .

Let geG and XE%;J Then

Y(gﬂl WKCiv(g)= =+ (gml Wy (xy (g)
xe

= B -1 -1 o)
)(E% u(g s)()'y {g X)Y (gl

11 -1
= I _oly T,uug Tx,g)vig xg)

= C]. since a(gwl,x)ﬂ(g—'lx,g)e}(*.

furthermore, since each Ci is a sum of disjoint sets of group

4

elements, {(’i""’ } is linearly independent over K.

Now, if y = I & +v(g)eZ. Then we show that
ge G 8
if £,#0, then g is o-regular in G. That is we show that we
may sum over the C.'s. That is we show that if hﬁCG(g),

then fa(lf ,8) —u(h)g)b(u ,;,h) = 1.

Now since y=Z,

Y(hﬂl)yY(h) =y, for all heG, or

Wh oy (h) = vn Tl oz &_v(g)¥(h)
ge€G &

<>

—-CgY(h_l)Y(g)Y(h)+ 2 g v hy (g ) v

g'#EG

it
(s

fx’Q

g #&

ggci(h-”?;g):;:‘(h"lg'-h)’f (h'lgh)

. ‘ -1 -
a(h~ sg)i’(h Q)Y(h) + £ G%a(h »8 Jrv(h

1o y1th)

-1 7 = -
+ I Eg*a(h,g/‘)‘l(h & h)Y (h 1 h)

g'#g:G *



i (hwl,g “)y (h"1 gh)

= ngc\(h ygivin “gh) ¢ .Eg o

=£o‘r(g) + I gg’\(g/) since y = g \E,,Y(g)"

= g 38 e L ¥
. -1 : .
Now, since g 30, we have f (h ~,qg} = 1 ana thus g is o-regular.
b 3 ;

z & .Iﬂg)ez, then the sumuaation is over

Thus, if y = o G 3
Le b

a-regular elements of G.

Also, y(h"l)yy(h) = y implies that

E.. gwl_ f (hml:g)y(hmlgh) = 7 t y{g) and since f (!f,lg):l
; ;{h a 4 A ‘ €}
geG c ¥ G ¥
for all n-regular geG, then "4 = E .
h “gh 8
In particular, ¢ 1 & whenever 3 ¢G is conjugate
-1, ¢ ¢ E
h “¢h I
to g. Thus 47 is in the same oregular class as g, and
yeZ is a linear combination of {C1’C2""’Ct} . Hence

(Gl,...,Ct } is a K-basis for Z.

Given a factor seta , we need to determine ithe number
of non-isomorphic irreducible (KG) --mcdules; hence, the number
Q
of inequivalent irreducible projective representations of G with

factor set a. This is given by the followin; result.

1.2.13 Theorem

The number of non isomorphic irreducible (KG) -modules
. <

equals. the number of c¢-reygulur classes in G.
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By lemma 1.2.11, the dimension of (KG)y is S and from
lemma 1.2.12, the number of ' elements in the K-basis for
(KG)a is t; which equals the number of n-regular classes in G.

Therefore s=t.
We now prove our last result in this section.

1.2.14. Lemma.

Ifa , B are equivalent factor sets of G, then the number
of inequivalent irreducible projective representations of G with
factor set o equals the number of inequivalent irreducible

projective representations of G with factor set 3.

Proof:

Let {Pl,...Pt} be a complete set of inequivalent irreducible
projective representations of G with factor set % . Since B is
equivalent to a , then by 1.1.2, al(x,y) =u(x)u(y)u(xy)_18(x,y).

for all x,y G.

For each ieg{l,...,t} and all xgG, define P;(x) =H(x) P.(x).
Then
P{ (P (y) =ux)uly) P,(x) P_(y)
=u(x)u(y)a(x,y)Pi(xy)
=u(xhu (y)alx,y ) (xy) 1P (xy)
=B(x.y)P;(xy).
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and P; is a projective representation of G with factor set g .
Clearly, {Pl' ,...,Pr'} is a set of inequivalent irreducible
representations of G, for if Pi' was equivalent to Pj' for some

i,jed{1l,...,t}, then for ail xeG, we Would have

el (0 Q - Py (),

where {) is some non-singular matrix, sc that P_i and P.i are

equivalent; which is a contradiction.



R CHAPTER TWO

SCHUR MULTIPLIERS AND CENTRAL EXTENSIONS

In this chapter, we are concerned with central extensions
of finite groups. In particular, we consider the relationship
between central extensions and projective representations. For
a more complete treatment of the subject, we refer the reader

to Suzuki [15, p. 245-268].

We begin with the concept cf Schur Multipliers.

2.1. Schur Multipliers

Let sand a” be two factor seis of a group G, and deéfine

a function ¢q”:GXG+K* by

aa’(€,y) =alx,y) o-(x,y) (2.1)
for all x,yeG. Then for all X,Y,7eG,
| oo “(x,yaa” (xy,z) =0 (X, y (X, y)alxy,z) o (xy,z)
=a(X,y)a {xy,z)a”(x,y) o’ (xy,2z)
=a(x,yz) aly,z)q" (x,yz) o (y,2)
=a (X, yzh” {x,yz)k (y,z)y1y,z)

=0ta’(x._‘/Z) aa{y,z)
so that aa” is also a factor set of G.

For a factor set ¢ of G, define its inverse o for
all x,y: G, by
o 0, ¥) =(alx,y) )7, ' (2.2)
ol
so that is also a factor set of G.

-19-
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Then the set of all factor sets of a group G forms a

group under the law of compositio.: given in (2.1).

2.1.1. Definition

The group of factor sets of G defined above is called

the group of 2-cocycles, denoted 22 (G,K¥*),

Let §:G*K* be a function on G and define a function
‘;:GxG*K* by

hGLY) = 80 (y) s(xy) ] (2.3)

where y:G+K* is arbitrary,

Since ‘; (x,y) g (xy,z) = §{x)s (y)s (z)g (xyz)"1 and
‘S‘:(x,yz) :; (y,2) =6(x)s (y)s(z)e (xyz)“1 implies

that :(x,y)‘;(xy,z) ::; (x,yz} ';('j,!fz), it follows that: is a

factor set of G.

We note that ; is a homomorphism from a group of
K*-valued functions on G to ZZ(G,K*). We now consider the

subgroup imuc (G K*). Denote the image imp of | by BZ(G,K*).

2.1.2. Definition

BZ(G,K*) 1s called a group of 2-Coboundaries. We now

dencte the factor group z2(G,K* yB (G,K*) by H2(G,K*).

Then H (G,K*) is the so called the secend cohomology group

of K (see, e.g. [15, P- 201}). The group HZ (G,K*) is usually

known as the Schur Multiplier of G.




K]
2]
Py

Let « and B be equivalerr factor sets of G in the
sense of definition 1.1.2. Then in view c¢f the above discussion,
a and B are congruent mcodulo B2(G,K"~‘). it is easily seen
that equivalence of factor sets is an equivalence relation. Thus
if [a]) denotes the equivalence class containing ¢ , then this
class also contains every factor set of G which lies in
GBZ(G,K*). The set of all such classes [©] can thus be

identified with H2(G,K*).

For any two such classes{qa] ,{Y] in Hz(G,K*), define

[ally] =lay].

Also, let [1] denote the class centaining the trivial
factor set; and define [,a]-'l = [a_l]. With this multiplication,

it is an easy matter to show that HZ(G,K*) is an abelian group.

We now prove the foliewing results o¢n the schur multiplier
of a finite group G. In what f-llows, K is an algebraically

closed field.

2.1.3. Lemma. (see, e.g. {15, P. 251-252])

Every class [q] in HA(G,K*) of vrder t contains a

. th . .
representative o° whose values are t roots of unity in K.

Furthermore, g” is a nomalised factor set.

Proof.

