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ABSTRACT 

Remote sensing provides area coverage, and aids the mapping and classification of land cover 

features, such as vegetation, soil, water and forests. However, with remote sensing using 

medium to coarse spatial resolution imagery, some difficulties are encountered in the definition 

of vegetation type classes based on their spectral responses alone, thus, it is a challenging task 

to use such images for mapping vegetation at species level. However, when these images are 

integrated with other ancillary data, it becomes possible to map vegetation at species level. This 

research endeavored to demonstrate the possibility of integrating spectral with ancillary data in 

mapping vegetation types of Zambia and, for that, ENVI Decision Tree classifier was used. The 

nature of the vegetation in an area is determined by a complex combination of effects related to 

climate, soils, history, fire and human influences. Therefore, this mapping method takes 

advantage of the relationship that these features, vegetation types, have with their 

environmental factors, such as soil type and elevation. The study focused on three vegetation 

types, namely Miombo, Mopane and Munga, and thus the factors that influence their spatial 

distribution were studied and identified. Based on the literature reviewed and the GIS desktop 

analysis, it was found that, for the area of study, Miombo had the following factors: Ferralsols 

as the dominant soil type where it thrives; at 900m-1600m elevations; Band4 reflectance of 0.0 

- 1.0; NDVI values of -1.0 to 1.0; maximum Band4/Band3 ratio value of 16.235294; and EVI of 

-1.0 to 1.0. While for Mopane: Luvisols as the dominant soil types where it thrives; at 700m-

900m elevations; Band4 reflectance of 0.0 - 0.5198; NDVI value of -1.0 to 0.857818; maximum 

Band4/Band3 ratio value of 12.707866; EVI of -1.0 to 1.0; and also significantly occurs in 

Agro-ecological zone I. For Munga: Luvisols phaezom as the dominant soil types where it 

thrives; at 580m-1320m elevations; Band4 reflectance of 0.0 - 0.7249; NDVI value of -

0.536278 to 0.872132; maximum Band4/Band3 ratio value of 14.641149; and EVI of -1.0 to 

1.0. These parameters were used to develop the decision tree classifier binary rules and 

executed for the final produced map of the three vegetation types. With the decision tree map 

produced, the study demonstrated the possibility of mapping vegetation at sub-nation level by 

combining spectral response with other geographic parameters via the use of a decision tree 

classifier.  

Keywords: decision tree classification; land cover; vegetation map;
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1. CHAPTER 1-- INTRODUCTION 

1.1. Background 

Mapping of vegetation has always been an essential prerequisite to effective and efficient 

management and monitoring of the land resources. Many studies have been carried out to achieve 

more accurate vegetation maps for improved resource management. The attainment of these more 

accurate vegetation maps entails the application of better and more advanced mapping 

methodologies. The traditional methods of mapping vegetation such as field data collection were 

found to be not effective in mapping the vegetation as the methods were found to be very costly, 

time consuming and also they produced less accurate maps. These shortcomings, as well as many 

others, spurred the need for more advanced and effective methods of mapping the Earth surface. 

Thus the coming of remote sensing revolutionized, generally, the mapping of Earth’s surface and 

specifically, for this study, the mapping of vegetation.  

Remote sensing provides an important synoptic view of the Earth’s surface; it provides wide areal 

coverage and thus aids mapping and classification of land cover features, such as vegetation, soil, 

water and forests (Zakaria, 2010). However, with remote sensing using medium to coarse spatial 

resolution imagery, some difficulties are encountered in the definition of vegetation type classes 

based on their spectral responses alone (Zakaria, 2010). These difficulties arise due to the common 

heterogeneity of the cover type and the factors affecting spectral responses (Zakaria, 2010). Due to 

this limitation of spatial resolution, medium to coarse resolution imagery are usually used to map 

vegetation at community level. It is a challenging task to use such images for mapping vegetation 

at species level, especially in a heterogeneous environment (Xie et al, 2008). However, Xie et al., 

(2008) further reported that when these images are integrated with other ancillary data, it becomes 

possible to map vegetation at species level. Many research studies have found that the integration 

of ancillary geographical data and multi-spectral satellite data can indeed improve classification 

results (Ozesmi & Bauer, 2002). Among the studies were those done by Xiaodong et al., (2009) in 

the integration of Landsat TM data with ancillary data to map land cover of a marsh area; Hansen 

et al., (2006) integrated AVHRR imagery with geographical ancillary data to produce a global land 

cover map using a DT that had a set of 41 metrics generated from five spectral channels and NDVI 

for input; and studies by Abdelhamid et al., (2010) where using a similar method as Hansen et al., 

(2006) mapped salt- affected soils over large areas. These and many other research studies showed 
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the usefulness and the mapping potential of integrating multi-spectral and other geographical 

ancillary data.  

This method of integrating spectral data with other geographic ancillary datasets, in mapping 

vegetation types, relies on the relationship that exists between vegetation types and their 

geographic environmental factors. Researchers such as Zakaria, (2010) observed that the nature of 

the vegetation in an area is determined by a complex combination of effects related to climate, 

soils, history, fire and human influences. Thus a method of integrating the satellite data with these 

ancillary geographical data, which are related to the above mentioned environmental factors, can 

improve the mapping of vegetation, and for this study Decision Tree classification (DTC) is 

identified as one such method. 

Generally, vegetation is important because it provides a basic foundation for all living beings hence 

its mapping is valuable. Zambia is endowed with a wide variety of vegetation and for improved 

management and monitoring of these resources; their mapping at sub-nation level is a primary 

requirement. This study endeavored to demonstrate the integration of remote sensing data with 

other ancillary geographical data for mapping the main vegetation types of Zambia using DTC, and 

the selected study area was a stretch of land covering Copperbelt to the North and Southern 

Province to the South of Zambia. The area covers Landsat satellite WRS2 path 172 in Zambia 

(between latitude 12° and 18° S and longitude 26° and 30° E); this area runs across all the three 

agro ecological zones of Zambia hence it encompasses a wide diversity of vegetation types for 

mapping.  

1.2. Statement of the Problem 

Zambia is endowed with a wide variety of vegetation types whose great importance to the nation 

should not be overlooked.  Forests play a crucial role in enhancing human well-being and in 

sustaining the economy of Zambia. They contribute to economic growth, employment, wealth, 

export revenues, a stable supply of clean water, recreation and tourism opportunities, as well as 

essential building materials and energy for a wide range of economic sectors (Turpie et al., 2015). 

Given the variety of vegetation types and the importance vegetation has to the country, it is of great 

importance that more improved cost-effective management and monitoring methods are 

implemented. These methods would enable the detailed management of the resources, that is, 

management of vegetation at sub nation level. In order to achieve these improved vegetation 
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management and monitoring methods, advanced vegetation mapping approaches at sub national 

level are required. 

However, the achievement of these management and monitoring methods has been hindered by a 

number of factors which in effect has resulted in inefficient and ineffective management of these 

resources.     

In Zambia the first, and only, detailed vegetation map for the whole country was compiled in 1976 

at a scale of 1:500,000 comprising nine tiles and for this map, a combination of aerial photos and 

traditional mapping methods were used. “Traditional methods (for instance, field surveys, literature 

reviews, map interpretation and collateral and ancillary data analysis), however, are not cost 

effective to acquire vegetation covers because they are time consuming, date lagged and often too 

expensive” (Xie et al., 2008). Thus “the technology of remote sensing offers a practical and 

economical means to study vegetation cover changes, especially over large areas” (Langley et al., 

2001; Nordberg & Evertson, 2003). Further, classification of vegetation using remote sensing is 

valuable because it can determine vegetation distribution and occurrence and how the vegetation is 

influenced by physical soil and atmospheric factors.  

However, there are some difficulties in the definition of vegetation classes based on their spectral 

responses alone, these are caused by the common heterogeneity of the cover type and the factors 

affecting their spectral responses (Zakaria, 2010). These difficulties are attributed to the limitations 

of medium to low spatial resolution satellite images, such as Landsat satellite images, for mapping 

vegetation at species level, especially in a heterogeneous environment (Xie et al., 2008). The 

foregoing has resulted in the mapping of vegetation using “broad” classes such as dense or 

moderate forests as opposed to vegetation “type” classes such as Miombo, Mopane and parinari 

forests. While mapping of the vegetation at these “broad” class levels is important for national and 

international reporting, it does not however guarantee an effective and efficient management of 

vegetation at the level where these resources are being consumed i.e. at the level of vegetation 

“type”. A case in point is the exploitation of the Mukula tree (Pterocarpus chrysothrix); a tree of 

great value to the country, at “broad” class level of mapping, estimation of its distribution and 

volume becomes almost impossible.  However, when the medium to low resolution images are 

integrated with other ancillary data, it becomes possible to map species (Xie et al., 2008). Also due 

to the variations in atmospheric effects on the images, an object may be captured with varying 
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spectral responses in different spatial locations hence the integration of spectral data with other 

ancillary data may minimize the misclassifications which may arise as a result of the above.   

Therefore, in order to ameliorate the identified challenges, a methodology of mapping vegetation 

types that incorporates vegetation spectral characteristics and the environmental factors, which 

influence their spatial distribution such as soil type and elevation, needs to be studied and adopted 

as a suitable approach for sub national mapping of vegetation. Thus, in this study DTC; which has 

the ability to integrate spectral data with other ancillary geographical data, was studied and its 

application demonstrated. 

1.3. Aim 

The main aim of this research was to produce a vegetation type map of the study area by using 

medium resolution satellite images integrated with other ancillary geographical data. 

