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Abstract

In this thesis we study some of the properties of homogeneous spaces. We are
more interested in homogeneous spaces which are also manifolds. We have shown
that homogeneous spaces are basically quotient spaces. Working with quotient
spaces, we pushed to symplectic quotient, the Marsden-Weinstein-Meyer quotient
or the symplectic reduction using an equivariant momentum mapping. We have
shown that the reduction can be performed using an affine action of a Lie group
G on the dual g* of the Lie algebra g using the momentum with cocycle ¢. In this
direction we also proved that a Riemannian structure on a symplectic manifold
can be induced to the symplectic quotient through a Riemannian submersion.
We have proved that if GG is a compact, connected and semisimple Lie group,
acting transitively on its Lie algebra g by the adjoint representation, and acting
transitively on the dual g* of its Lie algebra by the coadjoint representation,
then there is a symplectic diffeomorphism between the homogeneous space g/G,
the adjoint orbit of the adjoint action and the homogeneous space g*/G, the
coadjoint orbit of the coadjoint action. We have extended this result to the
applications to Hamiltonian mechanics and have shown that Hamiltonian vector
fields on symplectic manifold lift to Hamiltonian vector fields on the cotangent
bundle of this manifold. On the way to this result we have written equations of
Hamiltonian systems using the deformed Poisson bracket and have proved that
many properties of Hamiltonian systems with canonical Poisson bracket also hold

with a more general structure, the deformed Poisson bracket.
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1

Introduction

1.1. Overview

The study of homogeneous spaces was initiated by Kostant and Souriau and
recently developed by Chu ,(see[35, p. 113]). A homogeneous space is basically
a manifold M on which a Lie group G acts in a transitive way. For this reason,
Klein considered them (homogeneous spaces) to be the geometries in the sense
that they are obtained from a manifold M and a transitive action of a Lie group
G on M [3, pxiii]. One of the advantages of homogeneous spaces is that if
we know the value of a geometric quantity at a point, usually taken to be the
identity coset eH € G/H, then we can use some smooth maps, say translations, to
calculate the value of this quantity at any other point of G/H. There are many
examples of homogeneous spaces, however, in this thesis we have mainly used
coadjoint orbits to obtain other results. Coadjoint orbits are obtained through
the action of a Lie group G on the dual g* of the Lie algebra g of G’ through Ad*
representation. It was shown by Kostant and Souriau that there is up to covering
(see [11, p 61 theorem 2.26]), an isomorphism between a symplectic manifold
(M, w), homogeneous under the action of a Lie group G and a coadjoint orbit.
(See [11]).

1.2. Main results

Following are the main results which we have stated and proved in different

Sections in this thesis.

Theorem 1.2.1 Let ¥ : G x g* — g* defined by V(g,a) = Ad}a + o(g) be the
affine action of a Lie group G on its dual g* to its Lie algebra g. Let § € g*.



Then, the orbit
G-B={¥(9.0):9€G}
is a symplectic manifold with the symplectic 2-form given by

wp (&g (1), ng= (v)) = =BI& nl + 22(&:m),

where §,m € g, and g and ng- are vector fields on g*.

Theorem 1.2.2 Let (M,w) be a symplectic manifold and G be a Lie group of
isometries of M whose action on M is a Hamiltonian action. Let g be the Lie
algebra of G, and let

w:M—g*

be the Ad*-equivariant momentum mapping of the action, where g* is the dual
of the Lie algebra of G. Let € g* be a regular value of v and G the isotropy
subgroup of B which acts freely and properly on pu='(B). Then, there erists a
Riemannian metric gs on the reduced space ' (B)/Gps such that the projection

map

T i (B) = nTH(B)/Gs

1s a Riemannian submersion. That is,

ngﬁ =1"gm,

where gy 18 a Riemannian metric on M and

ipt(B) — M

15 the inclusion map.

Theorem 1.2.3 Let (M,w) be a symplectic manifold and G a Lie group of isome-
tries of M. Let ® : G x M — M be a Hamiltonian action of G on M with

Ad*-equivariant momentum mapping



e M — g*.

Let B € g* be a regular value of 1 and Gg be the isotropy subgroup of 5 acting
freely and properly on p='(3). Given a compatible almost complex structure Jyy

on M and a Riemannian metric gy which satisfies the compatibility condition,

forall X, Y € TM, let wg be the reduced symplectic form on the reduced symplectic
manifold u=*(8)/Gg. Then there exists an almost complex structure Jz and a

Riemannian metric gz on the reduced space p=*(8)/Ggz which make

mopH(B) = pmH(B)/ G

a Riemannian submersion and satisfies the condition

wa([ul, [v]) = gs(Js[u], [v])

for all [u], [v] € T(u(B)/Gp) if and only if

mopH(B) = T (B)/Gs

15 an almost complex mapping.

Theorem 1.2.4 Let G be a compact, connected semisimple Lie group. Let g be
its Lie algebra and g* the dual of g. Assume further that G acts transitively on
g by the adjoint action and transitively on g* by the coadjoint action. Let B® be
as in theorem 5.5.1 and let B® : 9/G — g*/G be the map induced by passage
to quotients between adjoint and coadjoint orbit spaces. Then, the map B is a

symplectic diffeomorphism.

Theorem 1.2.5 Let (M, {-,-}") be a Poisson manifold with a deformed Poisson
structure. If X7 and X are Hamilotnian vector fields with corresponding Hamil-
tonian functions f and g respectively, then their bracket [X}, X;’] 15 a Hamiltonian
vector field with the Hamiltonian function {f,g}". Thus,



[X}’ X;] - Xfﬁg}r'

Theorem 1.2.6 Let (M,w) be a symplectic manifold and Xy be a Hamiltonian
vector field on M with the Hamiltonian function H. Then, Xy induces a Hamil-
tonian vector field X<y on the cotangent bundle T* M, whose flow is the lift of
the flow of Xg.

1.3. Organisation of the thesis

The thesis is organised in the following way.

Chapter 1 is basically an introduction in which we have given an overview of the

research project as well as stating the main results.

Chapter 2 is a preliminary chapter of concepts. Here we give the notions of Lie
groups and homogeneous spaces. These notions are important in many construc-
tions and in the understanding of differential geometry of the underlying space.
We have also shown that there is a diffeomorphism between a manifold M on
which a Lie group G acts in a transitive way and the quotient manifold G/H,

where H is some closed subgroup of G.

In chapter 3 we describe symplectic manifolds and how they come about as quo-
tient manifolds of group actions. Central in this chapter is the description of the
coadjoint orbits introduced by Kirillov in the 1960’s, (see [24]). We show that a
symplectic structure can be defined on a modified action of the Lie group G on g*
through a one cocycle o so that the orbit obtained is a symplectic manifold. We
have described the momentum mapping with one cocycle which induces another
action which makes the momentum mapping Ad*-equivariant with respect to the

new G-structure on g*.

In chapter 4 we determine conditions for which the reduced space of a symplec-
tic manifold inherits an induced Riemannian structure through a Riemannian
submersion. We think that if we have a symplectic manifold with a compatible
Riemann metric, it would be good to end up with a Marsden-Weinstein-Meyer
quotient which is also a Riemannian space having a Riemannian structure (met-

ric) inherited from the one on the original space. We have also put up a great deal
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of effort to describe the spaces of positive complex structure which is compatible

with a given symplectic structure.

In chapter 5 we study the adjoint orbits under the action of a semi simple, con-
nected and compact Lie group GG. We have given an example of generalised flag
manifolds as a special case of adjoint orbits. Generalised flag manifolds are a class
of homogeneous spaces which admit a symplectic structure and other structures
such as the complex structure ([3],[2]). The main result of the chapter is the

following statement.

Theorem 1.3.1 Let G be a compact, connected semisimple Lie group. Let g be
its Lie algebra and g* the dual of g. Assume further that G acts transitively on
g by the adjoint action and transitively on g* by the coadjoint action. Let B’ be
as in theorem 5.5.1 and let B - g/G — g*/G be the map induced by passage
to quotients between adjoint and coadjoint orbit spaces. Then the map B s a

symplectic diffeomorphism.

This result also gives another proof that under certain conditions the adjoint
orbit is a symplectic homogeneous space by showing that there is a smplectic

diffeomorphism between an adjoint orbit and a coadjoint orbit.

In chapter 6 we study the Hamiltonian formalisms on symplectic manifolds. In
our paper [10], we provided a way forward on a deformation of the standard
Poisson bracket on the algebra of smooth functions. In this chapter we have dis-
cussed Hamiltonian mechanics with a deformed Poisson bracket and have shown
that many properties of Hamiltonian systems which hold with canonical Poisson
bracket also hold true with a deformed Poisson bracket. In the last section of
this chapter we investigate the relationship between the Hamiltonian systems on
the base space, the symplectic manifold g/G, taken as a single adjoint orbit of a
transitive action and the Hamiltonian systems on the phase space T*(g/G), where

the systems on the phase space is induced by the systems on the base space.



2

Lie group actions and homogeneous

spaces

2.1. Lie groups and Lie algebras

Lie groups play a central role in the study of manifolds for a number of reasons.
Lie groups are manifolds in their own right, as such, they provide another class of
examples of manifolds. Perhaps another major reason is that Lie groups appear as
symmetries of various geometric objects. The link between Lie groups and their
Lie algebras provide a means of solving some of difficult problems in geometry

by methods of linear algebra.

Definition 2.1.1 A Lie group is a differentiable manifold such that the group
operations are smooth with regard to its manifold smooth structure. That is, the

operations

(i) G x G — G, (z,y) = zy

(ii)) G = G, x> x7!
are smooth.

Definition 2.1.2 An algebra of vector fields, which we shall for now denote by
L4, is a vector space over R together with a bilinear operation [,] : L4 x L4 — Ly,

called the bracket, which is skew symmetric and satisfies the Jacobi identity. That
18, for all X, Y, Z € £4, a,b e R

(a) [aX +bY, Z) = a[X, Z] + VY, Z] and [Z,aX +bY] = a[Z, X] + b[Z, Y]

(b) [X, Y] = =[V, X]



(¢) [X,Y], 2]+ [[Y, Z), X] + [[Z, X],Y] = 0, the Jacobi identity.

Definition 2.1.3 Let g € G be an element of G. A left translation Ly is a map
L,: G — G defined by Ly(x) = gz for all x € G. Similarly, a right translation is
a map Ry, : G — G defined by Ry(x) = xg for all z € G.

Since Ly-10 Ly = Lyo L1 = idg we have L1 = Lg_l. Similarly, R, = Rg_l.
Thus these maps L, and R, are diffeomorphisms of G.

Let L, : G — G be the left translation on a Lie group G. Then the differential

of L, is a linear map

(dLg)h : ThG — TghG

Definition 2.1.4 Let G be a Lie group. A wvector field X € X(QG) is called left

invariant if

(dLg)n(X(h)) = X(gh) = Xgn (2.1)
forall g,h € G.