Let the field K be of characteristic P>0O. Since the order
of [a] is t, then we may set t:!’sq., where 8>0 and q is such

that PAq. Then there exists a map u:G*K* such that for
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for all x,yeG,
t -1
G(X.}’) = p(x)p(y)u(xy) e (2.4)
Since the characteristic of K is ®, then

. |
a 6,y)' = (ale,y) NP - wixh (pulxy) L

and 1
5
a6,y = L (y) ulxy) HP -
Js s e
= v P wm? oy

Therefore, [au] cannot be of crder t unless p°=1. Therefore
PAt.
Now, using (2.4) for each xeG, we can find another map

v :G*K* such that
vt —ua 7l

and letting a{x,y) =v(x) v(y)v(xy)']' alx,y), we get
a“Ox,y)t = 1,

So that the values of & are tt‘h; rocts of unity in K.

Now to prove that «” is normalised, we set

-1
v(x) =[:x(x,x_1)]‘, for all xG. Then

1 1

a’(x,x ") = v(x)v(x—l)\:(x,x—l)ﬂ(x,x~ )

-1

- (ate,e I Ha (ux D) dx L0 1 et x7 )

1, -1 3

=falx,x Do (x,x )12

= 1,

So that a”is a normalised factor set.



- 23 -

2.1.4. Theorem (see, e.g. [ 15, P. 251-252]).

The order of every element of HZ(G,K*) is a factor of |G|,

the order of G, and HZ(G,K*) is a finite group.

Proof.

We note that HZ(G,K*) is an abelian group. Let |[G| be
the order of G and o a factor set of G. Then, for fixed .

elements x,yeG, we have
a (x,zy) olz,y) =alxz,ylalx,z),

so that if we set
p(x) = Ha (X,Y),

yeG

where p:G+K* has the same meaning as in (2.4), then
p (x)u(z)u(xz)—1 =u(x,z)‘Gl= 1, and [a] is such that {{!]|G|=

thus proving the first part of the theorem.

Now, by lemma 2.1.3, and since from above, t divides |G|,
it follows that there is a finite number of elements in HZ(G,K*),
and thus }HZ(G,K*)I is finite, which completes the proof of the

theorem.

2.2. Central Extensions

A normal subgroup N of a group H determines the factor

group H/N. We write G = H/N and call H an extension of G by N.

Given a finite group G, we now consider a ngztural way in
which the projective representations of G may arise. We first

consider the following.
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2.2.1. Definition

A central extension of a group G is an exact sequence

¢
1+N-H-+G~1

such that NSZ(H), the centre of H.

A central extension is thus characterised by a pair (H,¢)
of a group H together with a homomorphisrn ¢:H+G, such that
ker ¢ lies in Z(H). That is, H/N=G and N:<Z(H), where N=kerg¢ .
For this reason, a central extension of a group G shall be

denoted simply by (H, ¢).

Let (H, ¢) be a central extension of G and N=ker ¢ . Let
{y(x) [xcG} be a set of coset representatives for N in H which

are in 1-1 correspondence with elements of G, and let H =0 v(x)N
xe G

be a left.cobet deconin‘pos‘}ti_ogﬁof L?H' mod N. We define fxn*element
n(x,y)eN for all x,yeG by

Y(x)¥(y) = n(x,y)vixy). (2.5)
Then the associative law _in H gives that, for: 3%, y,zeG.

(+(x) Ay (2) = n(x,y) y{xyly(2)

= n(x,y)n{xy,z)y(xyz)

and

y(x) (Y(y)y(2)) = nly,z)y(x)y(yz)

= nly,z)n(x,yz)y(xyz),

so that n(x,y)n{xy,z) = nly,z)n{x,yz). (2.6)
As a convention, we fix ¥v(e) = 1. We now state the following

result proved by Haggarty and Hump:a reys [6, P. 177].



2.2.2.  Proposition

With the above notation we may choose a set {y{x)/xeG}
of coset representatives for N in H with an iscmorphism ©:G*H/N
defined by e(x)=v{x)N, for all xeG, and also such that y(xl)

is conjugate to Y(xz) in H whenever X4 is conjugate to X, in G.

Let ¥ denote a character of a l-dimensional ordinary

representation of N, and for all X,ye(, set

a(x,y) =¢ini{x,y)). ‘ (2.7)
Then (2.6) now implies that, for ail x,y.G,
alx,ylalxy,z) = alx,z)q(x,yz) {2.8)

so that a is a factor set of G.

2.2.3. Definition (see [6, p. 17¢7)

A factor set g defined in (2.7) above is known as a

special factor set of G.

Let T be a linear representation of H of degree d and let
(H,¢) and N be as above. Since nx = xn for all neN, xeG,
then Schur's lemma now implies that elemenis of N-are mapped

into scalar multiples of Id' That is
T(n) =u(n)1d, for some a(n)e Hom(N,K*).

In particular, we may now set Tn(x,y) =a({x,y)I ? for all

d
x,yeG. 1f we define P(x) = T(y(x)), xeG, then
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P(x)P(y) = T(y (x))T(v{y))

i

T{x (x)¥(y))

i

T(n(x,y)v(xy;

T(n(x,y))T(¥ (xy)) (since T is linear)

It

]

a(x,y)P(xy),
for all x,yeG.

Thus, P is a projective representation of G with factor set ¢

which arises from a linear representation T.

2.2.4. Definition

Let (H,d) be a central extension of a group G. A projective
representation P of G which arises from an ordinary irreducible
representation T of H by P(x) = T{y (x)), is said tc be a linear -

rizable representation of G or tc be ‘linearized’' by the linear

representation T of H.

We prove the following result.

2.2.5 Theorem

Let G be a finite group, H an arbitrary group (not
necessarily finite} with a normal abelian subgroup N such that

H/N=G. LetyeHom{(N,K*) anda” be a special factor set obtained by
a”(x,y) =y (n(x,y)).

Then the map s(:Hom(N,K*)'*Hz(G,K*) defined by & (¥ ):a'BZ(G,K*),

1s a hemomorphism with ker g = (NaH -yt » where H™ is the



derived group of H. In particular, g is an isomorphism if

and only if N&H”. -

Proof.

Let H = U RY(x) and define y(xk (y) = n(x,y)y (xy).
xeG

The first question to settle is, when does the special factor set
o® lie in B2(G,K*)?

Suppose that a’e BZ(G,K*)_. Then o~ (x,y)=u(x)u(y)u(xy)‘l,
for some pe BZ(G,K*) with p(e) = 1. Let <« :H+K* be defined by

T (n(y (x)) = p (n)u(x).

Then
tly(x))e (ly))= p(x)ly)
= ¢’ (x,y) uixy)
=y (n(x,y))u(xy)
= r(n(x,y) )y (xy)
and
t(y(e)) =y(e) = i,.80 that ¢ is a homomorphism.
Since T(x-ly-lxy) = 1, the restriction oft to H® is
TH" = 1. Also 1=t (v(e)r(e)™) ~v(nle,eu(e)
= ¢ (e)ule).

Therefore 1(ny(e)’1(e)‘l) = T(n) = ¥(n)

and

r[ N =¥(n), neN. Thus, if neNaH”, then t(n) = 1 =b(n).



Now, let (NpH ‘)'L'be defined as follows:

(Nnﬂ‘)lz i{xe Hom(N,K*) [a(n) = 1, neNpH"}. Then pe(NaH")}.

Conversely, suppose that ye (NgH )‘l . Let l:NH'«»K*
be defined by £(nx) =¢(n). Then £ is a homomorphism which
can be extended to a homomcrphism ¢ :H+K* defined by
oy (xNe(vyy)) = ¢ (v (x)v(y))

= ¢ (ni(x,y) v(xy))

=¥ (n(x,y)) ¢(y (xy)).

Now, if we let wu(x) =¢(¥(x)), then

d{v(x))o(¥(y)) =¥ {n(x,y))¥ (v(xy)
=a” (x,y)u(xy)
or

HeOU(y) =a”(x,y)ulxy) so that o*eB2(G,K*).