1.4. Study Objectives 

The main objectives of the research were to: 

(i) study the environmental factors which determine the occurrence and spatial distribution of 

main vegetation types of Zambia and  

(ii)  apply DTC to mapping these vegetation types of Zambia. 

 

1.5. Research Questions 

In order to guide the flow of this research, the following research questions will be addressed: 

 What are the main key environmental factors that determine the occurrence and spatial 

distribution of the main vegetation types of Zambia?  

 Is the Decision Tree Classifier appropriate for mapping these vegetation types? 

 What is the spatial distribution of the main vegetation types in the study site? 
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1.6. Significance of the Study 

Primarily, this study is a significant endeavor to coming up with a model for mapping vegetation 

types in Zambia using the classes set by the 1976 vegetation map. The study takes advantage of the 

correlation between vegetation and environmental factors hence this makes it possible to model the 

vegetation based on for instance the rainfall recorded, soil type and elevation of an area. This will 

enable easy and timely production of vegetation maps, and also easy and timely updating of 

vegetation inventories. Furthermore, vegetation maps produced at sub national level are required 

for modern detail management and monitoring of vegetation, and thus techniques, such as the one 

discussed in this study, are required. Institutions such as the Forestry department may adopt such 

methods of mapping vegetation types as way of improving their monitoring and protection of 

endangered species such the Mukula tree (Pterocarpus Chrysothrix). 

As vegetation types’ spectral signatures/reflectance were analyzed, this study serve as a 

preliminary work to other future studies related to vegetation mapping using remote sensing such 

as vegetation water content mapping, plants’ spectral characteristics mapping using multi-temporal 

satellite data, and crop yield estimations; such studies may help in ensuring national food security 

as the yield of crops such as corn may be estimated before the end of the farming season based on 

the rainfall projections by institution such as the Zambia National Farmers Union in conjunction 

with the Meteorological department. Therefore, the study may help in extending the applicability 

of remote sensing to different fields in Zambia. 

The mapping method applied in this research required the integration of various datasets such as 

soil type, elevation and satellite data, from various sources. Therefore, prior to the adoption and 

eventual implementation of a mapping method, such as DTC, there was need for the production 

and acquisition of such data sets as the soil map, more accurate elevation data, and updated rainfall 

data. Thus, such a mapping method would further enhance the need for more research into the 

production and acquisition of more accurate and updated ancillary data sets as those mentioned in 

the preceding. 

The use of such a mapping approach would enable more detail mapping of features by the use of 

medium to coarse resolution satellite images. Mapping of these features at such detail would 

ideally require the use of high resolution images; which are of high cost as compared to the 

medium to coarse resolution satellite images, hence making this mapping method cost effective.
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2. CHAPTER 2--LITERATURE REVIEW 

2.1. Overview of Remote Sensing and GIS   

Lillesand et al., (1979) formally defined remote sensing as the science and art of obtaining 

information about an object, area or phenomenon through the analysis of data acquired by a device 

that is not in contact with the object, area, or phenomenon under investigation. This science 

encompasses a multitude of activities, which include the operation of satellite systems, image data 

acquisition and storage, as well as the subsequent data processing, interpretation and dissemination 

of the processed data and image products (Zakaria, 2010). 

The evolution of remote sensing, as an applied science, has been in tandem with other 

technological advancement, such as the improvement in optics, sensors electronics, satellite 

platforms, transmission systems and computer data processing (Zakaria, 2010).  The remote 

sensing technology has proved to be the most ideal method for acquiring information of various 

land cover and land use of an area and its application has found great use in mapping features on 

large areas. Remote sensing relies on spectral characteristics of the objects being mapped as ideally 

each object has its own spectral characteristic which is referred to as spectral signature and hence it 

can be identified and mapped. Therefore, in remote sensing the spectral characteristics of these 

objects are captured by satellite images of various spatial resolutions. The spatial resolution may be 

said to denote the pixel size of the satellite image covering the earth’s surface (Mather et al., 2009) 

in actual sense it is the smallest object that can be resolved on the ground, and satellite imagery are 

usually categorized in terms of their spatial resolutions with high spatial resolution imagery 

ranging under 2m such as Ikonos imagery, medium spatial resolution ranging between 2m and 30m  

these are images such as Landsat imagery, and low spatial resolution images are larger than 30m 

such as METEOSAT-8 imagery. Thus, the higher the spatial resolution, the more detailed the 

satellite image is and as a result, especially if the landscape to be mapped is highly fragmented and 

land cover parcels have irregular shapes, pixel mixing is reduced. However, the possibility of pixel 

mixing in a classification increases with lower spatial resolution imagery.  

As such, in mapping objects of similar spectral characteristic, high spatial resolution imagery is 

able to distinguish between the objects while the medium to coarse spatial resolution imagery may 

result in mixing the objects’ pixels. For that reason, the spatial resolution of imagery plays a 
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significant role in determining the image classification output of remote sensing, and in the case of 

this study, the vegetation classification outputs. 

Classifying and mapping of vegetation is an important technical task for managing natural 

resources as vegetation provides a base for all living beings and plays an essential role in affecting 

global climate change, such as influencing terrestrial CO2 (Xiao et al., 2004). “Vegetation mapping 

also presents valuable information for understanding the natural and man-made environments 

through quantifying vegetation cover from local to global scales at a given point of time or over a 

continuous period. It is critical to obtain current states of vegetation cover in order to initiate 

vegetation protection and restoration programs” (Xie et al., 2008).  However, challenges are 

encountered in the definition of vegetation classes based solely on their spectral responses. Zakaria, 

(2010) stated that these observed challenges are due to the common heterogeneity of the cover type 

and the factors which affect their spectral responses, this is especially the case with the use of 

medium to coarse spatial resolution imagery, such as Landsat imagery, to map the vegetation types. 

Xie et al., (2008) observed that owing to its longest history and widest use for monitoring the earth 

from space, i.e. since 1972, Landsat imagery has proved to be very significant in the mapping of 

vegetation as it enables the study of the spatiotemporal changes of vegetation of an area. However, 

with a spatial resolution of 30m for the multispectral bands and 60m for the thermal infrared band, 

which makes it a medium to coarse spatial resolution imagery, Landsat images are usually used to 

map vegetation at regional/community level. Therefore, due to this spatial resolution, it is a 

challenging task to use Landsat images for mapping at vegetation species level, especially in a 

heterogeneous environment. However, Xie et al., (2008) recommended that when integrated with 

other ancillary data, it becomes possible to map species using Landsat imagery. 

Many research studies have found that “using ancillary geographical data and multi-spectral 

satellite data can improve classification results” (Ozesmi & Bauer, 2002). These studies include 

those done by: 

 Xiaodong et al., (2009); integrated the Landsat TM data with ancillary data to map Land 

cover of a marsh area; 
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 Hansen et al., (2006); integrated AVHRR imagery with geographical ancillary data to 

produce A global land cover map using a DT that has a set of 41 metrics generated from 

five spectral channels and NDVI for input; 

 Abdelhamid et al., (2010); using a similar method as Hansen et al., (2006) mapped salt- 

affected Soils over large areas. 

Among the ancillary data that were used to assist in the identification of mapped features in most 

of these studies were: “soils data, topographic or elevation data, bedrock geology and landforms 

and climate data”. Na et al., (2009:178) 

This method of integrating remote sensing with other ancillary data takes advantage of the 

relationship that exist between the features to be mapped, in this case vegetation types, with their 

environmental factors, such as soil type and elevation. As several studies have explicitly shown and 

Zakaria (2010) stated that the nature and properties of vegetation are fundamental attributes of the 

landscapes they occur, and further that the nature of the vegetation in an area is determined by a 

complex combination of effects related to climate, soils, history, fire and human influences. 

Therefore, this complex combination of effects can be integrated with spectral data to map the 

vegetation species/types. This integration is usually intended to support digital classification 

through the use of auxiliary data as the auxiliary data is used to help improve the classification of 

the satellite data. Remote sensing technology has emerged as a potentially powerful tool for 

providing information on natural resources at various spatial and temporal resolutions (Zakaria, 

2010), and the integration with the ancillary data enhances its strength further. There are many 

algorithms for integrating the datasets, in this study DTC, which is also known as classification 

tree, was used.   

2.1.1. Satellite Image Classification Algorithms 

Satellite image classification can simply be defined as the process of grouping image pixels to 

represent features such as built up areas, agricultural crop fields, waterbodies and many other 

feature types on the Earth’s surface. There are several satellite image classification techniques or 

algorithms of which the main ones are supervised classification, unsupervised classification and 

non-parametric classification.  
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2.1.1.1. Supervised Classification 

In this parametric image classification technique, a user/ analyst delineates sample pixels of land 

cover features to be mapped. This delineation is done via the use of Region of Interests (ROIs); 

which are created by tracing out polygons on representative pixel groups for the mapped land 

covers. Therefore, these ROIs form “training sites” for the classification algorithm to be applied in 

the classification of the entire image pixels; the classification of land cover is thus based on the 

spectral signature defined in the training set. Under this technique, among the most frequently used 

classification algorithms are the parallelepiped, minimum distance, and maximum likelihood. 

As a parametric classification technique, the algorithms here assume that the observed 

measurement vectors Xc for each class in each spectral band during the training phase of the 

supervised classification are Gaussian in nature; that is, they are normally distributed ( Kumar, 

2013). 