That is, a vector field X is left invariant if dL,(X) = X for all g € G. That is,
X is Lg- related to itself.

If h = e, the identity element of the Lie group G, then equation (2.1) gives

(dLy)e : T.G —» T,G, X.— X,.

That is, a left invariant vector field is determined by its value at the identity since
if X, =Y. then X, = (dL,)(X.) = (dLy)(Y.) =Y, for all g € G implying that
X=Y.

We denote by L(G) the space of all left invariant vector fields on the Lie group
G.

Proposition 2.1.1 Let L(G) be the space of all left invariant vector fields on a
Lie group G. Then



(i) L(G) is a real vector space,

(ii) L(G) is closed under the bracket operation on vector fields.

Proof. Let X,Y € L(G), then
(i) for all p,q € R and for all g € G we have,

dLy(pX +qY) = dLy(pX) +dLy(qY)
= pdLy,(X)+ qdL,(Y)
= pX +4Y,

which shows that pX + ¢Y € L(G).

(ii) for all g,h € G and f € C*(G), we have,

dLy[ X, Y]nf

(X, Y]u(f o Ly)

Xn(Y(f o Lg)) = Ya(X(f o Ly))
Xu(dL,Y)f — Ya(dLX) f

X, Y[ —Y,Xf
(XY =V, X)f
= [X7 Y]hf

This shows that the bracket of two left invariant vector fields is also a left

invariant vector field. O

By this proposition, the space of all left invariant vector fields of a Lie group G
is an algebra called the Lie algebra of G. The Lie algebra of G is denoted by g.

Proposition 2.1.2 Let g be the Lie algebra of left invariant vector fields of a Lie
group G. Then the map
g—-T.G, X— X,

is an isomorphism of vector spaces.

Proof. Proposition 2.1.1 implies that this map is linear. To see that it is
injective let X, = 0. Then for all g € G we have X, = (dLy).(X.) = 0. Thus
only a zero left invariant vector field maps to a zero tangent vector at the identity

proving the map is injective. To see that the map is surjective, let v € T,G and
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define X, = (dL,).(v) for every g € G. Then X is left invariant since, for all
g,h € G we have X(gh) = (dLgp)c(v) = (dLg)n(dLp)e(v) = (dLgy)n(Xp). That is,
(dLg)n(Xp) = Xgn. Thus X is left invariant. O

Proposition 2.1.3 Left invariant vector fields of a Lie group G are smooth vec-
tor fields.

For the proof of this proposition see [17, Prop5.1.19] or [39, Prop 3.7b].

Because of the isomorphism in proposition 2.1.2 we shall from now identify the
Lie algebra g of G with the tangent space T.G of G at the identity,

g=T.G

Definition 2.1.5 Let G be a Lie group. The Lie algebra of G is a vector space
g = T.G which is equipped with the bracket operation.

Definition 2.1.6 Let G; and G5 be two Lie groups. A smooth map ® : G; — Go
s called a Lie group homomorphism if ® is a homomorphism of abstract groups

G1 and Go. If ® is a diffeomorphism, then it is called an isomorphism.

Definition 2.1.7 Let ® : G — G be an isomorphism of a Lie group G into itself,
then ® is called an automorphism of G. The set of all the automorphisms of G

is a group under composition of maps and is denoted by Aul(G).

Definition 2.1.8 Let G be a Lie group and V' a finite dimensional vector space.
Then the map ® : G — Aut(V') is called the representation of G.

Theorem 2.1.1 Let ® : G; — G5 be a Lie group homomorphism. Let g = T.G
be a Lie algebra of a Lie group of G and g = T.G5 be the Lie algebra of a Lie
group Gs. Then the tangent map

dd:g—g

15 a Lie algebra homomorphism.

First note that ® maps the identity of (G; to the identity of GG5. Therefore, the
differential d® of ® is a linear transformation d® : g — g. Thus, it takes left

invariant vector fields of Gy to the left invariant vector fields of Gs.

9



Lemma 2.1.1 If F : G — G is a homomorphism of Lie groups, then for each
left invariant vector field X € g there is a left invariant vector field X' € g’ such
that X'(e') = dF(X(e)).

For the proof of this lemma, (see [12, Corollary 7.10]).

Proof of theorem 2.1.1. Let X € g and let X € g be the unique left invariant
vector field in lemma 2.1.1 such that X = d®(X). We must first show that X

and X are ®-related. But since ® is a homomorphism we have
Loa)®(b) = ®(a)®(b) = ®(ab) = ®(L4(b)) so that

(I)OLa:ch(a)Oq)

Now

=
= (d®).(X(a)), for all a € G.

Thus, X and X are ®-related.

We remain to show that if X is ®-related to X and Y is ®-related to Y then

[X,Y] = [X,Y]. But [X,Y]is ®-related to the left invariant vector field [X,Y]
([12, Thm 7.9 p150]). So

[X,Y](e) = do([X, Y](e))

But also lemma 2.1.1 implies that [X, Y] is the unique left invariant vector field

on G whose value at the identity is d®([X, Y](e)). Therefore, we must have

X,Y] = [X,Y].

This completes the proof of the theorem. O

2.1.1 Exponential map

We now turn to a very important map in the study of Lie groups and their Lie

algebras, the exponential map

10



exp:g— G.

We shall use the notion of one-parameter subgroup to define it because in general,
multiplication in g is not defined and so it would not be possible to use power

series except in the case that g is a Lie algebra of matrices.

Definition 2.1.9 Let G be a Lie group. A smooth map o : R — G 1is called a

one-parameter subgroup of G if
(i) o(0) = e, the identity element of G,
(i) o(t+71) =0o(t)o(r), forallt,TeR.

Note that this is a homomorphism of Lie groups since R is a Lie group under

addition operation.

The following proposition gives the existence and uniqueness of one-parameter
subgroups. (See also [17, Prop 5.1.23]).

Proposition 2.1.4 Let G be a Lie group and X € g = T.G. Then, there exists

a unique one-parameter subgroup ox : R — G such that 6x(0) = X (e).

Proof. We shall first prove uniqueness assuming existence.

Suppose that o : R — G is a one-parameter subgroup with ¢(0) = X (e), then we
have, for all t1,t, € R, o(t +7) = 0(t)o(7) = Lowyo (7).

Differentiating with respect to 7 using chain rule and setting 7 = 0 we have
O’(t + T) = Lg(t)*d'(T),

and putting 7 = 0 yields

That is, ¢(t) = X(o(t)).

The existence and uniqueness of integral curve ([12, Theorem 4.1]) now implies

that o is the unique integral curve of X through e. This proves uniqueness.

11



To prove existence, first note that a left invariant vector field on a Lie group G
is complete ([12, Cor 5.8, p138]). So, let & : G — G be the flow of X. Define a
map ox : R — G by

ox(t) = & (e). (2.2)

We must show that equation (2.2) defines a one-parameter subgroup of G. Now,
if X € g and ® is the flow of X, then we have for all a € G, the identity

Loo®X oL, 1 =&F. (2.3)

See ([17, Pro 5.1.23, pl65]).

Now from equation (2.2) we have ox(0) = & (e) = e since ®;* is a flow. We also

have

ox(t+71) = & (e)

= OF (2 (e))

= OX(ox(1))

= ox(t)ox(t)"' X (ox(t)e)

= ox(t)®X(e) by equation(2.3)
= ox(t)ox(T

Thus, ox(t) = ®X(e) is a one-parameter subgroup of G. We also have

) d
ox(0) = d_(I)tX(e) =0 = X(e).
t
This proves the existence part and completes the proof of the proposition. 0

Definition 2.1.10 Let G be any Lie group with g = T.G its Lie algebra. Then
for any X € g we define the exponential map

exp:g— G

by exp (X) = ox(1).

Proposition 2.1.5 Let G be a Lie group and g its Lie algebra. If X € g, then
ox(t) = exp (tX).

12



See ([17, Lemma 5.1.26]).

Because of this proposition, for any X € g we shall express its one-parameter

subgroup by exp (tX).

Proposition 2.1.6 The exponential map exp : T.G — G is a smooth map and

carries some neighbourhood of 0 € T,G diffeomorphically onto a neighbourhood
of e € G.

See ([17, Prop 5.1.27, pl67]).

One of the basic properties of the exponential map is given in the following

proposition.

Proposition 2.1.7 Let f : G; — G5 be a smooth homomorphism of Lie groups.
Then, for any n € g1, the Lie algebra of Gy, we have

f(expg, n) = expg, (df )e - 1. (2.4)

Proof. Let n € g;. Then &, : R — G, t — exptn is the one-parameter subgroup
of G generated by 7. We then have that f o ®; : R — Go, t — f(exptn) is
the one-parameter subgroup of Gi. Let ®3(t) = f(expg, tn). There is £ € g,
the Lie algebra of G, such that ®9(t) = expg, t§. Differentiating the relation

expg, t§ = P2(t) = f(expg, tn), gives

d d
7 Pa tli—o = E@zhzo
dfexpg1 tna eXpG1 tn|t:07
which yields £(es) = dfe, - 7, where e; and ey are the identities of G; and Gy
respectively. Thus, ®9(1) = expg, £ = expg, dfe, - 1 O

Definition 2.1.11 Let G be a Lie group and H an algebraic subgroup of G. Then
H is called a Lie subgroup if the inclusion map i : H — G is an immersion. That
is, H 1s a Lie subgroup if it is a submanifold with its smooth structure as an

immersed submanifold of G.

The following theorem is called the Cartan’s Theorem on closed subgroups. For
the proof of the theorem is given in a number of text books. We refer the reader
to ([1, Prop 4.1.12, p259]) or ([33, Thm 5.1, pl4]).
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Theorem 2.1.2 Let G be a Lie group and H a closed subgroup of G. Then H

is an embedded submanifold and hence a Lie subgroup of G.

2.1.2 Group actions on manifolds

As we have stated at the beginning of this chapter, Lie groups form an integral
part of the study of manifolds mainly because they appear as symmetries of
various geometric objects. We shall now study the actions of Lie groups on

smooth manifolds.

Definition 2.1.12 Let M be a smooth manifold and G a Lie group. A smooth
map ® : G x M — M, (g,m)+— ®(g,m) is called an action of G on M if

(i) ®(e,m) =m for all m € M, where, e € G is the identity of G,

(ii) ®(gh, m) = ®(g, ®(h,m)) for all g,h € G and for all m € M.

If we now fix g € G in the definition then we get a map ®,: M — M on M. By
property (ii) in the definition we have, for each g € G, ®,0P,-1 = O -10D; = id)y;.
Thus, (¢,)' =@,
This implies that ®, is a diffeomorphism of M for each g € G. Then the map

-1. Clearly if @, is smooth then its inverse ®,-1 is also smooth.

g — ®, is a smooth homomorphism of G into the group of diffeomorphisms of M

G — Diff(M).