Thus, given a linear character v of N, the special
factor set a” determined by ¢ lies in BZ(G,K*) if and only

if e (NpH %)™

Now, if we define q:Hom(N,K*)*HZ(G,K*) by
€(¢) = G'BZ(G,K*), then & will be a homomorphism with

ker € = {ye Hom{N,K*) o (n) = 1= (NQH')-L'

In particular,  is an iscmorphism if and only if

NoH", that is N = ker ¢ is trivial.

2.2.6. Definition.

Let ¢ be a linear character of N such that for all X,y G,

alx,y) = ¢ (n{x,y)).
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Then ¢Hom(N,K*)+H%(G,K*) given by <) = aB2(G,K*), is

called the standard map.

This definition implies that given a factor set a, the
standard map determines a unique special factor set contained

in {a}] .

The following resalt gives a necessary and sufficient
condition for a given projective representation of G to be

linearized.

2,2.7. Theorem

Let (H,¢) be a finite central extension of G with ker ¢ = N
and g be the associated standard map. Then the projective
representation P of G with factor set o is linearized by a

represeniation T of H if and only if [a}elm €.

_Proof .

Let {y(x)]x G} be a set of coset representatives of H/N,
with  ¢(v(x)) = x and n(x,y) =Y(x)¥(y]v(xy)_1. Let ¢

e a linear character of N and suppose that
- 2, ..
g(b) ={ale HG,K*).

Then a factor set a” given by o~ (x,y) = y(nix,y)), for all
x,yeG, 1is equivalent toa . That is a " (x,y)=p (X (yh (xy)-la (x,y)

for some w:G*K=*.

Now, define a linear representation T:H*GL(V) by

T(a(Y(x))) =¥ (n)P(x)yu(x), for all xe G, neN.



Then  THXNTH (y)) = u (xX)P(x)n (y P (y)
= a(x,y)P{xyn (x) uly)

a{x,y)u(x) ly)P{xy)

it

i

a7,y (xy )P (xy)
=a7(x,y)T(y(xy))

T(n(x,y)y(xy))

i

Ty (x)y(y)),

so that T is a linear representation of H which linearizes P.

Conversely, suppose that P is a projective representation
of G linearizable in H. That is T(4{(x)) = P{x)u (x), where
T is some linear representation of H and wu:H+K*. Therefore

Ple) = T(e)P(e)“]‘ and
T(n) = #(n)P(e) = u(nlu (=) 1T(e), neK.

Thus ¥(n) = u(n) 1is a linear character of N.

Now, set n(x) = n(y(x)).

Then o (x,y)T(y(xy)) = T(n(x,y) y(xy))
=Ty (x)¥ (y))

=T (v GOT (v (y))
=n{x}P (x)n (y)P(y)

=n (xX)n{y)P(x)P(y).

Therefore a(x,y)n(xy)P(xy) =o(x,yh (x)n{y)P(xy), since

]

T(y(xy))= u(v{xy))P(xy) and u(y(xy)) =n (xy). That is

a’(x,y) n(x)n(y)n(xyfla’(x,y) so that the special factor set

i

a” is equivalent to the factor set 4 of P.



Thus ) = [a7] = {uje !’z‘.z((?:,;{*). That is a projective
representation of P with factor set a is linearizable if and only if

[a] lies in the image lm¢ of €.

2.2.5. Definition

A representation group H of a group G is a finite group

H of lowest possible order, which is a central group extension
of G, such that every projective representation P of G occurs as

a representation linearized from a linear representation of H.

We prove the following:

2.2.9. Corollary

Let {H,¢) be a finite central exiension of G with ker ¢ =N,

and € be the standard map.

(i) If N< K, then N is isomorphic to a
subgroup of i (G,K¥*);

rd

{ii) Assume | N| =|H%(G,K*)|. Then N H™ if
and only if every projective representation

of G is iinearized by a representation of H.

Proof.

Let €2 Hom (N, K*)*H (G,K*) be defined by €(¥) =a B(G,K*).

Then ker ¢= (MpH™F and Im <c H(G,K*) by theorem 2.2.5.



.,32_.

By the first isomorplisin theorem,

Hom(N,K"‘)/(NnH’)Lis isomorphic to a subgroup of

H2(G,K*). 1ufact, Hom(NnH~, K*)=Hom(N,K*)/(NfH ‘TL
since Nz H'.

Alsc, NpH =Hom(lpH”,K*}, and therefore if N<:H”, then
N is isomorphic to a subgroup of ﬂZ(G,K*), which proves (iJ.

Now, suppose that Nptll"¢ {e}. Then im¢ # {e¢} , which
gives rise to trivial factor sets, hence, the corresponding projective
representations are linear representations of G.

1f NnH’ £ {e} , then ¢ is nol a trivial factor set. 1In
particular, Im €4 {e} and so N& " implies that every
projective representaticn of G is linearizable by thecrem 2.2.7.
Furtherricre, this is the only time when prcjective representations

ct G are linearizable. In this case N = ]lz(G,K*).

We now prove the following result.

2.2.10. Theore_r[x

We maintain the above notation,

Let G be a finite grocup. Then G has at least one

representation group H of order 'lli’?‘((;,;’(‘*)l 1G] .

Furthermore, the kernel, ker ¢ of the humcmorphism

0: H»G is isomorphic to H/‘(G,K*).
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Proof: (see, e.g.| 6, P. 1&2-183] )

Being a finite and abelian group, we can express
20 sy L . . )
H™(G,K*) as a direct product of cyclic groups;

(n),

HZ(G,K_*) =< a(l)]> X...X <fa >

(l)] is of order ;. Since the a(l)(x,y)
-» (i),
are roots of unity, we have a(“(x,y) :Eia ‘«'x,y’, where

where each generator [g

(i) t-1  and Ei is a t;h root of unity. From the

O<a <'i

?

property

a{x,y)e(xy,z) =a({x,yz)a(y,z), we have

(i) + a,(i) Iz a(i) + (1) {(mod t ). (2.9)
Xoy Xy, Z X, YZ y z

If {ale HZ(G,K“"'), then a is equivalent to g8 where

7 A
Wiy 1x Py xeex (0 Py *

8 (Xp}’) = ('J

m .
a' X, ,(’ ,1(2) X,y ¢ a(r)}l(’y

= (g L;‘l) T ox r
1 ( 2 } XeoeaoX (Er ) (?.10)

"

£o.< s
(0<% <t-l).

Now, let ker ¢= A, and let a Apieeesd be the generators

1!
of A corresponding to the generators fa (1)] of HZ(G,K*). For
each x,yeG, let a{x,y)eA be defined by

(i)

n
A

a(x,y) = Yy X%y -
1=1 N
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Then a(x,yz)aly,z) = alx,y)alxy.z) (2.11}
by (2.9) above.

1f for xe Hom(A,K*), we define

mx(x,y) =x(a(x,y)),

L (1)
- x5y
then wx(x,y) = 1, x(ay)

That is ¢ ¢ HZ‘(G,K*); that is as y runs thrcugh all the linear
X

characters of A, § runs through the elements of HZ(G,K*).
X

Now, set H = {(x,a)jxeG, ac A} with a composition on il

pbeing defined as follows:

for x,yeG, and a,beAd,
{(x,a)(y,b) = {(xy,alx,y)ab).

Then H is a group with {(1,:ﬁ:)'a€F\} = A contained in Z(H),

the centre of H.

Furtherimore, if we let v(x) = (x,1), for all x G, le4,
then {9(x)|x=G} is a set of coset representatives of H mod A.

Therefore H/A = G and H is a central extension of G.

Now, to show that every projective representation of G
can be linearized by a linear representation of H, let
P:G*GL(V) be a projective representation of G with factor seta .
Then, as in theorem 2.2.7, there exisis a linear character ¢

of A such that

\l)(a(x’y)) =0 (X,Y), for all X,yeG.
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Now, let T:H>GL(V) be defined by T (x)a) = P{x®¥ (a).
Then
PxXIP(y) = T(v(x))ITv(y)) = T {(x}¥(y))
= T{alx,y)v(xy)) =¥ (a(x,y))P(xy)

‘IQ(X,Y)P(XY) -

so that P is a projective representation of G witih factor set .