2.1.1.2. Unsupervised Classification 

This is a type of parametric image classification technique where image spectral classes are formed 

based on the natural statistical grouping of image pixels. Here the analyst specifies the number of 

classes required for the features to be mapped and based on the specified number, the algorithm 

groups the pixels according to their spectral values hence the formed classes are known as spectral 

classes. After all the spectral classes are formed, the analyst compare the classified data with some 

form of reference data (such as larger scale imagery or maps or field data) to determine the identity 

and informational value of the spectral classes.   

In this classification category there are several clustering algorithms that can be used to determine 

the pixel groups and the main ones here are the ISODATA (Interaction Self-Organizing Data 

Analysis Technique) and k-means. 

2.1.1.3. Non-parametric classification 

These classifiers do not make any statistical assumption about the data thus  do not  base their class 

separation calculations on  statistical parameters and are especially suitable for incorporation of 

non-remote sensing data into a classification procedure (LU et al., 2007), these classifiers enable 

the integration of remotely data with other ancillary datasets.  The main algorithms in this category 

are neural networks, decision tree classifiers and support vector machine. 
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Of the mentioned non-parametric algorithms, many researchers such as Pooja et al., (2011) found 

decision tree classifiers to be more interpretable than other classifiers such as neural networks and 

support vector machines because of their ability to combine simple questions about the data in an 

easily understandable way. Furthermore, decision tree approach has been found to have substantial 

advantages for land use classification problems because of their flexibility and ability to handle 

non-linear relations between features and classes, hence improve the classification accuracy to a 

great extent. These advantages of decision tree classifier qualify it to be used in mapping 

vegetation types by integrating moderate spatial resolution satellite imagery with other ancillary 

datasets.  

2.2. Decision Tree Classification (DTC)    

A decision tree classifier is a type of multistage classifier that can be applied to a single image or a 

stack of images; it performs multistage classifications by using a series of binary decisions to place 

pixels into classes. The tree is composed of a starting node (root), a set of internal nodes (splits), 

and a set of terminal nodes (leaves) (Liu & Shi, 2008). Instances are classified starting at the root 

node and sorted based on their feature values. Various types of decision tree algorithms have been 

developed by many researchers over a period of time with enhancement in performance and ability 

to handle various types of data. The main algorithms in this category include the ID3 (Interactive 

Dichotomiser), C4.5, C5.0 and CART (Classification and regression tree).  Decision tree is a 

structure that includes a root node, branches, and leaf nodes. For all the decision tree algorithms, 

each branch denotes the outcome of a test and each leaf node holds a class label.  The ENVI DTC, 

the decision tree classifier used in this study, implements the CART algorithms in its classification. 

Table 1 shows a comparison of the various decision tree classifiers (Friedl & Brodley, 1997; 

Kumar, et al., 2015; ITT Visual Information Solution, 2009).  
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Table 1: Comparisons between different Decision Tree Algorithms (Kumar, et al., 2015) 

Algorithms ID3 C4.5 C5.0 CART 

Type of data Categorical Continous and 

Categorical 

Continous and 

Categorical, 

dates, time, 

timestamps 

Continous and 

nominal 

atrributes data 

Speed Low Faster than ID3 Highest Average 

Pruning No Pre-pruning Pre-pruning Post pruning 

Boosting Not supported Not supported Supported Supported 

Missing Values Cannot deal with Cannot deal with Can deal with Can deal with 

Formula Use information 

enropy and 

information Gain 

Use split info and 

gain ratio 

Same as C4.5 Use Gini 

diversity index 

 

From Table 1, it can be noted that the ENVI decision tree algorithm, CART, performs relatively 

better than the other decision tree algorithms especially in terms of the data type handled and the 

execution time. Those features coupled with the readily availability of the ENVI decision tree 

classifier made this classifier the best option for the vegetation type mapping in this study.  

However, generally, in decision tree classification, data from many different sources and files such 

as satellite imagery, digital elevation models and soil maps,  as well as datasets of varying 

accuracies and spatial resolutions can be combined together to produce a single decision tree 

classification map showing all the resulting classes.   

Such capabilities make decision tree classifiers potentially appropriate tools for mapping and 

modelling vegetation types as they take advantage of the correlation that exist between vegetation 

types and their environmental factors hence their mapping by integrating these environmental 

factors’ datasets and files to produce vegetation maps. 

In mapping vegetation types, He et al., (2005) reported that under some circumstances, decision 

tree can be very useful when vegetation types are strictly associated with other natural conditions 

e.g. soil type or topography. For example, some vegetation species may only grow in areas with 

elevation higher than a certain level. This can be integrated within decision tree to assist the 
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classification process from imagery if such ancillary data are available (Xie et al., 2008). Many 

studies recommended the use of this technique as it has substantial advantages for remote sensing 

classification problems because of its flexibility, intuitive simplicity, and computational efficiency 

(Mustafa et al., 2009). 

Many researchers have successfully used classification trees to integrate remote sensing imagery 

with ancillary geographical information for land use/cover classification (Na et al., 2009). Breiman 

et al., (1984) described the advantages of classification trees as possessing the versatility to 

integrate both numerical and categorical variables into classifications and that they make no 

distributional assumptions when classifying the pixels. Among the advantages of classification 

trees that Pal, (2005) observed were that classification trees require less training time compared to 

other machine learning techniques such as artificial neural networks and support vector machines, 

while attaining similar accuracy  hence its use in the this study.  

Traditionally, classification tasks are based on statistical methodologies such as Minimum 

Distance-to-Mean (MDM), Maximum Likelihood Classification (MLC) and Linear Discrimination 

Analysis (LDA). These classifiers are generally characterized by having an explicit underlying 

probability model, which provides a probability of being in each class rather than simply a 

classification. The performance of this type of classifier depends on how well the data match the 

predefined model. If the data are complex in structure, then to model the data in an appropriate way 

can become a real problem (Ghose et al., 2010). Thus, with the use of a decision tree classifier, 

such classification challenges may be overcome.  

Despite the numerous advantages that it brings, such as being a cost-effective mapping 

methodology, integration of remote sensing (RS) with other geographical ancillary data, challenges 

are encountered, mainly related to ancillary data accuracy and availability. The unavailability of 

accurate or of any necessary ancillary data, such as soil or elevation data may result in less accurate 

maps. However, these problems can easily be overcome with more research work in those 

necessary fields. 

Unlike in other regions and countries, some of which are in Africa, the use of decision tree 

classification in vegetation type mapping has never been explored in Zambia and thus the 
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importance of this study cannot be overemphasized as it would serve as the basis for future studies 

and mapping of vegetation types using decision tree classification method.  

2.3. Vegetation of Zambia 

In Zambia, vegetation is classified into four major categories: closed forests, woodlands or open 

forests, termitaria and grasslands (Fanshawe, 1971; Storrs, 1995). These are further divided into 

sub-vegetation types such as Cryptosepalum, Parinari, Miombo and Mopane (Sekeli & Phiri, 

2002).  

Closed forests cover about 6% of the country. Cryptosepalum evergreen forests are the most 

extensive within this category and occur in the western part of the country while 

the Baikiaea forests in the south west are the second most extensive characterized by the 

commercially valuable Baikiaea plurijuga (State of the Environment in Zambia, 2000: pp 58-59). 

 Open forests or savannah woodlands are the dominant vegetation type covering 66 % of Zambian 

land. There are four types of these woodlands the most extensive being Miombo woodlands that 

covers about 42% of the country characterized by the Brachystegia, Julbernardia and Isoberlinia; 

followed by the Kalahari woodlands, Mopane, Munga and Termitaria (State of the Environment in 

Zambia, 2000). The predominant Miombo woodland (a sub-category of the savannah) is two-

storied with an open and evergreen canopy 10 - 20 m high. Termitaria or anthill vegetation covers 

about 3 % and is present in all regions except in areas of pure sand; it is classified according to its 

association with other vegetation types; hence: Miombo termitaria, Kalahari termitaria, Mopane 

termitaria, Munga termitaria, Riparian termitaria and Grassland termitaria (State of the 

Environment in Zambia, 2000). 

Grasslands cover 27% of the land and range from pure grassland to grassland with scattered trees. 

They occur in poorly drained dambos, flood plains or swamps. The dominant grasses are Themeda 

triandra, Hyparrhenia spp. and Heteropogon contortus. Having declined at 2.4% per annum, 

forest, mostly savannah bushveld, covers 42% of the land area. The high eastern plateau consists of 

open grassy plains with small trees and some marshland. Arable land comprises 7% of the total 

land area (Aregheore, 2009). These vegetation types are as shown in table 1: 
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Most of the tree species of commercial value in Zambia are used for timber production, as 

construction material and for making furniture products. Others are used for charcoal production, 

poles, soil improvement, fodder, medicines, turnery and many other uses (Aregheore, 2009). This 

further emphasizes the need for mapping these vegetation types. Forty-one indigenous tree species 

in Zambia produce edible fruit and seeds, 44 are good for animal feed, 38 for tannin production, 39 

for dyes, 11 for resins and gums, and 30 for timber. 

Therefore, from the few highlighted importance of forests and the forest related activities, it can be 

seen that forest indeed plays a crucial role in enhancing human well-being and in sustaining the 

economy of Zambia. They contribute to economic growth, employment, wealth, export revenues, a 

stable supply of clean water, recreation and tourism opportunities, as well as essential building 

materials and energy for a wide range of economic sectors (Turpie et al., 2015) 

Furthermore, the summary result of an analysis carried out by Turpie et al., (2015) showed that the 

direct and indirect values of forests are estimated to make a direct contribution equivalent to about 

4.7% of gross domestic product (GDP) or US$97.5 million (using 2010 figures).  