Suppose that M is a vector space, then for each g € G, &, : M — M is a
linear transformation and note that the map G — Diff(M) is a map of G into the
automorphisms of M. In this case, the action of G on M is called a representation
of G on M, (see definition 2.1.8).

We have already seen that a Lie group G can act on itself by left (or right)
translation. Another way a Lie group G acts on itself is by conjugation,
I:GxG — G, I(a) = gag™*. For each g € G, the map g — I, is a map
into the group of diffeomorphisms of GG. Since I, = R,-1 o L, is a composition of
diffeomprphisms, I, is a diffeomorphism of G into itself. Note that

I,(e) = geg™" = gg™"
lye : T.G — T.G.

= e, so that this map fixes the identity element in G. Thus,
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Definition 2.1.13 (Adjoint representation)

Let G be a Lie group. The adjoint representation of G is a homomorphism
Ad : G — Aul(g) defined by Ad(g) = (dl,). for all g € G, where we have
identified the tangent space of G at the identity T.G with its Lie algebra g.

Proposition 2.1.8 If G is a matriz group then Ad,X = gXg=* for all g € G

and for all X € g. The multiplication is the ordinary multiplication of matrices.
(See [3, Prop 2.9 p29)).

Corollary 2.1.1 Let G be a Lie group of matrices, then we have;
(i) Adg o Ady, = Adgyp,
(i1) Adexth( ) lt=o=[X,Y] for all X, Y € g =T.G.

Proof. (i) let X € g, then from the above proposition

Ady o Adyp(X) = Ady(Ady(X)) = Ady(hXh™Y) = g(hXh™Y) g™t = ghX (gh)™" = Adgn(X).

(7i) let X,Y € g and let t — exptX and s — expsY be the one-parameter
subgroups associated with X and Y respectively. Then

d d
%Adexth(Y) ‘t:O = E{(d[exth)Y}h:O
d(d
= %{%Iexth<eXp SY) ’s:O }‘t:o
d(d
= d_{% exptX -expsY -exp (—tX) |s=o }|t:0
d d
= %{ exp tX% exp sY |s=o exp (—tX)}|t:0

= %{ exptX(Y)exp (—tX)}|t:0

= XY -YX
= [X,Y]. 0
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Definition 2.1.14 . The adjoint representation of the Lie algebra g, is the ho-
momorphism ad : g — End(g) defined by ad(X) = (dAd).(X), where End(g) is
the group of endomorphisms of g, ([3, p 28]).

Definition 2.1.15 (Coadjoint Representation,)

Let G be a Lie group with g* the dual of its Lie algebra g. The coadjoint repre-
sentation of a Lie group G is the map Ad" : G x g* — g*, (g,8) = Ad,f,

given by (Ad; 3, X) = (B, Ady-1 X) for all B € g*, X €gand g € G.

By using ¢~! in the definition of Ad; 3 we obtain a group homomorphism Adj o

Ad;, = Ady,, as can be seen from the following calculations; for any X € g,

(Ady o Adj B, X) = (AdyB, Ady-1(X))

B, Ady—1 0 Ad,—1 (X))

Definition 2.1.16 Let ® : G x M — M be an action of a Lie group G on a
manifold M. If m € M, then the orbit of m under the action of ®, or the ®-orbit
of m is defined by

G-m={®,(m):ge G}

The isotropy group or the stabilizer group of m € M is given by

={g€G:P,(m)=m}.

The action is called transitive if there is only one orbit. That is, if for each pair
my,mg € M there is a g € G such that mg = ®,(my). The action is effective
or faithful if G,, = {e}. That is, if the assignment g — ®, is one-to-one. The
action is called free if for each m € M, g — ®,(m) is one-to-one. That is, if
Q,(m) =m for some g € G, then g = e.

Definition 2.1.17 Let ® : G x M — M be an action of a Lie group G on a
manifold M. Then the action ® is said to be a proper action if the map @ :
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G x M — M x M, defined by, ®(g,x) = (x,P(g,x)) is a proper mapping. This
means that ® is proper if whenever K C M x M is a compact subset, then the

inverse image ®~1(K) is compact.

The alternative way to state the property of a proper action is to say that ® is a
proper action if whenever x,, converges in M, and ®(g,, z,,) converges in M, then
gn has a convergent subsequence in G. This condition is automatically satisfied

if G is a compact Lie group.

An action ® : G x M — M of a Lie group G on a manifold M partitions M into
equivalence classes. That is, each orbit is an equivalence class. Then the relation
of belonging to the same orbit is an equivalence relation. We denote the set of
all the equivalence classes by M/G. The map which takes an element to its orbit
ism: M — M/G, x — [z], where [z] is the orbit containing z.

The topology on M /G is the quotient topology, that is, U C M/G is open if and
only if 771(U) is open in M, (see [1, p 261]).

Proposition 2.1.9 Let G be a compact Lie group acting on a smooth manifold
M. Then M/G is a Hausdorff space and it is second countable.

To prove the proposition first we have the following claims:

Claim 1: Distinct orbits are disjoint.

Proof. (Of claim). Let [z] and [y] be distinct orbits through x and y respectively.
If [z]N[y] # 0, let z € [z] N [y]. Then z = g1 = goy for some gy, g, € G. This
gives = g; 'goy so that o € [y]. Then, for any w € [z] such that w = ga for
some g € G, we have w = g(g; '92y) = (gg; 'g2)y. This implies that w € [y].
Thus [z] C [y]. Reversing the argument gives [y] C [z]. This gives [x] = [y].

Claim 2: Any orbit [z] is a closed subset of M.

Proof. (Of claim). We shall show that the complement M \ [z] is open. Let
y € M\ [z], since M is Hausdorff, choose disjoint open sets U, and V, with y € U,
and = € V,. The collection {V,, : x; € [z]} is a covering for [z] by open sets in
M. But [z] = Gz is the image by a smooth map ¢, : G — M of a compact set,
G, hence [z] is compact. Let V,,,V,,,..., V. be the finite sub-collection which
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also covers [z], let V =V, UV, U...UV, and U =U,, NU,N...NU,,. If
z € V then z € V,,, for some z; and so z ¢ U,,. Then z € U. Thus V' is an open
set containing [x] which is disjoint from U, an open set containing y. Since this
is true for each y € M \ [z], we conclude that M \ [z] is an open set so that its

complement [z] is closed.
We now prove the proposition 2.1.9.

To prove Hausdorfl property, suppose that the orbits [z] and [y] of x and y
respectively, cannot be separated in M /G. For each positive integer n let U,, and
V,, be open balls of radius % around x and y respectively. Then since for each n,
GU, NGV, # 0, there is g, h, € G, x, € U, and y, € V,, such that

D(gn, xn) = P(hp,yn), that is,

Tp = (I)(g;17 q)<hn7 yn>)

Taking limit as n — oo, we see that x = ®(g~!, ®(h,y)) so that x € [y]. But z is
in the closure of its orbit [x] which is a closed set. So we must have [z] = [y] a
contradiction. Thus, M /G must be Hausdorff. (See also [1, p 261, prop 4.1.19]).

To show that it is second countable, let {U;} be the countable basis for the
topology of M, then {nU;} is a countable collection of open subsets of M/G. We
need to show that {7U,} is a basis for the topology of M/G. First note that if
U is a subset of M/G then 7='U is the union of sets of elements whose orbits
belong to U, so if U is an open subset of M /G, then U is a collection of orbits
whose union is an open subset 71U of M. This means that for each element x
of 77U there is a basis element U; containing x. But then 7U; is an element of
{mU;} which contains an orbit of z an element of U. Since this is true for each
element of U, {nU;} is a countable basis for the topology of M/G. O

Theorem 2.1.3 Let ® : Gx M — M be an action of a Lie group G on a smooth
manifold M. If ® is a proper action, then M /G has a smooth manifold structure
such that the map m: M — M /G is a submersion.

See ([1, Thm 4.1.20, p262]).

If G is a Lie group and g = T.G is its Lie algebra, then for each £ € g, the action
®: G x M — M induces on M, a smooth vector field called the infinitesimal
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generator of the action corresponding to & and is defined by

E(m) = L @(exp —1€,m) o (2.5)

We shall see in the next section an extension of this theorem to Lie groups and

their closed subgroups.

2.2. Homogeneous spaces

We now come to the special kind of spaces, the homogeneous spaces on which
Lie groups acts in a transitive way. We shall be more interested in homogeneous

spaces which are also manifolds.

Definition 2.2.1 Let G be a Lie group and M a smooth space.
Let ® : G x M — M define an action of G on M. Then the space M is called a

homogeneous space if whenever x,y € M, then there is a g € G such that
Dy(z) = P(g,7) = y.

Such an action, as we have already seen, is called a transitive action

Example 2.2.0.1 FEvery Lie group G is a homogeneous space under the left

translation
L:GxG—G; (g,x) = Ly(z),

or indeed under the right translation

Ry(x) = xg, for all g,z € G.

Example 2.2.0.2 Consider a Lie group G and any subgroup H of G. Let
G/H = {zH : x € G},
be the set of left cosets of H in G. Define a left action
0:GxG/H— G/H by 6(g,xH) = gxH.
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This is an action since §(e,xH) = exH = xH, and

0(g192,0H) = gigoxH
g1(gexH) by associativity in G
= 0(g1,927H)
= 0(g1,0(g2, 2H)).

This action is transitive since if tH and yH are any two points of G/H, with
x,y € G, then
O(xy ', yH) = xH.

Special type of example 2.2.0.2 is the following:

Theorem 2.2.1 Suppose that H is a closed Lie subgroup of a Lie group G. Let
G/H = {zH : x € G},

be the set of the left cosets of H in GG. Then there exists a unique smooth manifold
structure on G/H such that

(i) m: G — G/H is smooth,
(i1) each point g € G is the image o(V') of a C* section (V,o) on G/H,
(#ii) the natural action

0:GxG/H— G/H, defined by 6(g,xH) = gzH,

is a C* action of G on G/H with respect to this structure.

The dimension of G/H is given by dim G — dim H.

For the proof of this important theorem, see [39, Thm 3.58, p120] and [12, Thm
9.2, p161].

Lemma 2.2.1 Let G be a Lie group with Lie algebra g and H its Lie subgroup
with Lie subalgebra by, then To(G/H) = g/b, where o = 7(e) = eH.
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Proof. We compute the differential of the projection map
m:G— G/H,

at the identity,

dre : T.(G) = T,(G/H).

Let X € g =2 T.(G), and let exp tX be the one-parameter subgroup corresponding
to X. Then

dr(X) = dm.o %exp tX |10

d
= E(W o exptX)|i=o

= (e X)H) oo,

The last equality is because 7(a) = aH for all @« € G. But now if x € H then
xH = H. Thus, if X € b then

dm.(X) = 0, the zero vector.