@ , which is linearized by T.

That [H!| = i!‘Iz(G,K*)I - 1Gl follows from the fact that
H/A =G and that A'—'HZ(G,K*). Thus, H is a representation group

of G.

Let (H,%), N and n(x,yl N be as before. Then we have

2.2.1%. Lemma

N = gp{n(xyy)lx,yEG L
Proof. (see Haggarty and Humpureysl6, P. 179])

2.%2.1Z2.  Definition

A stem extension of a group G is a pair (H® ) such that

I* ker &= N+HIG>1

Is an exact sequence of groups and N-:H s3Z(H)

2.2.13. Lemma.

. e v —— . S A S

Let K be an algebraically closed field. Then G has atmost

a finite number of inequivalent irreducible projective representations.



Procf

'Suppose that P is an irreducible projective representation
of G. Then P is linearizable by a linear representation T of H;
that is

P{x) = Ty (x)), for all xeG.

Suppose that P° is another irreducible projective representa-
ticn of G, then P {x) = T (v(x)), for all xeG. That is P° can

alsc be linearized, and so on.

Thus, the number i inequivalent irreducible projective
representations of G is less than or equal to the number of

inequivalent irreducible linear representations of H.

But the number of inequivalent linear representations of H
is known to be finite. Hence G has a finite number of inequiva-

lent irreducible projeciive represcniniions.

2.2.14. T}_lj_:c Teii

The degrees of the irreducible projective representations

cf a finite group G divide |G| .

Proof.

Let P be a projective representation of G. Then P is

linearizable in H.

Set P{x) = T(y(x)).
Hence, degree of P equals ihe degree of T, where T is the linear

representation of H.




But degree of T divides [il.. )] (resuli due to Huppert , B.).

Since N7 Z(H} and H/N = G, then degree of T divides [JH/W| =~ | G |.

Hence, degree of P divides |Gj.

The following result due tc Schur gives a characlerization
of A representation group I of G; and will be required in chapter

3 where we consider projective characters of finite groups.

2.2.15. Theorem (I. Schur)

Given a finite group G, there exists 1 group H, a representa-

tion group of G, such that H has a central Sl’x\%roup N with

(i) N contained in the derived group of H,
(ii) H/N=G, and

(iii) IN| =]H2(G,K*)] .



CHAPTER THREE

PROJECTIVE CHARACTERS OF fINITE GROUPS

In this chapter, we consider projective characters of a
finite group G in terms of characiers of linear representations of
its representation group H, and investigate those properties f
projective characters which are analogues of properties of linear

characters.

3.1 Projective characters

Let P be a projective representation of a group G with factor

set a.

3.1.1. Definition.

The project ive/chara‘cte'r x of a projective representation P
7

is defined by
x{x) = trace P{x), xeG.

Given that (H, %) is a stem extension of G, we define the

projective characters of G in three stages:

(i) Assume that «¢is a special factor set, and
let Pl, cees Pm be representatives of the linear
equivalence classes of irreducible projective
representations of G with factor set «f 6,P. 179 ].
Then, each of the Pi can be linearized by linear
irreducible representations Ti of H such that for

all Xe G,,



o
\C\

Pi(x) = Ti(Y(K)) (i=1,...,m).

We define the projective characfer x, of ’z‘i by

Xi(X) = trace Ti{v(x)).

{ii) Given any irreducible projective representation P
of G with factor set ¢ , we know that there exists
a unique special factor set o' in the class 1}:{.}
containing « (see, e.g.16,P. 1791 ). Thus P is
projectively equivalent to a representation P’
with factor set a”. We define the projective

character of P to be that of P7.

(iii) Let £ be any projective representation of G with
facter set @, which is linearly eguivalent to a
direct sum of irreducible projective representations
Pl""’Pn each with factor set ¢ . We define the
projective character of P to be (see, e.g.{(ﬁ,‘ £.179])

the sum of the projective characters of Pl""’Pn'

We now prove the following result which is 2 consequence

of proposition Z.2.2.

3.1.2. Lenmma.

Let P be a projective representation of G with simple factor

set o. Then the projective chnr-cter vy 1is a class function on G.

Let g be g-regular in G and x be any element of G. Then
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POIP(g)P(x D) =alx,g)Pxg)P(x 1)

1 -
=a (x,g) alxg,x JP(xgx 1)

= £ (x,g)Plxgx 1) by (1.1)

R 1 . . .
= P{xgx "), since ais simple.

2
. - ] -1 - . —
i.e. P(g) and Pixgx ") are similar matrices. Taking traces,
we have,
. -1 N -1.
trace P(x)P(g)P{x 7) = irace P{xgx ).

i.e. x (g) = xlxgx 7).

The following result is proved in Haggarty and Humphreys

(6, P.179-181 .

§:_1 .3. Theovrem

Let ?1 and Pz be projective representations of G with special
factor set a. Let xi(i::l,Z) be their respective characters. Then
Pl and P2 are projectively equivalent if and only if there exists

» one-dimensicnal linear character a of G such that for all x G

X 1()() =a{X)x 2()().

3.2 Prcperties cf Projective Caaracters

In this secticon, we consider projective representations defined
wver € , the field of complex numbers. For any group G, let
150 be twc class functions ¢n G. Define an inner product as

cllows:

-1 o (3.1)
T, > = |G I ot (x)T,(x) ,
2 G

<t
.1 2
x G

19



where is the ccmplex cenjugate of Ty

2
Let Xy Xy be irreducible projective characters <f G and let
2

¢, be the linear (ordinary) characters of H such that

1’
Ei( ¥ x)) :xi(x) (i=1,2). Suppose that §.1 determines the linear

character "bi of H. Since the xi(i=1,2) are class functions cf G,

and since

T (Y(x?ﬂl)*' I‘i(n(xmlgx))nxhl}
T NP "1 N
:‘éii(n\x X3 {v{x 7)),
it follows that (seei 6, P.188 )
260 e )%, (7 (3.2)
2 2 ' 2 ° °
Therefcre
xox . = 1617Y e )y, (X7
1°%2 G ) .2 ? i 2 °
xe G
.. (3.3)
3.2.1 Lemma (see, e.g. [6, 2. 188] ).
HMaintaining the nbcove notaticn, then
<Bys By =Y Yooy X1 X6 T
Prx*u;_i_'_:
Using the adeptaticn y(x} = (x,a) (see 2.2}, the proof

follows from



gi(x,a) :\pi(a) ﬁxi(x)g x G, aeN.

. - A | . ; -1
le. <f,,&,>, = |NXG| . i)e Hglu,a)gz(x,a)
,:;N;‘"l Gt = b> epi(a)xi(x}x‘a.(a_l)x-(‘x_l)
ae N xeG ! !
-1
R ...1 . . _--1 4 3 .“1 z X<(x)x(x )
s aiNq,i(d) qi(d VG xe G h J

— <y > <y > .
10 V97w Xy %G

3.2.2. Corollary

Let Pl and P2 be 1irreducible projective representations of
G with special factor set yp(ni{x,y)). If % is the projective character

of Pi(i:I,Z), ithen

{1, if Pl is linearly equivalent ton
<X X >G }

. O otherwise

Proof.

if }3’1 is linearly equivalent to Pz, then X =% (see, corollary

1.4, b, P.161 1), so that $y =&, and hence<x 1, x5> = 1 from the

orthogonality relations in !, since gi(x,a} :ﬂlii(a} @xi(x).

If Pl and P? are  inequivalent, then from the orthogonality

relations in H, we have YXpo = 0.

3.2.3. Corollary

Let P be a projective representation of G with factor seta

and character yx. Then P is irreducible if and only if <y ,-X>G = 1.