With such a wide variety of vegetation and the importance that it has to the country, the need for 

improved methods of managing and monitoring of these resources cannot be over-emphasized. 

However, in order to achieve this improved management and monitoring of resources, proper and 

advanced methods of mapping these resources need to be adopted and applied. In this case, a 

method that integrates readily available medium to coarse resolution remote sensing data; which 

provides important coverage, mapping and classification of land cover features such as vegetation, 

soil and water using spectral responses only (Zakaria, 2010), with other geographical ancillary data 

has potential for such improved mapping and is thus investigated. From the several research studies 

reviewed in the literature, it can be seen that indeed this method has the potential of classifying 

vegetation at “type” level by using medium to coarse remote sensing data. With such details, 

vegetation mapping can assist improved management of these resources such as in determining the 

spatial distribution and estimating volumes of a vegetation type. For instance, the method may be 

applied in managing and monitoring vegetation species such as Mukula tree (Pterocarpus 

chrysothrix). With such detailed mapping, the spatial distribution and volume estimates of the 

Mukula tree may be determined for proper monitoring and protection from its illegal felling. 
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Table 2a: Vegetation of Zambia (Table complied from studies by Forestry Department, (2000);Fanshawe, (1971); Storrs, (1995); 

Sekeli & Phiri, (2002) and Aregheore, (2009)) 

 

Main vegetation 

types 

Sub-types Genus Species(dominant) 

Closed forests 

 

Dry evergreen 

forests 

- Parinari - Parinari excels 

-  Syzygium guineense 

- Marquesia - Marquesia acuminata, 

- Marquesia macroura  

- Syzygium guineense 

- Cryptosepalum - Cryptosepalum pseudotaxus  

- Guibourtia coleosperma 

 

- Lake basin(chipya) 

 

Dry deciduous 

forests 

- Baikiaea - Baikiaea plurijuga  

- Pterocarpus antunesii 

- Itigi  

Montane - Parinari excelsa  

- Podocarpus milanjanus  

- Trichilia preuriana 

Swamp - Chyrosophyllummagalismontanum 

- Ilex mitis 

- Mitragynastipulosa  

- Syzygium cordatum 

Riparian - Diospyrosmespiliformis 

- Khayaathothetica 

- Parinari excelsa  

-Syzygiumcordatum associated 

with Fauriasaligna and Raphia palms 
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Table 2b; Vegetation of Zambia (Table complied from studies by Forestry Department, (2000);Fanshawe, (1971); Storrs, (1995); 

Sekeli & Phiri, (2002) and Aregheore, (2009)) 

 

 

 

Woodlands (or 

open forests) 

  

Miombo  It is characterized by species of the genera  

- Brachystegia 

- Isoberlinia  

- Julbernadia 

- Marquesia macroura 

- Pericopisisangolensis 

-Erythophleumafricanum  

-  Parianricuratelifolia are frequent associates 

Kalahari  most common species are of the genera  

- Guibourtia 

- Burkea 

-Diplorhynchus  

- Parinari 

- Baikiaea plurijuga  

- Pterocarpus angolensis 

Mopane - Colophospermum Mopane 

Munga (or savanna woodland) - Acacia  

- Combretum  

- Terminalia spp 

Termitaria 

  

Miombo - Diospyrosmespiliformis 

- Asparagus racemosus 

- Bosciaangustifolia 

- Capparistomentosa 

-Sterculiaquinqueloba  

- Maeruajuncea 

Kalahari 

Mopane 

Munga 

Grasslands  -Themeda triandra 

 -Hyparrhenia spp. 

 -Heteropogon contortus 
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In this research, only three vegetation types, namely Miombo, Mopane and Munga, were identified, 

due to the availability of literature on them. Initially, all the vegetation types within the area of 

study were to be mapped however detailed descriptive literature on most of these vegetation types 

is currently unavailable hence the three vegetation types of Miombo, Mopane and Munga. These 

vegetation types were studied and attempts were made to map them using DTC; where their 

spectral characteristics were integrated with their respective environmental factors. 
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3. CHAPTER 3--RESEARCH METHODOLOGY 

3.1. Study Area Description 

3.1.1. Geographical location 

The selected study area is a band running from Copperbelt province in the North to the Southern 

province in the South of Zambia between latitude 12° and 18° S and longitude 26° and 30° E, that 

is, the area falls in the strip of Zambia covered by Landsat World Reference System (WRS)2 path 

172. This area runs across through all the three agro ecological zones of Zambia (zones I, II & III).  

It covers an area of approximately 9,880,000ha and encompasses 5 provinces of Zambia. This 

study area was selected because of its location and stretch across the 3 agro ecological zones which 

results in its diverse general environmental conditions and vegetation cover, Figure. 1 shows the 

study area. 

3.1.2. Climate conditions 

The study site is located across the three agro-ecological zones of Zambia and it covers an 

estimated area of 9,880,000ha. These rainfall zones are distinguished as follows: 

1. Zone I. Rainfall less than 800 

2. Zone II. Rainfall 800-1000 

3. Zone III. Rainfall above 1000 

The temperature of the study area varies from about 25.9° to 30.9° (Zambia Meteorological 

Department, 2011). 

3.1.1. Soil and geology 

The dominant soil of this area has diffuse horizon boundaries, a clay assemblage dominated by low 

activity clays (mainly kaolinite) and a high content of sesquioxides. This is followed by the soil 

type having an argic horizon starting within 100cm from the soil surface, or within 200 cm from 

the soil surface if the argic horizon is overlain by loamy sand or coarser textures throughout 

(Driessen et al., 2001) as in Figure. 2 showing the study area/ area of interest (AOI) clipped soil 

map of Zambia.  The altitude of the area ranges from about 400 to 1080m above sea level, as such 

it is a mixture of relatively high and low lands. 
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Figure 1: Location of study area( with Agro Ecological zones overlay( Zambia Meterological Department(n.d))) 
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Figure 2: Soil map of study area, National Council for Scientific Research (1983) 

 

The geology of the study area comprises of a granitic gneisses complex around the north-east of the 

area, some strips of alluvium colluvium laterite around the central section. The area also has some 

traces of shale siltstones and sandstones, and also/ meta-carbon-volcanic rocks, as shown in Figure. 

3: 
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Figure 3: Geological map of study area, Zambia Geological Survey (n.d) 
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3.1.2. Description of Vegetation cover in study area 

With the study area falling across all the three agro-ecological zones of Zambia, the area is covered 

by a wide variety of vegetation types/species. The vegetation types range from the most dominant, 

Miombo vegetation type to some few patches of other vegetation types such as Lake Basin chipya 

in the northern part and kalahari woodlands in the west and also a strip of Mopane in the southern 

margin. 

3.2. Materials and method 

The study primarily started with a thorough review of the available literature on similar studies 

carried out in other countries and regions, this was to assess the applicability of the identified 

methodology of mapping vegetation, that is, studying DTC from other research studies, and also 

reviewed literature on the vegetation type/species of Zambia as well as on the factors that 

determine their occurrence and spatial distribution. This literature reviewed carried out served as 

the basis for the practical analysis and eventual mapping of the vegetation using DTC. 

The study integrated data from different sources and formats, the data comprised Landsat imageries 

for the years 1984, 1976 Vegetation map of Zambia, soil map of Zambia, Digital Elevation Model 

(DEM) and the agro-ecological zone map of Zambia. 

3.2.1. Satellite data  

Landsat satellite data, path: 172, rows: 069, 070, 071, 072 and 073, of the same date namely, 20
th

 

June 1984, were collected and used in this study. Initially for this study, Landsat images for year 

1976 were to be used in the classification however, due to the unavailability of these images in the 

source archive, the 1984 Landsat satellite images were the closest alternative to the planned 1976 

images hence adopted. These images were to be incorporated with the 1976 vegetation map of 

Zambia in the analysis of the spectral statistics of the vegetation types in the study area. The 

satellite data were procured from the National Remote Sensing Centre (NRSC) - Zambia satellite 

imagery archive. 

3.2.2. Ancillary data:  

The ancillary data used included the soil map of Zambia compiled by the National Council for 

Scientific Research; a 90m DEM; and agro-ecological zone data from NRSC archive.  
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The mapping approach adopted for this study was as illustrated in flowchart Figure 4:

 

Figure 4: Diagram of methods and materials used in the research 

 

3.2.3. Image pre-processing  

Often the raw data image is not directly suitable for specific purposes and should thus be processed 

in some way or another to make it suitable. For that, essential steps known as image pre-processing 

must be done before the actual image classification. Thus in this study, the type of pre-processing 

carried out on the raw satellite images was atmospheric correction. Atmospheric correction is a 

method used to correct sensor radiance for atmospheric effects by mathematically modelling the 

physical behavior of radiation as is passes through the atmosphere (ITT Visual Information 

Solution, 2009). 

Application of atmospheric correction is essential for the current study for one reason. The imagery 

was acquired at different times of day hence at different atmospheric conditions. Removing 

atmospheric effects involves calibration and atmospheric correction. Calibration adjusts the image 

by converting raw radiance values of each pixel to top-of-atmosphere absolute (radiance) or 
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relative (reflectance) values. Atmospheric correction then adjusts these values to ground radiance 

or reflectance at each pixel based on sun-ground-sensor geometry and atmospheric composition 

(Zakaria, 2010). 