That is to say

ker drw, = b,

the Lie algebra of H. But dr. is onto, hence

g/b =T, (G/H)

as required. [l

Theorem 2.2.2 Let & : G x M — M be a transitive action of a Lie group G on
M, so that M s a homogeneous space with respect to the action ®. Then there is
a closed subgroup H of G such that the map F : G/H — M is a diffeomorphism.
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Proof. We want to show that the homogeneous space GG/H is naturally diffeo-

morphic to the homogeneous space M.

To begin the proof, let M be a smooth manifold and G' a compact Lie group. Let
G act transitively on M by the rule ® : G x M — M defined by ®(g,x) = gz for
g in G and z in M. Let zy € M be arbitrary and let

H={geG:P,(x0) =0}

be the isotropy group. H is a closed subgroup of G since if {g,} is a sequence
in H converging to g € G then gzy = lim g,z¢ = limxy = xy. Therefore, as we
have seen before, G/H is a smooth manifold and G acts naturally on G/H by
therule 0 : G xG/H — G/H, 0(g,xH) = grH. This action is smooth since it is
a composition of the left translation L, with the projection 7 : G — G/H. The

action is transitive by Example 2.2.0.2.

Let F': G — M be a map defined by F(g) = ®(g, ) = go.

Define a map F': G/H — M by F(gH) = gx¢. That is, F(gH) = F(g). Then, F
is well-defined since if aH = bH then a~'b € H implying that 2y = a~ bz, which

implies that axg = bxy.

We now show that the map F' : G/H — M is a diffeomorphism. To do this
we shall show that F' is injective, it is surjective, it is C*° and that the map
F,:T(G/H) — T(M) is an isomorphism.

The map F is injective since F(giH) = F(goH) implies that F(g1) = F(gs).
That is, ®,, (7o) = ®,,(70), which gives g1z¢ = gaxo, implying that g, 'g179 = o,
so that ¢, 'y € H and g1 H = g, H.

To see that I is surjective, we note first that

F(gh) = ®gn(x0o)
= ®(gh, )
= O(g,P(h, x0))
= q)(g,xo)
= Py(z0)
= F(g), forall g€ Gandall h € H.
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Thus, if z € M then F~'(z) = gH where g is such that F(g) = z.

This gives F(gH) = F(g) = x. Note that we could also have used the fact that

the action ® is transitive to show that F' is surjective.

To see that F' is smooth, let y € G/H and let (V, o) be the smooth section defined
on a neighborhood V' of y, then F|V = F o 0, a composition of smooth maps.

Thus, F' is C* in a neighborhood of every point, hence on G/H.

It remains to show that F, : T(G/H) — T(M) is an isomorphism.

Let sx(t) be a 1 - parameter subgroup of G. By identification L(G) = T.(G), de-
fine exponential map exp : T.(G) — G, exp(X) = sx(1) for X € T.(G). We know
that exp : T.(G) — G is a smooth map and carries some neighborhood of 0 in
T.(G) diffeomorphically onto a neighborhood of e in G. ([17, Prop 5.1.27, p167]).
Let h = L(H) and let m be any complementary subspace of L(G) such that
L(G) = mab. Let Cj be an open neighborhood of 0 in m and U, the correspond-
ing neighborhood of e € G such that exp : exp(Cy) — U, is a diffeomorphism.
We now show that Fi.y : Tey(G/H) — T,,(M) is an isomorphism by showing
that F. : T.(exp(Cy)) — Ty (M) is an isomorphism. Let v € T,(exp(Cy)) = m

and consider the curve s(t) = exp(tv)xy. Then,

F..(v) = $(0) = %(e:vp(tv)xo) lt=0= vxo.

We only need to show that $(0) = 0 implies that v = 0.

Let a = exp(tov) so that La(s(t)) = s(t + tp). Then, L,,(5(0)) = $(to). Since
to € R is arbitrary, this gives $(0) = 0 implies that $(¢) = 0 for all ¢ € R. Thus,
exp(tv)xy = xo for all ¢ € R. This implies that exp(tv) C H, which shows that
v € b. But then this means that v € m N h = {0} so that v = 0 as required. Thus

F,. is injective, and since it is surjective, Fl. and hence

F*eH : TeH(G/H) — Tz()(M)

is an isomorphism at the identity e. The Inverse Function Theorem then implies
that F' is locally a diffeomorphism at eH. But then if aH € G/H, we have by

equation 2.3,

F*aH = (La)*mo O L'yeH © (Lafl)*aH
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is an isomorphism of T,y (G/H) — Tu,(M). Hence Fi is an isomorphism of
T(G/H) onto T'(M). This completes the proof that F' is a diffeomorphism. [

We give below an example of homogeneous spaces called the Grassmann manifold.

Example 2.2.0.3 A Grassmann manifold of k-planes in R™, denoted by Gi(R"),
is by definition a set of all k-dimensional subspaces of R™. (A typical k-dimensional
subspace of R™ is called a k-plane). Let Ug(R™) be the set of all k-bases of R™.
We shall assume that all the elements of U,(R™) are normalised. That is, Ux(R™)
consists of orthonormal k-bases of R"™. For each element (uy,--- ,uy) € Uk(R™),

consider the map
Uk(Rn) %Gk(Rn)v (u17"' auk) = <U,1,"' 7uk>a

which takes each k-basis of R™ to a k-plane it generates. This map is surjective
since for any given k-plane, we can choose, using the methods of linear algebra, an
orthonormal k-basis which spans it. Let O(n) be the orthogonal group of matrices.

Consider the map

U:0(n) x GL(R") — Gp(R™), (A, (uy, - ,ug)) — (Auq, -+, Aug), A€ O(n).

We see that ¥ is an action since if A = I,,, the identity, then

\I/(In, <u1, ce 7uk>) = <u1,... 7uk>‘

Also if A,B € O(n) then

U(AB, (uy,- - ,ug)) = (ABuq,- -, ABuy)
= (A(Buy)---,A(Buy)) matriz multiplication is associative,
= V(A, (Buy,---,Buy))
= V(A Y(B,(uy, - ,ux))).

The action V is transitive since given any two k-planes in R™, choose in each
one of them a k-basis which spans it. Then both bases can be completed to an
orthonormal basis of R™. But given any two orthonormal bases of R™, the tran-

sitional matrix from one basis to the other basis is orthogonal. Thus, there is
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P € O(n) which transforms one k-plane generated by one k-basis to the other

k-plane generated by the other k-basis.

To determine the isotropy group consider a point x = aje; + - - - + apuy, where,
(€1, ,ex) are such that e; = (0,---,0,1,0,---,0) with a 1 in the i*" position.

The element of O(n) which leaves x invariant is the matriz of the form

A 0
0 B’
where A € O(k) and B € O(n — k). Now, for each integer n > 1 define a map

f:GL(n,R) — M,(R); A A— AT

Then O(n) = f~1(0) (see [3, p 10)).

Thus, O(n) is a closed set. Therefore, the matriz O(k) x O(n —k) is closed being

the product of two closed sets. Consequently, we have

Gr(RY) = O(n)/O(k) x O(n — k)

is a homogeneous space.
As a special case of Example 2.2.0.3 is when & = 1. In this case, G1(R") is the
set of all 1-dimensional planes. These are straight lines in R™ passing through the

origin. We call this space the projective space, and is denoted by RP"~!. Thus,

the projective space is a homogeneous space

RP"™ = O(n)/O(1) x O(n — 1).

We shall see other interesting examples of homogeneous spaces such as the flag
manifolds when we discus the adjoint orbits. Flag manifolds will be of special

interest because they are known to hold a symplectic structure as well.
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3

Symplectic manifolds

3.1. Symplectic algebra

Definition 3.1.1 Let V and W be finite dimensional vector spaces. A pairing is

a bilinear map
() VxW—=R

It is non degenerate if (vo,w) = 0 for allw € W = vy = 0, and (v, we) =0 for
allveV = wy = 0.

Example 3.1.0.4 Let V' be a finite dimensional vector space and V* be its dual,
then
(,):V*xV =R
given by
(a,§) = a(f),

is a non degenerate pairing.

Proposition 3.1.1 Let V and W be finite dimensional vector spaces.
Ifb:V x W — R is a non degenerate pairing, then V- =W* and W = V*.

Proof. Let v € V and w € W. Consider the map ¢’ : V — W* defined by

(b (0)(w) = b(v, w).

We have that ¢’ is a linear map since b is a linear map. The kernel of ¥’ is given
by
ker’ = {vg €V :b(vy) =0}
= {vy €V :b(vg,w) =0, forallwe W}

= {0}, since we assumed non degeneracy.
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Thus ¥’ is injective so that dim V' < dim W* = dim W.

Similarly we have dim W < dim V* = dim V. Combining the two inequalities we
get

dim V' = dim W. Hence ¥’ is an isomorphism. 0

Definition 3.1.2 Let V' be a finite dimensional vector space over R and V* its
dual space. Then the space /\2 V* is identified with the space of skew symmetric
bilinear forms

w:VxV SR,

where w(u,v) = —w(v,u) for all u,v € V.

The form w is called a symplectic form if it is non degenerate, that is if w(u,v) =0
for all v € V implies that u = 0.

Definition 3.1.3 A vector space V' equipped with a symplectic form w, is called
a symplectic vector space. That is, a symplectic vector space is a pair (V,w),
where V' is a finite dimensional real vector space and w a non degenerate skew

symmetric bilinear form.

Example 3.1.0.5 Let V = R*. Ifx = (x1, - ,%9,) and y = (Y1, ,Yon) are
vectors in V', define w(x,y) by:

w(z,y) = Z Titnli — Tilitn
i=1
Then (R*", w) is a symplectic vector space.

Clearly w is bilinear. We must show that it is skew symmetric and non degenerate.

To see that it is skew symmetric, we have from the definition:
n
w(z,y) = Z Titnli — Tilfitn
i=1

= Z —(Z’in-n - xi-i—nyi)

i=1
= Z ~(YitnTi — YiTitn)
=1
= - Z YitnTi — YiTitn
i=1
= —w(y, ).
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To prove non degeneracy, suppose that w(x,y) = 0 for all y € R*", then it is zero

on all the basis elements. Thus, for example
0=w(z,61) =T14n-1—21-0=214p.

Thus, 14, = 0. Trying each basis element gives z; =0 for ¢ = 1,--- ,2n. Hence

x = 0 proving that w is non degenerate.
The skew symmetric condition implies that w(u,u) =0 for all u € V.