Proof.
if P is irreducible, then<'x,x>c = 1, by 3.2.2.
Conversely, if <y ’X}G = 1, we have} P is equivalent to

P° where

<

where the Pi(izl,...gn) are irreducible projective representations
with factor set =, and the P: s occur with multiplicity a; in P.

»

Let X5 be the character of Pi' Since P is equivalent to P7,

we have
n
= X : e
¥ (x) . b3 dixiix"
i=1
Therefore
L B | ‘ 1
XeG
- Te n ( n (4
= 5 'J, [1, a'ixl X)i i X dx X 1]
xels bi 1
n  Z. 1 1
= 1 a/{|G] g X 00 % (x7) ]
1 xe (5
n
= 21 a‘? = 1.
Since thc a;7s are positive integers, then A = i for some
lesar and a, = O for all t #s. i.e P nas only one



7/
irreducidle component, vis, PS. i.e P 1is irreducible, and hence
P 1is irreducible.

The foilowing analogue of the second orthogonality relation

may be deduced in a similar manner to the linear case.

3.2.4. Lemma (see[ 6, P. 1881]).

Let P ""Pn form a complete set of irrcducible

10 P
projecitve representations of G with factor set ¢ and degrees

dl' dz,...,dn, respectively. Let xi(ir_l,...,n) be the projective
character of Pi and let _?1,?,2,...,?n be the «-regular classes

of G, with X, as the representative . for ,@i(i:l,...,n).
Then

n
z

. xi(xj)xi(xk) = | CG(xj” ij,

1

where CG(X].) is the centralizer of Xj in G.

3.2.5. Remark

The above result implies that if x is an u-regular element
of G, then there exists an irreducible projective representation

with character ysay, for which y{x) # O.

We nuw state a necessary and sufficient condition for an

elemeni x of G to be o-reguiar.

The following is proved in [6, P. 189].



3.2.6. Lemma

An element xeG is wregular if and only if there exists
an irreducible prjective chaincier x of G with ficior seta such

that x{x) # O.

3.3. _ Induced projective Characters

Let G be » finite group, K its subgroup and let X be an
algebraiczlly closed field i characteristic zero. iencte by
W, a(KG)a ~mcdule. Then W may be resiricted ic (KM)”——HM_;duIe.
Call this restriction Wye
Let P be a prcjective representuticn of G with Facter set a
which W affcrds and let fw be a projective representation of
M afforded by Ve Then (sce {6} ): determines n iacter set «

M

cf M by restriction, and

P:‘(;‘A) = P (m), for a1l m 4. (3.4}

Let x and X ja be tne characters <f thene representations.

Y

Then (see [0} ) if x is irreducible, LW is not irreducible in

general.

Since an element g f fa which is um«-regula:‘ necd nct be

a-regular in G (see secticn 5.3) the thecry of prijective
characters is much were camplicated thian that o f crdinapy

characters.

We now consider a construciicn which oesccintes with each

(KM) ~module W, a (KG) -module W,
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3.3.1. Def’mitigﬂ

Let M be a subgroup of G and W be o {eft (i\il«b}lﬂ -mcdule.

Then we may form a left (KG), -module WO

G .
a7
W o= (KG)(J Q(KML W,

. A . NE .
A representation of G afforded by W~ is called an induced

representation of G, denoted Pl

Let P(x) -_-(Si].(X)) be @ projective representaticn of M
affcrded by the left (KM)" -mcdule W. Chuose [G:l\vi}': n and
let {vl,...,vr} be a K-basic for W. Let

n
G = -jl-J-l X, M be the right cuset decompusition of G med. M,

where {xi} is the transversal and ;{xi}’: n. Then ench

element x G has an expressicn «f the form

x,m, I<ian, mehM. (3.5)

Therefore, each element in (KG) --module W(’ cian be uniquely

2

expressed in the form (see., e.g [ 6 ] )
n
r Y (xi)bi {(3.6)
i=1
where b.e (Kl) . Therefcre,
(KG) = y(x)(KM) @ ... ©@v{x »nKW) . (3.7)
. 02 1 a n q

Thus {Y(xl), cees y(xn)} is a basis for (KG)Y and hence
J
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w® = (e (M), @

(kM W) @..iD(Y(xn)(KM)QQ(KM);W)
... (2.8)
and so, {Y(xi) ® vé fi=l,...,n; j=l;e..,v} (3.9
forms » ‘“-basis for we.
Alsc, frem (3.8 and {3.9), we have
(WC:K) =[G:M] (W:K). (3.10)

Now, if we express y(x) (v(x;) & vj) as a K-linear

combination of basis elements, we have

Y (X)(T(xi) Q Vj) = g (x,xi)y(xxi) & vy

A Y "1 .
= a(X,Xiiy (xkxk xxi) ® vj, ke(l,2,0.0,n}

-1 -1
= U.(x,xi)d (Xk)kk XXi)Y(Xk)Y(XK XXi)QVj

) -1 -1 . -1
= .;!(x,xi)b, (xk’xk xxi)y(&k)ﬁy(xk xxi)@vj

1 1 r
) e - . B X
- <~(x9><1)u (Xk’xk xxi)‘r (xk)@ s L

1 Ej
- ; a{x,x )a—l(x x *1xx 1S (x -lxx }
) Xgla XX XX IS, B oy
r=1 N
Y(XkﬂV£

Re- arranging the basis clements in the form Y(xl) ® v,

y(xl) ® VZ’“”Y(XI) L% Vr,-\{(XZ)@ Vl""’Y(Xn) QR v

ERRE
y(xn) ® V.o the above equation now implies that for each % G,

we have



S ! !

' - ’

L F LD (i,r)
P 3 x (X, X )tul()( x "lxx YP( "'lxx‘} : *

- = i N PR 1 s X . S . . .

=) : ! s k* Tk i % i il

i i r.

. i

: . !

| :

where © is extended to the whole of G by setting P(x) = O if

x¢M.
Now, if X is the character of P andy that of P(’, then
Ni
noooooo 1, 1 -1
x{x} = 3 ‘vz{x,xi)v,x (xi,xi x,(i)x(xi X‘<'1)"" (3.11)

1=1

which is the formular




CHAPTER FOUR

SCHUR MULTIiPLIERS OF ROTATION SUBGDOUPS OF

WELY GROUPS
In this chapter, we consider Schur Multipliers of rotation
subgroups of certain finite groups of orthogonal transformations
generated by reflections. OGur work follows that of Maxwell[7], who
determined the Schur Multipliers of the rotation subgroups of Coxeter

groups.

4.1. Weyl groups and their Rotation Subgroups

Let V be an {-dimensional Real-Euclidean space with & positive

definite inner product {,). For each non-zero vector reV, let T
. . . . 4 .

be the reflection in the nyperplane <r> perpendicular to r. =

is the linear map defined by

z(r,s).r

- { - — R i
{rgs) E ) for all seV.

4.1.1. Definiticn

A subset = of V 1s said to be a root system in V if the

following axioms are satisfied:

(i) o is a finite subset of non-zero vectors which
generates V;
(ii) if r,se¢ , then rr(s)e‘b;

(iii) iIf v, Are® where ie R, then x= %1.

_49.
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A root system & is said to satisfy the Crystallographic Condition

e - 2(r,s) . . .
if in addition, 5—-'<" is a rational integer, for any r,se® .
* {r,r) ger, y ¥,

4. 1,2. Definition

et ¢ be a root system in V. A subsetr of ¢is called a

fundamental (or s_;imple‘) system of vectors if

(i) ¢ is linearly independent cver TR; and

{i1) 1f re¢, then r is a linear combination of the
elements in % in which all non-zerc ccefficients are
either all positive or all negative. That is = 1is a
basis for @ .

We shall now define the Weyl groups and state some of their

properties.

4.1.3  Definiticn

Let W = W( 9 =<x r/rt':‘1>> . Then W is a subgroup of the

orthogonal group O{(7) called a Finite reflecticn group of <.

if, in particular, ¢ satisfies the Crystallcgraphic condition,

then (¢ ) is called a2 Weyl grcup of type ¢ .