3.2.3.1. Converting digital number to radiance:  

Digital number (DN) is referring to the quantized and calibrated values for individual pixels 

(Stellingwerf & Hussin, 1997). For converting the DN values to radiance, in this study, ENVI 

Landsat Calibration module was used. This module has equations 1 and 2 inbuilt in it and prompts 

for the input of the satellite metadata such as the Satellite sensor, maximum and minimum radiance 

values, and the date of acquisition of the imagery. As the DN values of the TM and ETM+ data are 

geometrically correct, equation 1 was used in this study. Thus with all the necessary metadata 

inputted, the DN values were converted to spectral radiance Lλ (m W cm-2sr-1 μm-1) (Zakaria, 

2010).  

          (
           

     
)           (1) 

 

  =GAIN*DN_λ+BIAS             (2) 

Where:  

Lλ        Spectral radiance (i: band)  

Lmaxλ      Maximum spectral radiance (mW cm-2sr-1 μm-1)  

Lminλ       Minimum spectral radiance (mW cm-2sr-1 μm-1)  

DN       Absolute calibrated digital number 

The obtained radiance is known as the Spectral radiance at the sensor’s aperture (at-satellite 

radiance). In order to finally obtain the surface reflectance of the pixels, the at-satellite radiance 

was further corrected for solar and atmospheric effects as in section 3.2.3.2: 
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3.2.3.2. Converting at-satellite radiance to surface reflectance   

The at-satellite radiance was converted to surface reflectance using FLAASH (Fast Line-of-sight-

Atmospheric Analysis of Spectral Hypercubes) module in ENVI 4.7 (Zakaria, 2010). FLAASH is a 

first-principles atmospheric correction modeling tool for retrieving spectral reflectance from 

hyperspectral and multispectral radiance images. It provides the most accurate means of 

compensating atmospheric effects considering the elevation, water vapor, and aerosol distribution 

properties (Adler-Golden et al., 1999). FLAASH accurately compensate for atmospheric effects 

and corrects wavelengths in the visible through near-infrared and short-wave infrared regions, up to 

2.5 μm. Unlike many other atmospheric correction programs that interpolate radiation transfer 

properties from a pre-calculated database of modeling results, FLAASH incorporates the 

MODTRAN4 radiation transfer code (ITT Visual Information Solution, 2009). 

Input in the FLAASH module includes the average elevation of the study area, scene centre 

coordinates, sensor type, flight date and time, information about aerosol distribution, visibility, and 

water vapor conditions (Figure. 5). The input images for FLAASH were radiometrically calibrated 

to radiance images in band-interleaved-by-line (BIL) format. Results showed that pixel spectral 

resolution is improved with FLAASH and creates an image of retrieved surface reflectance, with 

16 bit instead of 8 bits (Schmidt et al., 2009). After applying the FLAASH on the image stack, 

some reflectance values are sometimes negative or greater than 1 in the corrected results. This was 

fixed by using band math: (b1 le 0) x 0 + (b1 ge 10000) x 1 + (b1 gt 0 and b1 lt 10000) x 

float(b1)/10000, on the resulting bands; where “b1” is a variable holding the preprocessed image 

bands inserted in the band math equation; “le” means “less or equal to”; “ge” means “greater or 

equal to”; “gt” means “greater than”; and “lt” means “less than”. The images produced after the 

band math, that is, the preprocessed Landsat satellite images were then mosaicked using ENVI 4.7 

for the study area. 
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Figure 5: FLAASH input box 

 

3.2.4. Preparation of spectral and ancillary data 

The 1974 Vegetation map of Zambia was viewed in ArcGIS 10.1 where the three shapefiles, i.e. 

the Miombo, Mopane and Munga vegetation types, were exported into separate shapefiles. These 

exported shapefiles were later used to subset the preprocessed 1984 satellite imagery. This 

subsetting was done in order to extract and save the spectral statistics of the three vegetation types, 

the subsets of the input satellite imagery were viewed and the spectral statistics extracted in ENVI 

4.7. Here the spectral statistics of interest were the NDVI, the band 4, band4/band3 ratio and the 

EVI statistics of the three respective vegetation types; all the spectral statistics of interest such as 

the NDVI and EVI were produced from the preprocessed Landsat imagery. Using ArcGIS 10.1, the 

digital soil map and the DEM were clipped using the study area boundary shapefile as the clip 

feature, and the subsetted soil map was vectorized for in order to add the attributes and other 

further preparation of the soil map. The vectorized soil map was later rasterized, in ArcGIS 10.1, so 

as to make it compatible for analysis in decision tree classifier. Contours were generated from the 

subsetted DEM using GlobalMapper 11.02; the generated contours were to be used in assessing the 
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elevations of the study area. Thus, the generated contours were intersected with the three 

vegetation types respectively in order to analyze the distribution of the three vegetation types with 

respect to the elevations of the study area. Furthermore, the distribution of the three vegetation 

types was analyzed with respect to the soil types in the study area as well as with the rainfall data 

(agro-ecological zones data). All the rasterized datasets used in the tree were converted to 30m 

pixel size, to match the Landsat data, prior to the input into the tree for execution. 

3.2.5.  Image classification using Decision Tree Classification (DTC) 

An important part of image analysis is the identification of groups of pixels that have specific 

spectral characteristics and to determine the various features or land cover classes represented by 

these groups (Lillesand et al., 2008) and this analysis is performed using the traditional digital 

image classification.   

Digital image classification is the process of sorting all the pixels in an image into a finite number 

of individual classes based on the spectral information and characteristics of these pixels (Zakaria, 

2010). However, in DTC, the sorting of the pixels does not rely on spectral information only but 

also on several other ancillary information such as elevation and soil information. From the 

literature review and data preparation analyses in the preceding sections, the spectral and ancillary 

information of the three respective vegetation types were gathered and prepared for use in the DTC 

classification. This information was eventually compiled for inputting, via binary expressions, into 

the ENVI 4.7 decision tree classifier for the mapping of the vegetation types namely, Miombo, 

Mopane and Munga in the study area. 

For the accuracy assessment of the produced DTC classified map, the method adopted was the 

Non-site-specific-accuracy assessment. This method, despite its several shortcomings, is 

appropriate given the available research resources. Non-site-specific-accuracy assessment can 

provide some measure of agreement between a reference map and classification in terms of the 

areal extent of each mapped class; however it does not provide any information about the 

locational accuracy of the classification. Regardless of the foregoing, the method is very useful in 

situations where field verification is cannot be carried out due some constraints or other possible 

reasons. In this study, the satellite imagery used were for 1984 hence field verification was not 

possible. 
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4. CHAPTER 4--FINDINGS  

4.1. Vegetation types and their Environmental factors 

From the literature reviewed it can be concluded that the occurrence and spatial distribution of 

vegetation types is influenced and determined by a number of environmental factors such as the 

elevation of an area, rainfall regime and soil type.  

Trapnell and Clothier (1996) observed that conditions of altitude and climate naturally play a very 

important part in determining the distribution of the main vegetation types, such as Miombo and 

Mopane, but these stated conditions are by no means the only decisive factors. From that, Trapnell 

and Clothier (1996) thus concluded that a broad correlation exists between the major regional soil 

types and the corresponding types of vegetation and that however, the correlation is not an absolute 

one, for the vegetation type predominantly associated with one soil class may in some regions 

overstep its limits and occupy marginal or outlying forms of the soils of another class. 

Consequently, a single vegetation type is often found on more than one type of soil. This is liable 

to happen more especially in a region where the climate is essentially favorable to one type of 

vegetation, such as the Brachystegia-Isoberlinia woodlands in the higher parts of the central and 

western territory of Zambia. 

4.1.1. General Overview descriptions of Miombo, Mopane and Munga vegetation types 

4.1.1.1. Overview of Miombo 

The Miombo woodland is the most extensive and economically important vegetation type. It cover 

about 35 million hectares (47 percent of the total land area) (Aregheore, 2009). It occurs in highly 

weathered soils that are often more than 3 m deep on the plateau. The soils are generally freely 

drained (Campbell, 1996). The dominant soils in the higher rainfall zones are classified as 

Ferralsols and Acrisols. In the lower rainfall zones are Ferralic and Chromic Cambisols, Chromic 

Luvisols and Plinthic Luvisols. Miombo woodland soils are typically acid and have low cation 

exchange capacities (CEC) (Campbell, 1996). Driessen et al., (2001) described this environment as 

characterized by highly weathered and poor nutrient content soils with high acidity. Miombo also 

occurs in areas of about 700mm to over 1000mm annual rainfall (Chidumayo et al., 2010). This 

vegetation usually occurs in areas of elevation ranging from about 914m to about 1825m (Woode, 
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1985). From the description, the dominant soil is the Ferralsols, which actually is the most 

dominant soil type of Zambia. 

4.1.1.2. Overview of Mopane 

Whereas Miombo woodland is generally found on lighter-textured, nutrient poor, well-drained 

soils on the African Plateau, Mopane woodland, on the other hand, is mostly confined to lower-

lying areas with clay- and nutrient-rich soils (Chidumayo et al., 2010) and on areas at an elevation 

of 200–1200m, but normally from 300–900m. Rainfall in these areas ranges from 400 to 700mm 

per year (Chidumayo et al., 2010). The Mopane is prevalent in hot river valleys of Luangwa, Kafue 

and Zambezi, on areas occupied by alkaline alluvial soils. This vegetation type thrives well on 

sodium affected clay soils (Woode, 1985) with a cation exchange capacity equal to 24 cmol (+)/kg 

(high nutrient level). This soil has a high clay content (argic horizon) as well as a high base 

saturation levels (Driessen et al., 2001). From the above description and literature, the dominant 

soil of such characteristics is the Luvisols. 