If (ey,---,ey,) is the given basis for V, then the bilinear form w on V' can be

expressed, relative to this basis, in matrix form
W — (wij) < Mn(R>,
where w;; = w(e;, €;).
Definition 3.1.4 Let (V,w) be a symplectic vector space, and let W be a linear

subspace of V. Then the symplectic complement (or symplectic orthogonal) of W
in' V', denoted by W, is defined by

We={veV: :www) =0, forallw e W}.

Lemma 3.1.1 Let (V,w) be any symplectic vector space and let W C V' be any

linear subspace. Then

(i) dim W + dim W* = dim V,

(i) (W) =W.

Proof. Define a map
WiV =V v W’ (v) 1V — R, such that w +— w(v, w),

for all v,w € V', where V* is the dual space of V. Since w is non degenerate, we
have
kerw” = {v € V : w(v,w) =0 for all w € V} = {0}.

Thus &’ is an isomorphism. Note that if W C V then «’(W¥) = W+ C V*, is
the orthogonal complement of W. That is,
Wt ={aeV*:alw)=0, forallwe W}.
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Part (i) now follows from the fact that dim W + dim W+ = dim V.

To prove (ii), note that W C (W*)“ since if w € W and v € W* then w(v,w) =0
which implies that w € (W*)“. But from Part (i) above we have

dimW =dimV — dim W* = dim (W*)~.

Combining the two we conclude that W = (W®)«. O

Theorem 3.1.1 Let (V,w) be any symplectic vector space, then there exists a

basis uy, - -+ ,Up, V1, , v, of V such that
w(uj, ug) = w(vj,v,) =0, wuj,vg) = k.

In particular, dim'V = 2n for some positive integer n.

Proof. We prove by induction on the dimension of V', dim V.
Note that dim V' > 2 since w # 0.

When dim V' = 2, since w is non degenerate, there exists non zero vectors u,v € V/
such that w(u,v) # 0. This implies that u and v are linearly independent so that
they form a basis for V. After multiplying v by a scalar, it can be assumed that
w(u,v) = 1 and the condition is satisfied for dim V' = 2 and the theorem is true

for this case.

Now suppose that the theorem is true when dimV < m — 1. We prove that it
is also true when dim V' = m. Again the non degeneracy condition of w implies
that there exists uy,v; € V such that u; and v, are linearly independent and
w(uy,v1) = 1. Set W = span(uy,v;) and consider the space (W, w|yw). To
see that this space is a symplectic vector space we must show that w|y« is non
degenerate. Let w € W be such that w(w,z) = 0 for all z € W*. We need
to show that w = 0. From lemma 3.1.1 part (i) we note that W N W« = {0},
so that V = W @& W%, Now for any z € V we can write z = 2, + 2z where
2z € W and zp € W¥. Thus w(w, z;) = 0 because w € W¥ and w(w, 25) = 0
by assumption on w. Hence w(w,z) = 0 and therefore w = 0 since w is non
degenerate on V. Therefore, (W* w|w«) is a symplectic vector space. Since
dimW¥ = dimV — 2 < m — 1, the inductive hypothesis implies that there

is a symplectic basis ug, -+, Up, Vo, -+ , v, of (WY w|yw). Therefore, the basis
Uy, U, -+ 4 Up, V1, V2, -+ , Uy 1S & symplectic basis for (V,w) and the theorem is
proved. O]
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With respect to symplectic basis, the form w is represented by the matrix

0 I, .
J = ( o >, where I, € M, (R) is the identity matrix.

Remark 3.1.1 Note that for V = R*" with the standard Euclidean inner product
(-,-), the form defined in example 3.1.0.5 is the form given by w(z,y) = (Jx,y).

Definition 3.1.5 A subspace W C V' of a symplectic vector space is called

(a) Isotropic if W C W¥;
(b) Co-isotropic if W« C W,
(¢) Lagrangian if W = W<,

(d) Symplectic if W N W< = {0}.

Example 3.1.0.6 (a) W = Span{ui,us} is isotropic.
(b) W = Span{uy,--- ,u,,v1} is co-isotropic.
(¢) W = Span{uy,us,--- ,u,} is Lagrangian.

(d) W = Span{uy,ug, -+ ,ug,v1,v2, - , v} for some k < n is symplectic.

Corollary 3.1.1 Let V' be a symplectic vector space and let wy; and wo be two
symplectic forms on V', then there exists an invertible linear map A :' V. — V
such that

w1 (Au, Av) = wy(u,v) for all u,v € V.. That is, A*w; = wy,

where A*w; (u,v) = wy(Au, Av).

Proof. Let ey, - ,e,, fi,--, fn be abasis for V such that wy = > el A f, where

ey, - ,er, fi,--+, frisits dual basis. There also exists a basis uy, -« , up, V1, , Uy
for V such that wy = > uf A v}, where uf,---uf, v}, -+ v’ is the dual basis rel-
ative to the basis uy, -+ ,up,v1, -+ ,v,. Define amap A:V — V by A(w;) = ¢;

and A(v;) = fj, 4,5 = 1,--- ,n. Then A*(e}) = uj, A*(f}) = v;. Therefore,
Aty = Ao A7)

= YA AS)
> A (e) NA(ST)
doui Avf

= Ws. |
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Corollary 3.1.2 Any even dimensional vector space V' admits a symplectic form.

Proof. Let n = %dimV and choose a basis ey, -+ ,e,, f1, -+, fn for V. Let
el e yen ff oo, fF be the dual basis. Let w = > el A fF. We must show that

w is non degenerate.

Let u = Zaiei +b;fi € V be such that w(u,v) =0 for all v € V. Then we have
i=1
w(u, e;) = w(u, f;) for each basis element. Thus

0 = Zef/\fi*(u,ej)
i=1

= Y (e (W) f7(e5) — €5 (e)) f; (w))
- 0 - bj - —bj.
Thus b; =0 for all j =1,2,--- ,n.

Similarly,
0 = Ze;‘ A fi(u, fr)
i=1

= Z(ef(u)fz*(fk) —e; (fu) fi ()
= a,—0= a;.

Giving ap =0 for all k =1,2,--- ,n.

Hence u = 0 and w is non degenerate. 0

Remark 3.1.2 Let (V,w) be a symplectic vector space. A subspace U C V is

symplectic if the restriction of the symplectic form w to U is non degenerate.

Proof. We must show that U is even dimensional if w|y is non degenerate. Let
Uy, , Uk, V1, -, be the basis for U. We must show that [ = k. Note that
this basis can be extended to the symplectic basis for V', so that

w(ug, uj) = w(v;, v;) = 0 and w(u;, vj) = d;;. Suppose that | # k, we first assume
that [ > k. We pair up wujvq, ugvs, -+ -, ugvy such that w(u;,v;) = 1. Let p be
such that £ < p < [ and w(u;,v,) # 0. We scale v, so that w(u;,v,) = 1. Thus
w(u;, v;) = w(u,, v,) which implies that w(u;, v; — v,) = 0. But since u; # 0 and

w is non degenerate, we must have v; — v, = 0 so that v; = v,. Thus [ > £ is not
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possible. A similar argument shows that k > [ is also not possible. Therefore, we

must have [ = k and dim U = 2n for some positive integer n. U

Remark 3.1.3 Let (V,w) be a symplectic vector space. A subspace U C V is
symplectic if and only if U N U* = {0}.

Proof. Suppose U is symplectic, let uy, - -+, u, v1, -+ , v be its symplectic basis.
n

Now if w = Z(aiui + bv;) € UNUY, then w € U¥ and it follows
i=1
that 0 = w(w,w;) = —b;. Thus, b; =0 for i = 1,2,--- ,n. Similarly,

0 = w(w,vj) = a; showing that a; = 0 for j = 1,2,--- ,n. Therefore, w = 0
and U NU¥ = {0}. Suppose now that U N U = {0}. Consider the restriction
w|y. The condition that U N U¥ = {0} implies that w restricted to U is non
degenerate. By remark 3.1.2, U is symplectic. U

Example 3.1.0.7 Let (V,w) be a symplectic vector space and let ey, -+ ,en, f1,+* , fn
be its symplectic basis. Then, U = Span{ey,--- ,ex, fi, -+, fx} for some k < n

15 a symplectic subspace.

Remark 3.1.4 From lemma 3.1.1 we have (U¥)¥ = U, it follows
that U N UY = {0} if and only if U* N (U¥)* = {0}. Thus, a subspace U is

symplectic if and only if its symplectic orthogonal U is symplectic.

3.1.1 Lagrangian subspaces

Lemma 3.1.2 Let (V,w) be a symplectic vector space, and let U, W be subspaces
of V. Then

(i) U CW =W*cCU
(ii) (U+ W) =UNW<,
(1)) (UNW)Y =U + W<,
Proof. To prove (1) we have v € W¥ = w(u,v) = 0 for all v € W, and in

particular, w(u,v) = 0 for all w € U so that v € U*. Thus v € W¥ = v € U%.
Hence W& C U¥.
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To prove (2) and (3) first note that

UNW CU = U*C (UNW)¥, and
UNW CW = W* C (UNW)“. Then

U“+W* c (UnW)~. (3.1)

We also have,
UcU+W= (U+W)“CU¥ and
WCU+W = (U+W)“ C W« Thus

(U+W) CU* N>, (3.2)
We already have (U¥)¥ = U. So from inclusion (3.1) and inclusion (3.2) we have,

UNW =({(UnNnW)) C(UY+ W) C(U)*N (W) =UnW.

It follows that both inclusions are equalities. Therefore, we have
U+W)=UnWv

proving 2, and
(UNW)® =0Y+Wv

proving 3. U

Let (V,w) be a symplectic vector space and let {Uy} be a strictly increasing
sequence of isotropic subspaces of V. If V is finite dimensional then this sequence

terminates at a maximal isotropic subspace.

Lemma 3.1.3 Any mazimal isotropic subspace L of a finite dimensional sym-

plectic vector space (V,w) is a Lagrangian subspace.

Proof. We must show that L = L¥. But since if £ is a scalar,

w(v, kv) = kw(v,v) = 0 we note that a one dimensional subspace is necessarily
isotropic. Suppose L C L¥ and L # L“, let v € L¥ \ L and consider L' = L + kv
for some scalar k. From (L + kv)¥ = L¥ N (kv)¥, we have L C (L + kv)“ since
L C L¥ and kv C L. This last inclusion implies that L C (kv)“. We also have
v € (L+ kv)¥ since v € L¥ and v € (kv)“. It follows that L + kv C (L + kv)¥
which implies that L' = L + kv is isotropic and dim L' = dim L + 1. Therefore, L
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is a maximal isotropic linear subspace if and only if L = L“. Hence L is maximal

isotropic subspace if and only if L is a Lagrangian subspace. U

This lemma also shows that for any symplectic vector space (V,w) there exists a

Lagrangian subspace.

Lemma 3.1.4 Let (V,w) be a symplectic vector space with dim'V = 2n. For any
Lagrangian subspace L of V' there exists another Lagrangian subspace M of V
such that LN M = {0} and V =L & M.