The rank of W{¢) is the dimension of V. The reflections T

correspending to roew are known as the fundamental (simple)

reflecticns.

4.1.4. Definiticn

Let ¢ be a root sysiem. Then ¢ is said tc be irreducible

if it cannct be decomposed into a wmion of two proper subsets,

suchi that each rceot in wne set is perpendicular tc each rcot in
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the other; otherwise, ¢ is yeducible. The group W( Q;) is said to

be irreducible if its associated root system is, and reducible if

otherwise.

In our discussions (also see chapter 5), we shall consider
only irreducible Weyl groups, since any Weyl group of type ¢
is isomorphic to the direct product of the respective Weyl groups

of its irreducible components.

Let Ty denote the reflection which corresponds to a root
l‘ig-n , and mi]. be the order of TiTj. Thus, in particular,
m;; =1 for each r€m and (Ti’l"j)mij = ] gives ¢ sot o
relations in W( ¢).

4.1.5, Definition:

A coxeter group is a group G which has a subset C such
that (i) every element in C is of order 2, and (ii) if for every
pair T;» T of elements in C, mij denotes the orcer of their product

Ty then (Ti‘rj)mij = 1 are the defining relations of G.
Thus, every Weyl group is a2 Coxeter group. Tc each such

Coxeter group, (see‘,‘e.g.[l}) there corresponds a graph, called

a Coxeter graph, whose nodes are in 1-1 correspondence with the

-generators ti(rie:'n), the bonds corresponding to T; and T"j being

joined by mij—z bonds if ri;é rj.

If the root system ¢ is such that two lengths appear, the
Coxeter graph fails to determine which of a pair of nodes should
correspond to a short simple root, and which, to a long simple
root. Whenever a double or a tripple bond occurs in the coxeter

graph of ¢, an arrow is added which points to the shorter of



the two roots. The resuliing diagraw is known as tne Dyrdan
diagram of ¢ .
The irreducible weyl groups have been classified |1! and

correspond to the following types (with associated Dynxin diagrams):

Type Diagram kank

Ap e TS o "o ® i & 221

BQ O~0—0=, . . —0--0&H g 2e

C OO0 o a o O (e £ >3
g 4

Fl Ommtmann (L e /
+
E ‘¢ el g () e
5 6
0
E-] (' amsmnl . cumaten il Y mitmnisn{ it - emeeran 7
(&)
E [T SR VNOY's ST S W o .
8 l b

The groups of types Az(e_z_i),Bi;(l »>2), Cglg>3y and

DL’ (2 >4) are called the classical Wey! groups, and those cf types

EZ (er-:(i,'/,'d),; Fz’. and G, are called the exceptional Weyl groups.

The oonjugacy classes of the individual VWeyl groups are
well knoar  and Carter [ J has given a unitied descripticn of

these in terms of certain admissiple dizgrnms wiich e associated
-’

with the root system ¢ (for der:ils concerning these, we vcfer

the reader to Qarter's paper [51). Aliernatively, conjugacy classes



53

may be parametrized in terms of pairs of partitions
L. . . oy . L - » B et
a a., n ~b,~b -b
P | 2 r. i s A,T2 .. 5 |
(2 ={1 2% ) b= 1 2% s Y ]) of £, where

oTE L s

I} + e} =7, r denctes a positive r-cycle and s denotes a
negative s-cycle (see chapter 5). Thus, the conjugacy classes of

W(¢) are in 1-1 correspondence with pairs of partiticns of £ .

How let V be an ¢--dimensicnal real Euclidear space, ¢ be a

reot system in V with basis == {ri,...,r!} , and let W{ ) be

£

the Weyl group of ¢. If for each rew  we let t. =1, then

the Weyl group W(<¢) nas a presentation (see Bourbakif1l)

m. .

W(e) = <q, i=l,eea 0?2y (e 7)) Yoo, (4.1)
where m;,  are the integers defined in 4.1.5.

tach element weW({¢), can thus be expressed in the form

W= Tl 12 "'T}ﬁ(rien)' (4.2)

Let  #(w} denote the smallest value of k in any such

rny

expression for w. Then the above expression for w is said to be
reduced if pilw) =

1.
w

4.1.6.  Definition

We maintain the above notation. Let W1  be the group
defined as follows:

L
L

W o= {weW | 2{w)=Cl{mod 2) I

Then following Maxwell {8} , we call W" the rotation sub

. -+ . . - . .
group of W, and W' is a subgroup of index 2 in W.

tiow for LisTiEm s let my 5 have the same meaning as in (4.1.5)

and define an element g, of Wi(e) by

3
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g =t (22). (4.3)
‘Then the rotation subgroup w'(:) has the following presentation

(see, e.g {1])
Tii -

m, _
LU =<gi(i.>_2)&szill = 1(2<ieh), (g;04) Nl psicrn > (40

4.2. Schur Multipliers of the rotation subgproups. W' of W.

In this section, we state Maxwell's resulls on the Schur
Multipliers of the rotation subgroups W' of W, for 1l cases of

¢ , where % is a Crystallographic root system.

Let € be the field of complex numbers. Then the results

of Maxwell are given by the foliowing (c.f.{&]):

4.2.1. .Theorem

1f W is of type ¢ then the schur multiplier of W is as follows:

Type of ¢ . £, €x)

A, (€23, 745,0) Z,

Ao, Ag 7, @ 7,

G (346 (2,37

C, . Z,

Dp 2 35, £46,7) (7. ,)°
o, PANE

Dg- Dy z )%z,

EK (¢=6,7,8) i,

F, 2,02,
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in the proof of this result, Maxwell {87 established that
if @ 1s a factor set in Z?‘(W‘L,Cw), and [a] e I{Z(W+y€‘-"), then

there exists a solution in GL(v) tc the following equations:

2 my

- - - I 5 i - ¥ - - i 4.
I1,. T = sﬁiv(zqg.__), (T]._Tj) = SA.av(2_<_1<]_<_J,) (4.5)

i

T -
L

where T, - T(g.}(i>2), and the S*’j are as given in Table |

X
; a e . ot e
below. The I‘i generate a projective representation T:W +GL(V)

associated with the factor setu .

Table i: Values to solutions to equations in (4£.5)

IType of ¢ (Sij)
A (7 >3, £#5,5) Sij = d
AS Sij = d{unless i=Z,j=4), 524.—: fa
A6 Sij = d{unless i=2, j=5), Szgzde
C[; (£ >4) Sij = d{unless i= ~1,j=), ﬁ..t',—l;{i = C
C3 522 = 533 =1, 523 = m
9‘6(473_5,,'&&},7) Sij = df{unless i=¢-1,j =¢), 5@4’3: b
; c e e .
Dl. Sy 523—524 = 1:533,»11'15; 544_n’
534 = brm
D6 Sij = d{unless i=2z, j=4 or i=5h, j=0J, SzA:de
Sgg="b
7 ¢ . I S s -
Dy Sy = d{unless i=2,j=5 or i=J,j=6), st-de
G
q56--b
Ep{2=6,7,8) S, .=d
P‘ S P b = S =

4 99 = Sz = Sy = 1y Spq = My Sy = e
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vhere the numbers b »C,d,m and ndepend only on the class of
B ) .
factor set in  H(W' ,C*) and can assume the values % i, while

e is a abe root of 1.



CHAPTER F1IVE

THE PROJECT iVE CHARACTERS OF WD) AnD w'(D,)

5.1. General Properties of the Weyl group W(DK) and its

Rotation Sllbgi'oup W+(DP)

Before investigating the properties of the Weyl group '\“».‘(D!')

and its rotation subgroup VW (D i.)’ we first consider the Weyl group

w(C ") . ‘T,he Jroup S;(Cz') ie generated by reflections {ry,.. nt

(see e.g {4, p.117-12G1) subject to relations [12]

”

r.Z =1, i =1, <.,k

i
3 - o
(riri+l) = 1, i=l,. ... 023
4
(rp‘_lr!,.) = 1,
{r.r )2 = 1, [i-§]>2
i N b s (5.1)

1t is isomorphic to the hyperoctahedral group on £ elements
which permutes the set {l,...,Zlas well as changing the sign

of any number of them.

ro
The hyperoctahedral group is a semi-direct product CE)O’SK
of the normal subgroup C:f and the symmetric group 5@ . Hence,
. £

it has order 2°.0! (see e.g. {12]).