4.1.1.3. Overview of Munga 

Munga woodland is characteristic of the flood plains along the Kafue River and its tributaries. Soils 

vary from the loose sand of comparatively recent sand banks to impervious clays, some of which 

contain limestone nodules (Fanshawe, 2010). Munga vegetation is used by agriculturists as an 

indicator of good arable land. Munga vegetation usually occurs on flat land. In some places strips 

of Munga vegetation thrive along rivers and streams. The Munga soils in texture vary from clays to 

sand clays and have a high base exchange capacity (Woode, 1985). 

The preceding environmental descriptions of where each of the three respective vegetation types 

occurs describe the general environments and for the study area, these general descriptions were 

further refined as summarized in the succeeding Section 4.1.3. This environmental description of 

the three vegetation types in the study area was to form the basis for the decision tree binary 

expressions, for the ancillary data, to be integrated with the remote sensing Landsat imagery to be 

used in the decision tree classification vegetation type mapping.   
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4.2. Vegetation types in the study area: Their spectral and ancillary information 

Vegetation types or species mapping is one of the important primary prerequisites when it comes to 

the accurate detail monitoring, managing and planning for the natural resources of a country. These 

resources are of great value to all aspects of the country such as economic and social. From the 

literature review and the desktop analysis of the datasets, a number of observations were made 

regarding the vegetation types and their environmental factors within the study area. These 

observations were compiled into binary rules and these rules were used in the ENVI decision tree 

classifier to classify the three vegetation types. The following describes these observations in the 

study area: 

Miombo 

In the study area, after the analysis with the generated contours, it was found that the Miombo 

vegetation type occurs in areas of elevation ranging from 900m to 1600m above sea level. These 

areas, when intersected with the soil map, are dominated by Ferralsols followed by Lithosols soils 

with some traces of Miombo falling in other soil types such as Luvisols. In terms of rainfall, the 

Miombo occurs in all the three agro-ecological zones of the study area i.e. from less than 800m to 

above 1000mm rainfall area. 

Regarding the spectral statistics analyzed for the Miombo in the study area, it was found that the 

maximum NDVI value was revealed to be 1 while the minimum value was -1. The maximum 

band4 reflectance was 1 while the minimum was 0 and a maximum band4/band3 ratio of 

16.235294. The maximum EVI for Miombo was 1 with a minimum of -1. These spectral values 

were examined and evaluated on pixel-by-pixel level using ENVI 4.7 software using the Miombo-

subsetted mosaicked images of the study area as shown in Figures. 6, 7 and 8, respectively: 

 

Figure 6: Spectral statistical data for Miombo vegetation with band4 highlighted 
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Figure 8: Statistical data for EVI values of Miombo vegetation 

 

Mopane 

In the study area, after the analysis with the generated contours, it was found that the Mopane 

vegetation type occurs in areas of elevation ranging from 420m to 914m above sea level. These 

areas, when intersected with the soil map, are dominated by Luvisols soils with some traces of 

Mopane falling in other soil types such as Lithosols. In terms of rainfall, the Mopane is dominant 

in agro-ecological zone I of the study area i.e. less than 800m rainfall area.  

Regarding the spectral statistics analyzed for the Mopane in the study area, the maximum NDVI 

value was revealed to be 0.857 while the minimum value was -1. The maximum band4 reflectance 

was 0.5198 while the minimum was 0 and a maximum band4/band3 ratio of 12.707. The maximum 

EVI for Mopane was 1 with a minimum of -1. These values of the NDVI and band4 image were 

examined and evaluated on pixel-by-pixel level using ENVI 4.7 software using the Mopane-

subsetted mosaicked images of the study area as shown in Figures. 9, 10 and 11, respectively: 

 

 

Figure 9: Spectral statistical data for Mopane vegetation with band 4 highlighted 

 

Figure 7: Statistical data for NDVI values of Miombo vegetation 
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Figure 10: Statistical data for NDVI values of Mopane vegetation 

 

                      

Figure 11: Statistical data for EVI values of Mopane vegetation 

 

Munga 

In the study area, after the analysis with the generated contours, it was found that the Munga 

vegetation type occurs in areas of elevation ranging from 580m to 1320m above sea level. These 

areas, when intersected with the soil map, are dominated by Luvisols Pharzoam soils with some 

traces of Munga falling in other soil types such as Ferralsols. In terms of rainfall, the Munga occurs 

in all the three (3) agro-ecological zones of the study area.  

Regarding the spectral statistics analyzed for the Munga in the study area, the maximum NDVI 

value was revealed to be 0.8721 while the minimum value was -0.5362. The maximum band 4 

reflectance was 0.7249 with a minimum of 0 and a maximum band4/band3 ratio of 14.641. The 

maximum EVI for Munga was 1 with a minimum of -1. These values of the NDVI and band 4 

image were examined and evaluated on pixel-by-pixel level using ENVI 4.7 software using the 

Munga-subsetted mosaicked images of the study area as shown in Figures. 12, 13 and 14, 

respectively. 

 

Figure 12: Spectral statistical data for Munga vegetation with band 4 highlighted 

 

                        

Figure 13: Statistical data for NDVI values of Munga vegetation 
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Figure 14: Statistical data for EVI values of Munga vegetation 

 

However, these ranges of spectral values presented above are not intended to define an absolute 

range for each vegetation type class, but rather to illustrate the concept of spectral analysis. The 

values may vary with the atmospheric conditions at time of image capture. 

Using DTC, several additional environmental variables were incorporated with the spectral 

statistics in developing the vegetation type prediction map. DTC was carried out using the ENVI 

decision tree classifier algorithm. A constructed decision tree consists of nodes representing 

variables or attributes, branches representing attribute values, and leaves representing classes. A 

decision tree is built based on selecting the attribute that minimizes the amount of disorder in the 

sub-tree rooted at a given node (Abdelhamid et al., 2009). Figure. 15 illustrate the structure of the 

tree and the data inputted based on the spectral and environmental findings for the study area:
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Figure 15: Decision Tree structure with Input Datasets
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In this case, the input nodes are the spectral and the environmental variable datasets, that is, the 

NDVI and Band 4 data, and the DEM, soil type, slope and the agro-ecological zone datasets, as 

shown in Figure. 15 DTC illustration. Based on the characteristics of the vegetation type, noted 

from both the literature review and the desktop analysis, the binary expressions were constructed as 

follows: 

Note that for the binary expressions, the nominal data such as the soil type and slope were denoted 

by their numerical value from the attribute table as follows: 

                                                    

Figure 16: Attribute Tables for the nominal datasets 

 

These findings are consistent with what prevails with the published literature.   

Sample Binary Expressions used 

1. For Mopane 

a. Soil Type: 

{SM[1]} eq 5 

b. Elevation: 

{d1[1]}  eq 700 or {d1[1]} LT 900 OR {d1[1]} eq 900 

c. Band 4: 

{band4[1]} lt 0.5198 or {band4[1]} eq 0.5198 

d. Agro-ecological zone: 

{AZ[1]} eq 2 

e. EVI: 

{EVI[1]} eq -1 or {EVI[1]} lt 1 or {EVI[1]} eq 1  

f. NDVI: 

{N[1]} eq -1 or {N[1]} lt 0.857818 or {N[1]} eq 0.857818 

g. Band4/Band3 ratio: 
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{RT[1]} lt 12.707866 or {RT[1]} eq 12.70786 

 

2. For Miombo 

a. Elevation: 

{d1[1]} eq 900 or {d1[1]} lt 1600 or {d1[1]} eq 1600 

b. Soil Type: 

{SM[1]} eq 1 or {SM[1]} eq 6 

c. Band 4: 

{band4[1]} lt 1 or {band4[1]} eq 1 

d. NDVI: 

{N[1]} eq -1 or {N[1]} lt 1 or {N[1]} eq 1 

e. Band4/Band3 ratio: 

{RT[1]} lt 16.235294 or {RT[1]} eq 16.235294 

f. EVI 

{EVI[1]} eq -1 or {EVI[1]} lt 1 or {EVI[1]} eq 1 

 

 

3. For Munga 

a. Elevation: 

{d1[1]}  eq 580 or {d1[1]} LT 1320 OR {d1[1]} eq 1320 

Soil Type: 

{SM[1]} eq 5 

b. Band 4: 

{band4[1]} lt 0.7249 or {band4[1]} eq 0.7249  

c. NDVI: 

                             {N[1]} eq -0.536278 or {N[1]} lt 0.872132 or {N[1]} eq 0.872132  

d. Band4/Band3 ratio: 

{RT[1]} lt 14.641149 or {RT[1]} eq 14.641149  

e. EVI: 

{EVI[1]} eq -1 or {EVI[1]} lt 1 or {EVI[1]} eq 1 
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Figure 17: Decision Tree structure 

 

 

 

4.2.1. Explanation of Decision Tree (DT) constructed 

With decision tree classification of an image the pixels of the image are sorted according to the 

criteria defined in the binary expressions. Here there were 18 binary expressions in the structure of 

the decision tree (Figure. 15). The vegetation type map was produced by using these production 

rules. 

 Binary expressions were constructed based on the identified and above stated characteristics of the 

three vegetation types, such as the soil types where the vegetation type occur and the elevation. As 

the decision tree allows the integration of satellite image with other ancillary data, the binary 

expressions are constructed in such a way that the pixels are sorted according to the identified 

vegetation characteristics. For instance, for the Mopane vegetation type, the first node binary 
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expression, i.e. node “ELEVATION”, here the pixels were split between “YES” those which fall in 

an elevation range of 700-900m and “NO” those out of that elevation range. The pixels falling 

within that elevation range were further split into “YES” those with a maximum “BAND4” 

reflectance of 0.5198 and “SOIL TYPE” of Luvisols. The pixels are further split into those of 

NDVI range of -1 to 0.857818 and of Band4/Band3 ratio maximum value of 12.707866. 