Proof. Let M be isotropic subspace such that M # M®“. Then, there exists
v € M“\ M such that if M = M +kv then LNM' = {0}, for if LNM’ # {0}, then
there exists w € M and a scalar b such that u = w4 bv is a non zero element of L.
Then v € L+ M. If this is the case for every v € M“\ M, then MY\ M = L+ M
which implies that L N MY = L¥* N M¥ = (L + M)* C (M“)* = M. But
LN M = {0}, this implies that L N M* = {0}. On the other hand, we have,

dimM¥ =dimV —dim M >dimV —n=dimV — dim L

This gives dim M® 4+ dim L > dim V' and
dimLNMY = dimL + dimM¥ — dimV > 0 which is a contradiction since
LN MY ={0}. Hence M = M“ and V = L @& M. O

3.1.2 Symplectic maps

Definition 3.1.6 Let (Vi,w;) and (Va,ws) be two symplectic vector spaces. A
linear map ® : Vi — V4 s called symplectic if

wa(Pu, Pv) = wi(u,v) for all u,v € V.

(See [11, p 35]).

Note that if ®v # 0, then by the non degeneracy of wy we have
0 = wo(Pu, Pv) = Pu = 0. But v # 0 = v # 0 since P is linear. Therefore,

0 = wy(Pu, Pv) = wi(u,v) = u = 0.

Thus, du = 0 = u = 0 shows that ® is injective.
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3.2. Symplectic manifolds

Let M be a C* manifold and w € Q*(M). Then w is non degenerate if and only
if for all m € M, w,, € A*(T,,M) is non degenerate.

That is, wp(Xm,Ym) = 0 for all ¥, € T,,M = X,, = 0, or equivalently,
wX,Y)=0forallY € X(M) = X =0.

Let M be a C"*™° manifold and w a 2-form on M. Define a map

W X(M) = QA (M); X = W(X) =ixw=a

such that
Y —=ixw() =w(X,Y),

for all X, Y € X(M).

Proposition 3.2.1 w € Q?(M) is non degenerate if and only if w° defined above
is an isomorphism of modules X(M) and Q' (M) on C>=(M).

Proof. If «’ is an isomorphism then kerw’ = {0}. If w(X,Y) =0
for all Y € X(M) then w(X,Y) = ixw(Y) = " (X)(Y) = 0 for all Y € X(M).
This gives X = 0 and w is non degenerate. On the other hand, if w is non
degenerate, then «w”(X) = 0 implies that w’(X)(Y) = w(X,Y) =0
for all Y € X(M). But w is non degenerate, implying that X = 0. Thus we get
> is also surjective since for any o € Q'(M) we can find

X € X(M) such that a = ixw = w’(X). Thus «’ is an isomorphism. O

that w” is injective. w

Theorem 3.2.1 (Darboux) Let w € Q*(M) be non degenerate with dim M = 2n
for some integer n. Then w is closed if and only if for each m € M there is

a chart (U, ) containing m such that o(m) = 0 € R*" and for all u € U,

o(u) = (xt(u), -, 2"(u),y* (u), -, y"(u)) with w|y = Z dz' A dy'.

=1

(See [1, Thm 3.2.2 p175]).

Definition 3.2.1 A symplectic structure on a manifold M of dimension n is a
given 2-form w € Q*(M) which is;
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(i) closed. That is, dw = 0,

(ii) non degenerate. That is, w(X,Y) = 0 for all Y implies that X = 0 for
X,Y € X(M). That is to say, for each x € M, w,(X,,Y,) =0 for all Y,
implies that X, =0, X,,Y, € T, M.

For x € M, w, is a non degenerate bilinear form on the tangent space T, M. Also
w, is skew symmetric. From Linear algebra, the condition w, is skew symmetric
implies that the dimension of 7, M is even. That is, dim 7, M = 2n(= m), and
w, has maximal rank. Therefore, M is an even dimensional manifold. The form
Q, = %w” denote the standard volume form, where w" =W AW A -++ A w is
the volume on M. The rank of w is 2n which is the dimension of M. (See also [1,

p 166]).

Definition 3.2.2 If w is a symplectic structure on a manifold M, then we call

(M,w) a symplectic manifold.
Note that a symplectic manifold is always even dimensional.

Definition 3.2.3 Let (M,w) be a symplectic manifold and (U, ) a chart on M
such that for each u € U, p(u) = (z'(u), -, 2™ (u),y*(u), -+ ,y"(u)), then the
coordinates (x',y") are called symplectic coordinates about w € U and the chart

(U, p) is called a symplectic chart about u € U.

Definition 3.2.4 Let (My,w) and (Ms,ws) be two symplectic manifolds. A
smooth map [ : My — M, is called a symplectic map if f*ws = wy.

Proposition 3.2.2 (a) Let f : My — My be a symplectic map and
dim M; = dim Ms, then

(i) f perserves a volume form

(i) f is a local diffeomorphism

(b) Let (M,w) be a symplectic manifold. If ® : M — M’ is a diffeomorphism
onto a manifold M', then (M', (®~1)*w) is a symplectic manifold.
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Proof. For (a) see ([1, Prop 3.2.2 pl77]).

We prove (b) of the proposition. We need to show that (®~1)*w is non degener-
ate and also closed. Closedness is straight forward since pullbacks and exterior
differentiation commute. That is, df* = f*d. So we have

d((®1)*w) = (271)*dw = 0. Thus, (¢7')*w is closed. To show that it is non
degenerate suppose (®7')*w(Y, Z) =0 for all Z € (M’). Then

w(@'Y, ;1 Z) =0 for all Z € X(M’) and note that &Y, 17 € X(M) since
® and ! are diffeomorphisms. But w is non degenerate so that ®'Y = 0.

Since ®_! is an isomorphism, we must have that Y = 0.

To see that ® : (M,w) — (M, (®)*w) is symplectic, we need to show that the
pullback ®*, takes back (®~!)*w to w on M. But this is straight forward since

P (P ) 'w=(® o d)w=w.
U

We shall show that under some conditions, the coadjoint orbit is a symplectic

manifold.

Definition 3.2.5 Given a finite Lie group G with its Lie algebra g,
let Ad* : G x g* — g be the coadjoint action of G on g*, the dual of its Lie
algebra, we define the coadjoint orbit of B € g* to be

Op ={Ad;B g € G} C g".

The isotropy subgroup of 3 is given by

Gy ={geG:AdS=5}.

We show that Og = G/Gs. That is, the coadjoint orbit is a homogeneous space.
Define a map ¢ : Og — G/Gjp as follows. If n = Ad;f for some g € G, then
©(n) = gGp. The map ¢ is well-defined (single-valued) because if p(n) = hGp
also, then Ad; 8 = Adj; 3 so that Ad;,_,(Ad;3) = 8. This implies that Ady . B=P
so that h™'g € Gg and ¢G5 = hGp.

The map ¢ is injective because if n = Ad;B, p = Ad; 8 and gGg = hGp, then
h~'g € Gg so that Ad;“l,lgﬁ = (. This implies that Ad; , o Ad;p = 3. It follows
then that

n=AdyS = Ad,B = p.
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The map is surjective since if gGg € G/Gp, then since g € G, n = Ad}; € Op
gives ¢(n) = gGs by construction.

Definition 3.2.6 Let G be a Lie group and g the Lie algebra of G. Let G be
the isotropy subgroup of 3. We shall denote the Lie algebra of Gz by LieGpg.

Proposition 3.2.3 Let n € Og be related to 8 by the equation n = Ad; 3 for
some h € G, then the isotropy subgroups Gz and G, are conjugates.

Proof. Define a map ¢ : G/Gs — G/G, by [g]s — [hgh™'],. To see that v is
a well-defined isomorphism, let € G so that Ad}5 = 8. Since n = Ad;,3, we

have

Ady(Ady)Ady i = Adj,(Ady) Ad;, . (Adyn)
= Ad; Ad:(Ad:_, Ad;B)
= Ad;Ad*B
= Ad;f
-

Since v € Gg was arbitrary, it follows that Ad;GzAd;_, is a subgroup of G,.
Taking 8 = Ad;_.n gives the reverse inclusion. Therefore, G, = Ad;GgAd; ..
This concludes the proof. It follows that ¢ : G/Gg — G/G,, [g]g — [hgh™], is

an isomorphism. O

We have shown that if GG is a finite Lie group acting on the dual g* of its Lie
algebra, g and if 7 and [ are in the same coadjoint orbit, then the

map Yaa: : Gg — Gy, where y44; is conjugation by Adj, is an isomorphism.

The above discussion also implies that if Mz = G/Gg = Op is the coadjoint orbit
through 3, then for all g € G we have a diffeomorphism G/Gg = G /G 44:5,induced
by the map g — hgh™'. Thus the definition of Mz does not depend on the choice

of the element S in its orbit.
We want to define a symplectic structure on the coadjoint orbit.
Let X € g. The infinitesimal generator of the action corresponding to X is given

by

d

Xy (8) = a(Ad:xthﬁ)h:O
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Now let Y € g, then we have that

d

(Xg* (B))Y = %(AdZXthB)Yh:O

d
= % (BAdexp(—tX) (Y)) |t:0

d

= Bl Adexp-x) (Y)) =0

= B(_[X7 Y])

Define B([X,Y]) := (5, [X,Y]), where (-, -) is the natural pairing.

Then we have

d d

—Ad} i (8),Y )0 = E<Ad:xth(B)7Y>‘t:0

d
= E <B, Adexp —tX (Y)> |t:0

d
= (B EAdexp —ex (Y)) le=0

= (8, -[X,Y])
= (8, —adx(Y))
= (adypB,Y).

where, d(Ad*) = ad* and ad¥ = (—adx)*.

Let X € g, denote by X* the vector field on g* generated by X. That is;

d

Xg - Xﬁ(ﬁ) = %(Ad:xpt)(/@)ltzo-

To compute the tangent space of Og at 3, let z(t) = exptX be a curve in G
which is tangent to X at t = 0. Then

ﬁ(t) = Ad;(t)ﬁ = Adeth/B

is a curve in Og such that §(0) = 5. If Y € g then,
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<6(t)7 Y> = <AdethB7 Y> = <ﬁa Adexp(ftX)(Y»'

Differentiating with respect to ¢t at ¢ = 0 yields,

(6'(0),Y) = (B, —adx (Y)) = (adk3,Y).

This shows that

B'(0) = ad% . (3.3)

Therefore, the tangent space of the orbit Og at 3 is given by

1505 = {adxf : X € g}. (3.4)

Proposition 3.2.4 Let wz : g x g — R be defined by
wp(X,Y) = (X, Y]) = (B, [X, Y1),
forall XY € g and 8 € g*. Then
(1) wg is a skew-symmetric bilinear form on g.
(ii) kerws = LieGg where Gg = {g € G : Ad;3 = [}.
(111) wg is G-invariant. That is, given any h € G we have

wAd}’iLﬂ(Adth Ath) = W@(X, Y)
Proof.