Let ri(izl,Z,..., 2 -1} denote the transposition (i,i+1) and
wj(j=1,2,...,,€) dencte the negative l-cycle (3-3) (see e.g

[12, P‘. 1311), then W(C(n) has the alternative presentation

51



T

, - 2 g 2
WC,) = <r(lcict-1)w (el | vy = (r;r;, 1) =5 )71

oo 2 . i . _

fi-jl> 2, wjzl, ijk"wkwj’ LW, o= W Ty
row.=w.r., j=i. i+l > . (5.2)
iy ji

As in the case of the symmetric group, any element of W(Cy)
may be uniquely expressed as a product of disjoint cycles

(see Read [ 1%2]1). The k-cycle

is said to be positive if K and negative otherwise. An

=1
element of W(C{,) which has a, positive l-cycles, a, positive
2-cycles, ..., D negative l-cycles, b? negative 2-cycles, ...,

1
is said to have signed cycle-type f1™ 2%, s lmb' 2Pz cee o

The Weyl group ’a‘-‘(C[,} has three subgrcups of index 2

(see[16, P. 259-260]), and we discuss ihese below.

By ignoring sign changes, each clemendt waw(cl,) gives
a uniquely defined element of W(A, ,); the symmetric group
p—
of degree . 1if this map is defined by p , then this defines

a map o :4iC "")-*W(AF l) {12, P.132-133] such that

o[ 12 5™ 0, 1™ 202

L e els

{-'la‘ B Pyl by ...1. He say that w

e j=
o 5

is even if p(w) lies in W (4, 1)’ the alternating group U
e i

of degree 2 .and odd otherwise. The set

o= {weW(C-p)/w is even} (5.3)

is a subgroup of W(C,) of index 2 (see e.g. {16, P. 260}).



The group H may also be considered as a wreath product Szmijf{
(see [16, P.260]}, where S, is the cyclic group of order 2.
4 class of conjugate elements of W(Cﬁ) splits in H if and only
if it contains an element of type (1M 3% 1PgPe ]s

where ass bi = G,1.

The Hotation subgroup ‘W“IA'}V(CF) of W(C,) consists of those
even number of generatcrs [16, P. 260]. That is, W' (C,)
A

consists of all elements of signed-cycie type ¢f the form

P B I B R U e .
B A | 2 ...} such that either

3 < = . { b 2 a 1 "y = g i ) ;
(i) z 121,()@:}(,(1 2) and ):bzl_l_()(mcd 2) cr
(ii) zazﬁo(mcd Z) and EbZi-]. £ 0(mod 2) (5.4)

The other subgroup of index 2 in W(C,} is the Weyl

group W(D,) of type D (5 >4).
I3 g L

5.1.1.  Definition

‘the greup WD 0') is generated by the elements

I “ )
1o Ky r{) rjﬂlr of {5.1) (see [12}}.

o

In terms of generalours and relaticns, it has 11 presentation

- Z . e, 3 U ol
W(D’-): - (_‘(}s. .'..T‘i)’ /Ti_::j(lilf‘g )’- (TiTt}l)d:l (lili*—Z) .

3 ‘ -

82 ..
“E;)) =1, (113.'1':.]) = 1 (133:1_“..’_

=2, 1i-4]>2)> (5.5)
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fn element of W(Cp) belengs to W(D ) if and only if it
changes the sign of an even number of basis elements
(see e.y. [3, P. 241 5. Thus, in terms of signed cycle-types,
an eleizent WgW(Cf) of type (120272, 17 Zmbz...} lies

in the subgrcup W(D ) if and cnly if & biEO (mod 2}.
4.

The fcllowing result will be required.

5.1.2.  Lemma {18]

Let H and \‘J+(C',,) be defined as in (5.3) and (5.4)

respectively. Then

HW(D ) = HAW'{C ) = WD, ) ¥ wH(C,) = WD),

4

5.1.3. Definition

The jgrcup W+(D£) defined above, is called the Rotaticn

ig_l}_g_gﬁl_i)_ of W(D,) and is of index 2 in W(DE)'

This greup consists of all elements of signed cycle-type
of the fcrm [1‘3‘ 2% fbl 2—'b2 ees. ), where 3 biE Ofmod 2) and

. v . - . £~
z{a21+b?i)z-0(mud 2}, and has order 2 21?,1

5.2. Cenjugacy classes in Wh(Dp)

The following result gives the conjugacy classes cof

W(Dﬁ) (see e.g. [3, P. 261):
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5.2.1. Lemma

(i) Two elemerts of W{D ) are conjugate if
£

and only if they have the same cycle-lype,
except in the case of classes of vi(Cp) of

a, ,a . L . ‘
type {292 4%4...;¢] which split intc two
classes in W(D£).

(ii) 1f an element weW(De) has cycle type

[ 1% 222, 1-~h 2---1)1 ... ], then its centralizer

if of order 2PTO™ 5 1 2™t .l 1P b, 2Pyt

where p=a1+a2+...+b1+b?+..., unless w is of
type [232 4&&...;«}} when its centralizer is of

P(ya, ' ay, ] . =a . o
order 2°(27%a,: 4" a, '...), where P=ajta +...

The following gives a description of the classes of W(by)

in terms of the carter diagrams (sec eg: £21).

5.2.2. Proposition

1a W(Dg)’ a positive i-cycle [y] is represented by the
admissible d‘i:ixgranl A and the pair of negative cycles
[T‘j]with i> j is represented by the admissible diagram Di+1
if j=1 and Di+j(aj—1) if p1. Thg admissible diagram
representing any other class is obtained by splitting the
signed cycle-type into positive éyclgs and pairs of negative

cycles, and then taking the union of the admissible diagrams

corresponding to these.

In what follows, we use¢ both the signed cycle. noiation

and carter diagrams (admissible diagrams) in describing



classes in W(E)j,).

The following was proved in [16, P261-206] .

5.2.3. Theoren

4 conjugacy class of W(D,) splits over its rotation
+ .
subgroup W(Dp) if and only if it has one of the following

as its signed cycle-types:

(1) [¢ Z—b“ A_b" veol
(i) { 1M 3213 e 1—bl 3—b3 cee 1 ai,bizo,l; i=1,3,5,...

5.2.4. Remark

It is now clear from theorem 5.2.3 that the pairs of classes
of W(D‘?) which have the same signed cycle-—typeiza‘z/;a“...;c,) s

remain complete classes in WT(DZ)'

5.3. t-regular classes in ¥ {(D:)
> L YA

We reaintain the above notation. Lei g be the factor
set of WH(#) associated with the basic (spin) projective
representation of W' (see {17, P. 291 ). Then the g-regular
classes in W' () have been determined in { i6] in all cases.
Here we use these results to determine the x-regular classes

Of w+ (D ”()) -

Let o4 N denote the restriction of the factor set, of. We )
W
to W(¢). Then the z ~regular classes in W{2) are oyt -regular
in WH(2) (see{lb, P. 266]), though in general, the corverse of
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- - . . .’
this is not true as an a+ - regular element in W' () may

not be a-regualr in W(&).

The o-regular classes in W(Dﬂ) have been determined by

Read [12] and the results are now sumnmarised in the following:

5:3.1. Lemma:

The a-regular classes in W(D,) are those with the following

signed cycle-types (where qe (-1,-1)):

(i) L1 gy 20

(i1} [ ¢ i 3~b35"bs... ], where b, = 1,0;i=1,3,5,.--
b, ,b L

(iii) [¢; 17122...] (only when s odd).