Furthermore, the pixels were split between “YES” those with “EVI” values range of -1 to 1 and 

which fall within agro ecological zone I, i.e. at node “AGRO_ZON” of the Decision tree structure 

above. The inclusion of the agro-ecological zone binary expression restricted the occurrence of 

Mopane pixels to the lower portion of the area of study.   

Similarly, the binary expression used for classifying the Miombo vegetation type were constructed 

based on the gathered Miombo characteristics; gathered from the literature review and desktop 

analysis, these characteristics are such as the soil type and elevation. For the Miombo vegetation 

type, the sorting of the pixels started from the initial topmost “SOIL TYPE” node, as shown in 

figure. 17. This node had two categories of pixels i.e. those falling in Ferralsols soils (“YES” 

branch); which initiated the classification of Miombo and those falling in any other types of soil 

(“NO” branch).  For this study, and area of study, it was taken that Miombo occurs in areas 

dominated by Ferralsols only and thus classification of Miombo took the right-hand topmost 

branch of the Tree structure, figure. 17. 

With the pixels identified i.e. those pixels falling in Ferralsols soils; it should be noted here that 

Miombo, and generally all vegetation types, are naturally not restricted to specific soil types but for 

the sake of demonstration of DTC in this study, those restrictions are made. The elevation binary 

expression of the Miombo vegetation type was constructed, at node “ELEVATION”. This binary 

expression was based on the observed elevations where the Miombo vegetation type occurs within 

the area of study. Thus, in this area of study, it was observed, after analysis of the Miombo 

shapefile with the generated contours shapefile that Miombo occurs at an elevation range of 900m 

– 1600m. Further the “BAND4” and “NDVI” nodes’ binary expressions were constructed; here the 

BAND4 reflectance for Miombo was identified as having a maximum of 1 while with an NDVI 

value range of -1 to 1. Furthermore, the “BAND4/BAND3” ratio for Miombo had a maximum 

value of 16.235294 and also an “EVI” range of -1 to 1. 
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Similarly, from the analysis of the spectral statistics and the ancillary data regarding the Munga 

vegetation, it was observed that, in this area of study, the “ELEVATION” range of Munga was 

580-1320m with a maximum “BAND4” reflectance value of 0.7249. In this study, and hence in the 

constructed “SOIL TYPE” node, Munga vegetation was restricted to Luvisols Pharzoam with an 

NDVI value range of -0.536278 to 0.872132. Further, the “BAND4/BAND3” ratio for the Munga 

vegetation had a maximum value of 14.641149 and also an “EVI” range of -1 to 1.  

With the above mentioned nodes and their respective binary expressions constructed and inputted, 

the DTC structure was complete and executed for the final map output. After the execution of the 

above created decision tree structure, a map of the three vegetation types of the area of study was 

produced as shown in Figure. 18:   
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Figure 18: Decision Tree classified map 
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With the DTC vegetation map produced, and shown in Figure. 18, visual spatial distribution and 

areal comparisons between the produced DTC vegetation map of the study area and the 1976 

vegetation map of the study area was performed. Therefore, for this comparison analysis, masks for 

the three DT mapped vegetation types were extracted from the tree in ENVI, these masks of 

Munga, Mopane and Miombo are as shown in Figure. 19. From these masks, the estimates for the 

areas occupied by the three vegetation types were determined in ArcGIS as well as calculating the 

areas occupied by the same vegetation types from the 1976 clipped vegetation map of the study 

area. Thereafter, the 1976 vegetation maps of the three vegetation types were overlaid on the 

extracted DTC masks of the three vegetation types. The overlay was performed so as to assess the 

visual spatial discrepancies between the produced DTC vegetation map and the 1976 vegetation 

map for the three vegetation types.   

Results from these analyses, shown in Table 3, indicate that for each of the three vegetation types, 

the following areal estimates were obtained:        

Table 4:  Comparisons between the 1976 Vegetation type map with DTC Vegetation map 

 1976 veg. Map DTC veg. Map Discrepancy % error 

Mopane 505,814 ha 525,014 ha 19,200 ha 4 

Miombo 5,062,517 ha 5,715,584 ha 653,067 ha 13 

Munga 1,566,647 ha 1,908,983 ha 342,336 ha 22 

 

For the visual accuracy assessment and comparisons, in Figures 19, 20 and 21, the 1976 vegetation 

maps for each of the three vegetation types, in red polygons, were overlaid on their respective 

vegetation type masks this was done in order to cartographically show the experienced visual 

discrepancies. Figure 19, 20 and 21 show the overlay displays. 
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Figure 19: Visual comparison of 1976 Munga overlaid on Decision tree Munga 
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Figure 20: Visual comparison of 1976 Mopane overlaid on Decision Tree Mopane 
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Figure 21: Visual comparison of 1976 Miombo maps overlaid on Decision tree Miombo 
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5. CHAPTER 5--DISCUSSION 

From the produced DTC map and as shown by many research studies such as that done by 

Fanshawe (1972) and Brady (1990), it can be stated that the occurrence and spatial distribution of 

vegetation is determined by many factors which include; rainfall, temperature, elevation, human 

activity and time. In this research, three vegetation types were studied and the factors which affect 

their occurrence and distribution were noted and used in the DTC for the mapping.  

The Miombo vegetation generally was found to be associated with areas which are poor in 

nutrients and some places which are shallow. According to the soil map of Zambia published by 

the National Council for Scientific Research (1983), it was observed that the highly weathered, low 

nutrient soils (Ferralsols and Acrisols) are largely located in agro-ecological zone III (northern half 

of Zambia) and partly in zones I and II of Zambia. In this study, it was also observed that the 

Miombo vegetation distribution followed the occurrence of the highly weathered Acrisol and 

Ferrasol soils.  

Munga woodland occurs mainly in the Southern, Central and Eastern provinces of Zambia. They 

occur on flat land and in some places thrive along rivers and streams. The Munga soils vary in 

texture from clays to sandy-clays with a high Base Exchange capacity (Woode, 1985). The soil 

map of Zambia, published by the National Council for Scientific Research (1985), shows that the 

Munga vegetation distribution follows the occurrence of Luvisols soils; which are base rich soils 

with distinct clay accumulation as described by Driessen, et al., 2001. 

While the Mopane woodland was found to be in areas occupied by alkaline alluvial soils which are 

sodium affected clay soils. The soil map of Zambia shows that the mopane vegetation occurs in 

areas dominated by vertisol soils such as those found in Southern and Central Zambia and partly in 

the Luvisols and other soil types. Vertisols are churning clay soils with 2:1 clays that are 

dominated by sodium in the interlayer spaces (Driessen, et al., 2001).    

Using the relationship that exists between the vegetation types of Zambia and the environmental 

factors, this study endeavored to map the main vegetation types by integrating the environmental 

factors and spectral data with the use of Decision Tree Classification (DTC). Other researchers 

such as Xian, et al., (2002) and Mustafa, et al., (2009) used the decision tree classification to map 

forest groups and basal areas, and degraded lands respectively.  
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In this study, the map generated using the DTC was compared with the Vegetation map of Zambia 

(Forestry Department, 1976), using the non-site-specific-accuracy assessment and the percentage 

error for each vegetation type was computed. The results showed that Miombo had a percentage 

error of 13% while Mopane and Munga had percentage errors of 4% and 22%, respectively. These 

low percentage errors showed that the method was effective in mapping the vegetation types 

especially over a large area.   

These observed discrepancies between the DTC map and the vegetation type map shapefile, from 

the 1976 Vegetation map of Zambia, may be attributed to the challenges encountered in the study 

as well as some other factors which may have affected the study. A number of challenges were 

encountered during the execution of this study and a few major ones were as highlighted in the 

preceding section. 

Unavailability of more (accurate) ancillary data on which the accuracy of the DTC map output 

strongly relies. A report by the Japan Association of Remote Sensing (1999), also noted that the 

accuracy of the decision tree map depends fully on the design of the decision tree and the ancillary 

data hence the unavailability of these ancillary data and/ or the availability of less accurate data 

may hamper the use of the DTC method. Other challenges were encountered in gathering ancillary 

data for this mapping, in particular, the soil map of Zambia which was found in hardcopy format 

only. This map is currently the most accurate soil map of Zambia produced by ZARI in 1995. Due 

to the format of this soil map and the level of its details, digitizing the map requires a long period 

of time to complete. Thus, for this study, a simplified and less detailed version of the soil map was 

used.  

Also the vegetation map of Zambia used in this study was produced in 1976 while the Landsat 

satellite imagery used weres acquired in 1984, which is an 8 years period gap. This 8 year gap 

could have resulted in mixing of pixels, due to the land cover changes that may have occurred 

between 1976 and 1984, which might have affected the spectral statistics analyses carried out in 

this study. For the elevation data, a 90m DEM was used for elevation analysis and in the Decision 

tree structure hence this elevation accuracy may also have contributed to the visual discrepancies 

observed in the accuracy assessment. Generally, all the ancillary data may have contributed some 

level of errors towards the output. And also the issue of scale may have further increased this error 

i.e. the various datasets used in the decision tree were at various mapping scales, for instance, the 
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soil map used was at 1:1,000,000, the Landsat image can be mapped to a maximum of 1: 60,000 

scale while the 1976 vegetation map was at 1:500,000 scale, varying scales of the datasets translate 

into varying levels of detail of the maps and hence which may have contributed to the observed 

discrepancies observed.  