(i) The fact that wg is skew-symmetric and bilinear follows directly since the Lie

bracket is symmetric and bilinear.

(ii) We have
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kerwg = {X €g:ws(X,Y) =0, forall Y € g}
= {Xeg:([X,)Y])=0, forall Y € g}
= {Xeg:(B,adx(Y)) =0, forall Y € g}
{Xeg:(—adyB,Y)=0, forall Y € g}
{X eg:—adys =0}
= LieGjg.

(ili) Let h € G. Then

Wag: s(Ady X, AdY) = AdiB([AdyX, AdyY]
— A& B(hXE, Y R)
Ad;{hXh '*hYh™' — hYh 'hXh™'}
= AdB{AXY RV — hY X1}
— AdB((X, VIR
— (A8, h[X, Y]hY)
= {8, Ay (X, YR
(8, h[X, Y]hh)
(6,1, Y])
= wi(X,Y).

The proof of (iii) shows that ws is G-inveriant and hence it is smooth. 0

For g € g* define a map

Qp : Ts0p x Ts05 — R by Qp(X*, YH) = w(X,Y) forall X, Y €g.  (3.5)

Proposition 3.2.5 Let G be a Lie group and g* the dual of its Lie algebra. Then,
Qs defined above is a well-defined G-invariant differential 2-form on the coadjoint
orbit Og, through B, of the action of G on g*.

Proof. To see that €23 is well defined we must show that the definition of 23 does
not depend on the choice of X,Y" € g. To this effect first note that if Z € LieGpg
then
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Qﬁ(Zﬁ’Yﬁ) = W5<Z, Y)
)

for all Y € g. But now it follows that if Z € LieGg and X,Y € g then

Q(XF+ 28 YY) = we(X+2Y)=8(X+Z,Y))
= B,[X+2Y])
= (B,[X.Y])+(8,[2,Y])
= (B,[X,Y]) = B([X,Y])
= ws(X,Y)
= Qp(X* YH).

Hence €3 is well-defined.

We have already seen that, locally, wg is skew-symmetric, bilinear, G-invariant
form on the tangent space T.G. Therefore, it follows that (25 is skew symmetric
on the tangent space T304. To show that (s defines a differential 2-form on the

coadjoint orbit through 3, we must show that it is non-degenerate and closed.

To prove non-degeneracy we must show that if X ¢ LieGp, that is, if —adxf # 0
then there exists a Y € g such that Qg(X* Y¥) £ 0. Now pick any Y € g and
any X ¢ LieGp, then

(X5 YH) = wy(X,V
B(LX, Y]

= (8,[X,Y])
B,adx(Y))
—adip,Y).

But then adi # 0 if and only if X ¢ LieGg. Therefore, (—ad%3,Y) # 0 as
required. Hence (23 is non-degenerate.

It remains to show that €23 is closed. To prove closure we shall use the formula
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dw(X, Y, 2)

I+

(
(

whose proof can be found in [11, p 53]. Therefore,

492(X5 Y, 75) =

dwos(X,Y, Z)

LXW)(Ya Z) - (LYW)(Xa Z)
LZW>(X7 Y) +W(X7 D/a Z])
wY,[X, 7)) +w(Z,[X,Y])

= [(Lxws) (Y, 2) = (Lyws)(X, Z) + (Lzws) (X, Y]
+ [wa(X, [V, Z]) = ws(Y, [X, Z]) + ws(Z, [X, V)]

Dealing with the second square bracket first, we have

(,Ug(X, [Y7 Z]) - wﬁ(ya [Xv Z]) +w,3(Z7 [X7 Y])

by Jacobi identity.

m+ 1+

To deal with the first square bracket, note that (Lxw)(Y,Z) = w(Z,[X,Y]) —

w(Y, [X, Z]). Therefore

(Lxwg)(Y, Z) = (Lyws)(X, Z) + (Lzwp)(X,Y)
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i+ |

m+ 1+ 1 + |

(ws(Z, [X, Y]) = ws(Y, [X, Z]))
(ws(2, [V, X]) = ws(X, [Y; Z]))
(wp(Y; [2, X]) = ws(X, [Z,Y]))
(8,12, X, Y])) = (6, [V, [X, Z]])
(6,12, 1Y, XT) + (B, [X, [Z,Y]])
6,1V, 12, X]]) = (B, X, [2,Y]])
206,12, [X, Y1) = 206, [V, [X, Z]])
208, [X, 1Y, Z1])

206, X, [Y, 2]] = [V, [X, Z]]

12, [X,Y]])

0



again by Jacobi identity.

Thus d€2s = 0. Hence (23 is closed.

We therefore conclude that €25 defines a symplectic structure on the coadjoint

orbit through £ for action of the Lie group G on the dual of its Lie algebra. [J

We have proved that the coadjoint orbit is a symplectic homogeneous space.

3.2.1 The momentum map

Definition 3.2.7 Let G be a Lie group and (M,w) a symplectic manifold. Let

® : GxM-—-M
(g.m) = ®y(m)=g-m

be an action of G on M. The action ® is called symplectic if the diffeomorphisms

o, : M—M
m = ®4(m)

are symplectic. That is, if Pyw =w for each g € G.
Let g be the Lie algebra of the Lie group G. For X € g let

d
XM<m> = E(I)exthmh:O (36)

be the infinitesimal generator of the action. If F; is the corresponding flow of
XM, then

LXMW - E(Ft*w)|t:0~ (37)

(See [11, p72]).

Definition 3.2.8 Let (M,w) be a symplectic manifold. A wvector field X on M
15 said to be symplectic if it preserves the two form w. That is, X is symplectic
Zf LXcu = 0.
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If the vector field X on a symplectic manifold M is symplectic, then the flow F}
corresponding to X also preserves w. That is, F'w = w for all ¢. (See [14, p106]).

Suppose now that the vector field X,; in equation (3.6) is symplectic, then

Lx,,w = 0. But by Cartan’s formula

Lx,w=dix,w+ix,dv = dix,w,

we have 0 = Lx,,w = dix,w. This implies that the 1-form ix,w is closed.
Poincare Lemma (see [17, p261]), now states that ix,,w is locally exact. That is,
a function

AX): M >R

can be defined on M such that locally,

ix,,w = df(X). (3.8)

Definition 3.2.9 Let (M,w) be a symplectic manifold. A vector field X € X(M)
is called locally Hamiltonian if for each point m € M there is a neighbourhood U
and a function F' € C>(U) such that on U,

iXoJ =dF

In particular, the vector field X, defined by equation 3.8 is locally Hamiltonian.

Suppose now that for every X € g the vector field X, defined by equation (3.8)
is globally Hamiltonian on M, then the functions px’s are globally defined on M.
Let g* be the dual of the Lie algebra of G, g, it follows that we can then define
a map
w o M—g
m = p(m),

such that for every X € g we have

(u(m), X) = p(X)(m) or u(m) - X = ((X)(m) (3.9)

The map p defined by equation (3.9) is called the momentum map (or the moment

map).
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Definition 3.2.10 Let ® : G x M — M, (g,m) — ®4(m) be an action of a Lie
group G on a symplectic manifold (M,w) such that ®}w = w for all g € G. Let
g* be the dual of the Lie algebra g of G. Then the map

w:M—g*

is called the momentum map (or the moment map) for the action if for each

X € g there is a function
px - M — R with dux = ix,,w
such that equation (3.9) holds, where Xy is the infinitesimal generator of the

action corresponding to X € g.

The equation dpx = ix,,w implies that

X, =X forall X eg. (3.10)

The space (M, w, ®, 1) is called a Hamiltonian G-space.

Definition 3.2.11 Let G act on a symplectic manifold (M,w) by a symplectic
action ®. If the action admits a momentum map, then the action is called a

Hamiltonian action.

Note that not every locally Hamiltonian vector field is globally Hamiltonian (see
[11, p78]). Therefore, it follows that not every symplectic action has a momentum
map. However, if the vector field X, is globally Hamiltonian, then there is a

momentum map.

Definition 3.2.12 Let ® : G x M — M be the symplectic action of a Lie group
G on a symplectic manifold (M,w) which admits a momentum map. Let g be the
Lie algebra og G and let g* be its dual. Then the momentum map p: M — g*
is called equivariant if it is equivariant with respect to the coadjoint action Ad* :

G x g* — g*. That is, if for every g € G, the following equation holds

po®, = Ad; o p. (3.11)
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Since Ad* : G x g* — g7, then for each g € G, we have Adj : g* — g" is an
automorphism on the dual of its Lie algebra. So, Ad* maps G into automorphims

of g*. We can express this as a map Ad* : G — Aut g*.

Now if p : G — G is a homomorphism of Lie groups, then p defines a representa-
tion p : G' — Aut g* of G’ into the automorphisms of the dual of the Lie algebra
of G by the composition

G' — G — Aut g*,
since the map G’ x g* — G x g* — g* defined by

(9", ) = (p(g"), @) = Ad}n (),

is smooth.

Taking p = Idg, the identity map on G, then the momentum map is equivariant

with respect to the coadjoint action if the following diagram commute:

(Idax p)
_ >

Gx M G x g*
Q4 Ad*
M a g

Equivariant momentum maps play an important role in many constructions in
symplectic geometry. One such area is the constructions in symplectic reduction
theory. However, there are cases when the momentum mapping is not equivariant
with respect to the coadjoint action of the Lie group . In such cases we can
define an action of GG on g* such that the momentum mapping is equivariant with

respect to this action.

Much of the material which now follows in the remainder of this chapter is con-

tained in our first paper. (See [10]).

3.2.2 Momentum with cocycle

Let (M, w, ®, 1) be a Hamiltonian G-space. For g € G and £ € g, define a function
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U,e:M—R
by U, (2) = (€)(®,(2)) — u(Ady1€)(a), for all z € M.

We shall show that ¥ is constant on M. Differentiating at x € M gives

dVye(x) = d(i(€)(Py(7))) — d(f1(Ady-1€)(2))
)(@4(

by definition of momentum mapping.
This gives dW¢(x) = O (ig, w)(7) — i(ad, 1), w(T).
Now, using the identities:
(a) (Adg-18)m = ®;&n and
(b) @yicy,w = inze, Pyw,
we get dW,¢(x) = 0.

If M is connected then W is constant on M, otherwise it is constant on connected

components.

Now define a function

0:G = g% g w(Py(m)) — Adgpu(m),

for all m € M so that

a(g) - &= Vye(m),
forall g € G, £ € gand all m € M.