Thus, all the conjugacy classes of W(%), containing the
elements of the subgroup W+(D{,), which appear in lemma

5.3.1 are ag+ -regular in 'W_z'(DF).

Let « be the factor set of W(DF) corresponding to the
basic projective representation of W(D{,) considered by Morris
in [9], and let aywt bpe its restriction to wh(p - The
following result gives the a-regular classes in W+(DF) which

are not a —regular in W(D f) (see [16, P.268-270] ).

5.3.2. Theorem

Let ¢ and ‘iw‘r be as above. Then an element ww+(1)£)

which is not a-regular in W(DP) is G+ ~-regular in W+(D£,)

™ g Pag Py 40

if and only if it has cycle-type [ ¢ 2373 4 .. In W(Dﬂ).



The «-regular classes in W {D,} are now easily determined

form lemma 5.3.1 and Theorem 5.3.2.

5.4. The Basic Projective Characters of W+(DL)_

=

The projective representations of the rotation subgroup
W'(9) have been determined from those of W(¢) by Theo{17 ,
for each root system % . This is done by constructing. non-
trivial central extensions of W (2) via the double converings of
the rotation groups SO(z). This adaptation gives a unified way
of obtaining the basic projeciive representation of whe)
from those of W(o) determined by Morris in [10} . For the

details, we refer the reader te [10} and [17]}.

We now ccnsider how the basic characters of W+(Dl’)
may be obtained from those of W(D,),£ >4, and our work follows

that in [17).

The basic character of ‘JQ’\DI}) and its values on the
a_regular classes are given in [S;] . The restriction x+W+(D3)
of the basic prcjective character x of W(Di} to W*_(DI,’_) is -
determined in [17] and the resulis are given by the fcllowing

result (see e.q. [17 P. 31]).

5.4.1. Thecrem

Let  k=s+t and X be the basic projective character of

wW(b,). 1If waW+('Dp) has carter diagram
X )

A, + ...+ A + D (a Yoo+ D ( ),
! i Ao RetL M k-1



= t
where ril (1r+1) +3§ a, =f, then
r=1
(1) it 2 1is odd, x¢W+(DZ) is an irreducible basic

projective character of W“R“(DZ) and

e 2-%(k+t--1 )

! if all the i_,» . Kk are even,
i r r r
X{(=7) j
f{ o) for all other w€W+(D‘?)
tin? if 7 is even, x+W+(Dp) is 2 sum of two irreducible
basic characters of W+(Dp) and for j =1,2,
o (ket-2)
| if all the i , X, k_are even,
i r’r r
| T2 . |
[1% 12 if 1:(;_-0i all the A, kr are even,
.. t
(i)

2 if ir::() and an even number of

the )‘r are odd.

O for all other wgw+(D£)

5.4.2. Remark

1. If 7 is even and € w+(D0) lies in an @ -regular
class in W(D(,), then from 5.4.1, it is clear that
x\J) (j=1,2) take on different values at w if

and only if its carter diagcam ic of the form

D, (5 oo+ Dy (
1} Y At ak-—1)
1 ok
where (i) the Ay and kr are all even integers, or (ii) the

. are all even and the kr are all odd. These classes belong

to spiitting classes of W(D‘o) by 5.2.3.
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By 5.4.1 (ii), the classes with carter diagram

b J+ ...+ D {ai{ ]), where an even number of the A

a3k -1 At

1 i
are odd; has a non-—-zero basic character in who F)' This

class is not a-regular in W{D,).

5.5. The troot system 9= D¢

We now apply the foregoing to the root system of type [)6 .
The Weyl group W(Dg) is of order 23040 and from the results
of Read [121 , it is easily seen that this group has 37
conjugacy classes. Of these, 70 contain the elements of its

rotation subgroup W+K_U6), which is of order 11520.

It is now a consequunce of Theorem 2.2. of [ 16,7.261]

that the conjugacy classcs in W""(D()) are those given in Table 11

The group W (1)6-; contains the central inversionp —16, which

reverses cvery vector in the tuclicean 6-space (see ¢.g.

{4, P. 127)), and we denote this element by 30., in Garter's notat
- 2

or by T6 in the class symbol notation.

The basic (spin) projective character of W+(D6) is of
degree 8 (see e.g. [17, P. 29]) and has non-zeco values on
12 conjugacy classes. Thus, these are all o-regular classes
in W+(l)6). The values of the basic projective character are

now listed in Table 1i.

5.6. The root system ¢ = Dr

" When & is the root system of type {)7, the Weyl group

W(D.i) is of order 322 560 and f‘x;orﬁ Read [12], it is easily



seen that this group has 55 conjugacy classes. Gf these classes,

29 contain the elements of W’+(D7); its rotation subgroup, which is

of order 161 280.

By Theorem 2.2. of { 16, P. 261] , we see that W(D7) does
not contain classes which split in its rotation subroup; hence
W+(D7) contains only the conjugacy classes given in Table 1Ii.
Unlike W+(D6)’ WQF(D7) does not contain the central inversion
(see e¢.g. (4, P. 127}).

Its basic projective character is of degree 8 (see e.g.
[17, P. 291) and has non-zero values on & conjugacy classes,

which are all u-regular classes in W+(D7).

A list of the values of the basic projective character is

given in Table ITI.
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Table I1. Basic projective characters of ’&'."!'(1)6)

o Class order X(l) X(2)
{16;¢} ¢ 1 4 4
[133: o] A, 160 2 2
[1%2%; ¢] 24, 180 0 0
[15;9]) * A,* 2304 1 1
1245 0}° (A1+A3)‘ 360 0 0
{24;9]" (A1+A3)” 360 0 0
[32; ¢} 2A, 640 1 1
| 1[’:1“21 D., 15 o 0
{ 12;1“1‘ ] 2D, 15 o 0
[¢ ;1"6 ] 3D, 1 ~4i 4i
{¢ -1"3'§ i D.+D 160 -2i 2i
y < 2 4
i & ;1_£2“2} 2+D4(al) 180 ] 0
[o:15]* Dg* 2304 -i i
(¢:2 41* Dgla))* 1440 1-i -~(1-1)
[¢ :32] Dgla,) 640 - i
[ 1513 D, . .80 o G
2 =2 .
[1%;27] D,(a,) 160 9 0
- ,
[13:1 7] A,+D, 4EC 0 0
[12:1 7] A Dy 720 0 0
[ 2,172 2A,+D, 180 0 0

* denotes a class which splits in W+(D6)



- 69 -

Table Ill. Basic projective characiers of W' (D,)

Class .Order X

i17; ¢} o 1 8
[1“3; O] A, 280 A
[125; o] A, 8064 2
{ 223 %1 28 +A,, 3360 0
[124; ¢ AjHA, 10080 0
[132; ¢) 24, 4480 2
11322, ¢] 24, 420 0
(7; %] Ag 46080 1
[12;T2] D, 21 0
(1374 ) 2D, 35 0
{13;‘1' 3] D, 1126 0

3 =2 , . -
[1 ,2] b,(a,) 420 /3
{1;"1‘6] 3D, 7 0
{1;“1“33 ] DD, 1120 Q
[1;1 zﬁ 92+1)4(a1) 1260 o
{1;1 5] D;; 16128 0
[1;2 7 ] Dela,) 10080 e

=2 . i} . .
[1;3%1] Dg(ay) 4480 0
(o T35 ] )
{2;1¥2] A1-+;>2m3 840 0
{2;2 3] Ala-DS\al) 6720
[2:7 7] A D 10080 0
[3; 174 A,+2D 260 0

Z 2
[3,1 3] AytD, 8950 0
[ q.52
£3;2 ] A2+D4(a1) 3360 2
[4:1T 72} A+Dy 10080 0
(1%2: T 7] A D, 2520 0
[1%3;7%] AD, 1680 0
A

{S,Iz] A ,+D 3054 4]

~ Py
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