Challenges were also encountered in gathering literature for the vegetation types of Zambia. The 

study had set out to using DTC to map all the vegetation types within the area of study, however, at 

the end of the study, only three vegetation types, namely Miombo, Mopane and Munga, were 

mapped. This was due to the unavailability of literature on the many other vegetation types in the 

area of study such as Cryptosepalum, Parinari and Baikea. This kind of literature provides the 

descriptive information of the environmental conditions, such as the soil type, the elevation and the 

rainfall data, in which these vegetation types occur or thrives, and it is this kind of information that 

is used in the DTC for constructing the binary expressions. This information was available for only 

the Miombo, Mopane and Munga vegetation types while for the other vegetation types was 

unavailable or not descriptive enough for use here.  Also the literature information used for the 

Miombo and Mopane may not have been specific for Zambia hence this could have contributed 

towards the discrepancies in the DTC map output. While also not much literature was found on 

Munga, this literature was only deduced from the desktop analysis using the spatial software over 

the study area. This may have contributed to observed percent error obtained for Munga 

vegetation; which was highest of the three mapped vegetation types.   

The occurrence of vegetation types is not strict to specific conditions, that is, vegetation types are 

not exclusively confined to a specific condition for instance a vegetation type does not wholly 

strictly grow or occur in a certain soil type or at a certain elevation only, hence some vegetation 

types, such as Miombo, occur in various overlapping conditions. For instance, Miombo is not 

strictly confined to one specific soil type but a variety of soils. (Young, 1976; FAO-Unesco, 1977; 

Thompson & Purves, 1978; Purves et al., 1981; Nyamapfene, 1991; Anderson et al., 1993) 

described the area where Miombo occurs as; the dominant soils in the higher rainfall zones are 

classifed as Haplorthox and Haplustox in the USDA taxonomy (approximate FAO equivalents are 

Orthic, Rhodic and Xanthic Ferralsols); Paleustults and Palexerults (Ferric Acrisols). Haploxeralfs 

(Ferric Luvisols), Tropudalfs and Paleustults (Eutric Nitosols), and Paleudults and Tropudults 

(Dystric Nitosols) occur over basic rocks. The dominant soils in the lower rainfall zones are 
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Ustropepts (Ferralic and Chromic Cambisols), Paleustalfs and Rhodoxeralfs (Chromic Luvisols), 

and Plinthustalfs (Plinthic Luvisols). Psamments (Arenosols) are wide spread along the south 

western margins on soils derived from aeolian Kalahari sand.  

However, in this study the vegetation types were exclusively mapped to specific soil types or 

elevation ranges hence producing an output with a less accurate representation of reality, this 

criterion was based on the fact that each vegetation type predominantly occurs more in certain 

environmental conditions such certain soil types and/ or on certain elevation than others. Hence for 

high accuracy DTC vegetation type maps to be achieved, all these necessary environmental 

conditions for each vegetation type have to be taken into consideration in constructing the binary 

expressions and also high accurate ancillary datasets need to be used in the DTC classification. 

Researchers such as Coops, et al. (2006) stated that as with most empirical approaches, the issue 

with the decision tree analyses is that it provides no discriminatory power outside the range of the 

input data, with the developed rules only suitable for datasets with equivalent ranges. And as such 

decision trees require input data that are completely representative of the actual data set in order to 

produce meaningful rules. This issue restricts the mapping of vegetation types to certain conditions 

only as opposed to complex prevailing scenario. 

From the challenges encountered during the course of this study, it can be seen that in order to use 

DTC mapping of vegetation types in Zambia, more work needs to be done in researching and 

studying the vegetation types, other than the three mapped in this study. For instance, work needs 

to be done on vegetation types such as Cryptosepalum woodlands and made available prior to the 

DTC mapping. Such research studies would specify the kind of environmental or geographical 

conditions in which these vegetation types occur and that information would be used to construct 

the more accurate binary expression for the DTC.  Also ancillary, such as detailed soil maps, need 

to be available in raster format so as to enable ease production of more reliable vegetation maps. 

The accuracy assessment method used in this study, the non-site-specific assessment approach, has  

The limitation of the Non-site-specific assessment, the accuracy assessment method used in this 

study, lies in its ability to only compare areal sizes of the reference map and the classified map and 

does not give an indication of any locational accuracy of the mapped features hence work round 

this limitation, a visual comparison of the DTC MAP to the “referenced” 1976 Vegetation map was 

done and shown in figures 19, 20 and 21 of the three respective vegetation types mapped. 
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However, despite, the challenges encountered, the study has demonstrated the potential and 

applicability of DTC in mapping of vegetation types in Zambia. From the literature reviewed it has 

been observed that indeed mapping vegetation types using the traditional remote sensing, with 

medium to coarse imagery, is difficult and also that vegetation types indeed follow trends, i.e. 

environmental conditions such as soil types maps. 

The spectral statistics data, such as the NDVI and band reflectance, are not necessarily absolute 

values of the respective vegetation types but only applicable in this study as these values are 

relative and as such vary with varying conditions such as atmospheric conditions. Ideally, spectral 

information of vegetation types are supposed to be obtained from “pure” stands of the vegetation 

types of interest. In this case a “pure stand” of a vegetation type is identified in the fields and its 

coordinates collected using a GPS. Thereafter, the collected coordinates are plotted on the satellite 

imagery of the area of interest and a spectral analysis of the pixels is done to obtain the more 

accurate spectral data of the identified “pure stand”. This analysis can further be enhanced with the 

use of field radiometers in the acquisition of these spectral statistics of the respective vegetation 

types and using that information in the DTC with preprocessed satellite imagery, up to surface 

reflectance.  

The knowledge obtained from the study, with the help of the many reviewed studies, indicate that 

indeed with spectral responses only, for medium to coarse resolution imagery, it is difficult to 

distinguish and map vegetation types and thus the integration of these satellite imagery with 

ancillary data such as soil type data, elevation data or rainfall data via a decision tree classifier, is 

cited as the most appropriate approach to mapping vegetation types. Such knowledge may assist 

institutions such as; Forestry department to effectively manage the nation’s vegetation resources, 

Zambia National Farmers Union to perform their crop yield projections and this may also help lead 

to production of more accurate ancillary data such as soil maps by institutions like ZARI.  
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6. CHAPTER 6--CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

The main objectives of the research were to study the environmental factors which determine the 

spatial distribution of vegetation types of Zambia and to apply DTC to mapping these vegetation 

types. However, the set objectives were not fully achieved as not all the vegetation types within the 

study area were mapped. This was due to the unavailability of the necessary literature describing 

the environmental characteristics of these vegetation types. Thus, for this study, decision tree 

mapping was demonstrated for only three vegetation types, namely Miombo, Mopane and Munga, 

as a good number of research studies have been carried out on the three vegetation types and hence 

literature on these vegetation types were quite readily available. This and several other challenges 

encountered negatively affected the execution of this research and the obtained results. 

However, despite the challenges encountered during the research, the decision tree mapping of 

Zambia’s vegetation types was demonstrated and used to map three vegetation types within the 

study area. Thus, with its ability to incorporate remote sensing with other ancillary geographic 

data, DTC proved to be an appropriate methodology for mapping land cover such as vegetation 

type while maintaining the use of medium to low spatial resolution imagery.  

Given the mentioned aspect of DTC, the most important contribution of this research with respect 

to remote sensing may be summarized as follows. This study may save as a basis for future further 

studies related to vegetation and remote sensing such as in crop estimation activities e.g. harvest 

projections hence this may be used by, among many, Zambia National Farmers Union (ZNFU). 

With the atmospheric and environmental conditions requirements for a certain crop known from 

literature and with the availability of such ancillary data, DTC can be used to predict the amount of 

yield given the prevailing conditions at a given time before the end of that crop season. 

Furthermore, such studies, which integrate spectral data with other geographical ancillary data via 

decision tree classifiers, may lead to the creation of vegetation modelling systems which can be 

used in predicting the distribution and amounts of vegetation types in an area; for improved 

management and monitoring of these vegetation types e.g. managing vegetation such as Mukula 

tree such works may be useful for institutions such as the Zambia Forestry Department (ZFD) and 

Department of Wildlife. These and many other potential applications of DTC need to be explored.  
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6.2. Recommendation 

From the reviewed literature on DTC and thus its mapping demonstrated in this study, the 

application potential and strength of DTC can be appreciated and thus its importance in land cover 

mapping. The study has demonstrated the concept of creating a DTC structure and its execution. It 

has also shown that for the production of a reliable DTC map, all the necessary ancillary data 

should be available and of acceptable accuracy furthermore literature on vegetation types must also 

be available for the construction of DTC binary expressions to use in the classification. Therefore, 

it can be recommended that more thorough research work in these vegetation types should be 

carried out in order to make available the descriptive information of these vegetation 

environmental characteristics such as the soil type or the elevation at which they occur. Such 

descriptive information, when displayed in form of maps, serve as primary datasets to use in the 

DTC mapping hence the need for it to be available prior to the mapping. 

Further research should be set up to investigate the DTC mapping approach and how this approach 

can be improved upon and also how it can be extended to the creation of land cover mapping 

models. The creation of models would ease the mapping exercise of land cover e.g. vegetation 

types and would also enable the prediction of the land cover type at a given area given the 

prevailing conditions or parameter at a given time.  The ability of predicting land cover from the 

given parameters may find great use in important national activities such as crop yield estimation 

projections; whose importance can never be overemphasized. 
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