The map o is called a coadjoint cocycle on G. It satisfies the cocycle identity

o(gh) = o(g) + Ad;o(h), (3.12)

for all g, h € G.
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Proposition 3.2.6 Let ® be a symplectic action of a Lie group G on a symplectic
manifold (M,w) which admits a momentum mapping . Let o be a one-cocycle.

Define a map

V:Gxgt— g,

U(g,a) = Adja + o (g).

Then the map V is an action and the momentum map s equivariant with respect

to this action.

For the proof see ([10, Prop 3.4]).

In order to discuss commutation relations associated with a given momentum

map, we first state the following proposition.

Proposition 3.2.7 Let ® : G x M — M be a smooth action of a Lie group G
on a smooth manifold M. For & € g let

En(m) = £P(expte,m) o,

be the infinitesimal generator of the action. Then for £&,n € g, we have:

[Ears ] = =€, m]r-

For the proof see ([1, p 269, Prop 4.1.26]).

Theorem 3.2.2 Let ® : G x M — M be a symplectic action of G on M which

admits a momentum mapping

prM— g,

and let
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o:G—g",
be the cocycle of the momentum map . Let the function

o, : G =R,

be defined by

Define also a function

Yigxg—R,

%(E,n) = doy(e) - €,

forall&,m € g. Then,

(i) ¥ is skew symmetric bilinear form on g and satisfies the Jacobi’s identity

0 =%(&, [n,¢]) + X, [, €]) + E(C, € n])-

(ii) {(€), i(m)} = fu([€,n]) — S(€,m), and since (&, ) is a constant, we have

Xiae)amy = Xallen)-

Proof. We first obtain an expression for 3(£, 7). From the expression

an(g) = w(@y(x)) -n—Adyu(z)-n
= ﬂn(q)g(m)) - ﬂAd971n("Lj)v

differentiating in g at ¢ = e in the direction of £ € g we get;
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doy(e) - & = (Pm( g(@)) - € — fraa, ,y(x) - §)
t n( expt&( ) li=0 — dtMAdexm_tgm(ﬁ) li=0
(innw) g Pesp e () le=o — i (Adexp(—1)7, () |0
(ipy) (€0 () = (G Aexp(—1)7 l1=0, ()
(igps i, w) () = ([0, ], ()

= —{iig, fin}(x) — fipp.q (7)
= —{ﬂgaﬂn}(x)"':u{n]()

Thus,

X&) = —{fte, fin} + ftiem)- (3.13)

But both the Poisson bracket {/i, fi,} and the Lie bracket [£, 7] are skew symmet-
ric bilinear. This implies that the right side of equation (3.13) is skew symmetric
and bilinear. Therefore, ¥(&,n) is skew symmetric and bilinear form on g. The
right side also satisfies Jacobi’s identity which implies that ¥(&,n) also satisfies
the Jacobi’s identity. This proves the first part.

To prove the second part first we show that

—{ e, fin} + fien

is a constant. We shall show that

d{fig, fi} = dfiie ). (3.14)

Evaluating the right hand side of equation (3.14), we have
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divgm = g
= —leymuw Dy the proposition 3.2.7

— (L, iy, w — iy, Ley,w), an identity,
—Le¢,, i, w (since {ur = X, so that Le,w = 0)
— L, djiy
—dLegy fiy
_d(Lngﬂn)
= _d(_{ﬂfa ﬂn})
= d({ic, iin})-

Thus, d{jie, fin} = dfie;. This shows that

2(5777) = _{ﬂfaﬂn} + ﬂ[&n]

is a constant and from equation (3.13) we have

{ite, fin} = ftje — X(&,m).O

The main result of this section is the following:

Theorem 3.2.3 Let ¥ : G x g* — g* defined by ¥(g, ) = Ada + a(g) be the
affine action of a Lie group G on its dual g* to its Lie algebra g. Let § € g*.
Then, the orbit

G-B={¥(g,8):9€G}
is a symplectic manifold with the symplectic 2-form given by

wp &g+ (v), Mg+ (v)) = =PI, 1] + 22(& ),

where £,n € g, and &+ and ng- are vector fields on g*.

Proof. We shall first show that the orbit Og = {¥(g, ) : ¢ € G} is a manifold.

Thereafter we shall define a symplectic structure on it.

Define the orbit of 8 € g* by Os = {V¥(g,0) : g € G} C g*. The isotropy group
of § is given by

Gs={9€G:¥(g,p) =7}
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This is a closed subgroup of G since if g, is a sequence in Gz which converges to

g € G then we have:

= E_Eollm Gn, )
= U(g, ).

The second equality is because ¥ is an action and so it is smooth. This shows
that g € Gg.

We now show that Og = G/Gs. Define a map

@105—>G/G5

p(n) = gGs

for n € Og, where n = (g, 5) for some g € G.

The map ¢ is well-defined since if ¢(n) = hGp also, then we have

V(g, ) = W(h, )

so that

U(h™!,W(g,B)) = = U(h~'g,B) = B,

which implies that

hilg S Gﬁ,

and consequently
gGg = hG 8-

The map ¢ is injective. To see this let n = U(g, ), ( = ¥(h, B) and gGp = hGp
for h,g € G and n,( € Og. Then h™'g € Gy so that ¥(h~'g, 8) = 8. This implies
that U(h=1, ¥(g, B)) = B. It follows that ¥(g,3) = ¥(h, 3) so that n = .
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The map is surjective since if Gz € G/Gg, then n = V(g, 8) € Oz gives
©(n) = gGp by construction.

Hence ¢ is an isomorphism. 0J

Lemma 3.2.1 Suppose that n € Og so that n = Y (h, ) for some h € G, then
the isotropy groups Gg and G, are conjugates.

Proof. We shall change the notation a bit and write W,(8) for ¥(g, 5). We have

already seen that W is an action and so, it is a homomorphism

U(gh, B) = W(g, ¥ (h, 7).

Define a map

v:G/Gsg = G/G,,

9] = [hgh™],.

Then v is a well-defined isomorphism. To see this, let € G so that

V.(B) = 6.

Since n = W, (5), we have

VoW, oW, -1(n) = VoW, oW,—1(V(h,[))
= U,oW, (U(hh! )
= U,oW,(p)
= U(h,¥(z,p))
= V(h,p)
= 7.

Since x € G was arbitrary, it follows that W, G3W¥)-1 is a subgroup of G,,.
Taking 8 = W(h™!,n) gives the reverse inclusion. Thus G, = V,Gz¥},-1.
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Hence ~ is an isomorphism. 0J

We now write the orbit of ¥ through § as G- 8 = G/Gz = Og. From the
discussion above, it is clear that the orbit G - 3 does not depend on the choice of
the element (3 in its orbit. We already have that G is a closed subgroup of G.
Thus

G-=G/Gs
is a manifold.

We shall now define a symplectic structure on the orbit of the action ¥ through

3.

Let £ € g. We define the vector field on g*, called the infinitesimal generator of

the action to be:

&+ (B) = %\D(GXP t&, B) li=o
= %[Adeptgﬁ + o(expt§)] |i=o
= %Ad:xptgﬁ =0 +F0(expt€) |i=o
= %Adzxptgﬁ =0 +do(e) - &

= %Adzxptﬁﬁ ’t:O +d6§(€)

If now n € g, then we have:

(B = F(Adi, BN li=o +dbe(e) - n
= 5(%Adexp—t£(n)) li=o +>-(1,6)
= B(=[&n) +20.9).

To compute the tangent space to the orbit G - 8 at g, for £ € g let x(t) = expt
be a curve in G which is tangent to £ at t = 0, then B(t) = ¥ (z(t), §) is the curve
in G - 8 such that §(0) = g since o(e) = 0.

If n € g, then

B@),n)y = (Y(x(t),8),n)
(Ady 8+ o (z(t)),m)
= (Adi,Bm) + (o(expts),n),
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where (-, ) is the natural pairing of g and its dual g*.

Differentiating with respect to ¢t at t = 0 gives

(8'(0),n) = {ad;B,m) +>°(n,§).

This implies that

A(0) = adeB + 32(- ).

Therefore, the tangent space to G - 8 at [3 is given by;

TG - =A{adgB+ 32(-,€) - € € g}

Consider now the function wg : g X g — R defined by:

wp(&,m) = B(=1& ) + 221, &).

Clearly wg is skew symmetric and bilinear on g since both the Lie bracket [, -]

and the form (-, -) are skew symmetric bilinear.

kerws = {§€g:wp(€n)=0,Vn€g}
= {£eg:B(=[&n])+ >0 =0,Vn € g}
= LieGg.

Now, for & € g let f denote the vector field on g* generated by £. That is,

€ = E£(8) = §(expt€, B) li—o -

Then for 8 € g*, define the function Qg : TG - § x TG - — R by

Qs(&, 1) = ws(&,m), (3.15)
for all £,7n € g.

Now to complete the proof of theorem 3.2.3, we have the following proposition.
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Proposition 3.2.8 s defined by equation (3.15) above is a well-defined 2-form
on G - [, the orbit of the affine action ¥ : G x g* — g* through 5.

Proof. First note that if ¢ € LieGj, then Qg(C, &) = ws(¢,€) = 0 for all € € g.
Now let £, € g. If ( € LieGp then

Q€ +C.7) = ws€+¢m)
= wg(&,n) +ws(¢,n) since wg is bilinear
wg(&,m) since wg((,m) = 0
- QB( ’ﬁ)

Thus €23 does not depend on the choice of £, € g. Hence Qg is well-defined.
Since locally wg is skew symmetric, bilinear on the tangent space 7., it follows
that Qg is skew symmetric bilinear on the tangent space T3G - 5. It remains to

show that {23 is non-degenerate and closed on G - 3.

To prove non-degeneracy let £ € g be such that { ¢ LieG, we must show that
there exists 17 € g such that Qg(€,7) # 0.

But now if n € g and & ¢ LieGg then Qz(€,7) = wg(&,n) # 0 if and only if
§ & kerwg = LieGy. This shows that if £ € LieGg, there exists n € g such that
Qp(E,7) # 0. Hence Qg is non-degenerate.

To show that (23 is closed, let ,n,( € g, then

dQp(E,7,0) = dws(§,n,0)
= (Lews)(n, ) — (Lyws)(&, C)
+  (Lews)(§,m) + ws(€, 0, ¢T)
— ws(n, €, ¢]) +ws(C, [€: ).

Repeated application of Jacobi identity then shows that d2s = 0 which implies
that €23 is closed.

We have therefore shown that if the affine action ¥ : G x g* — g* defined by
U(g,a) = Adya + o(g) is used in place of the coadjoint action, then the orbit

G - a is a symplectic manifold with the 2-form given by:

wa (&g (0), g+ (V) = =&, 0] + 221, ).
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This completes the proof of the theorem.
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4

Riemannian structure on

homogeneous spaces

We now study the inheritance of a Riemannian metric of a symplectic manifold on
its symplectic quotient. Starting with a symplectic manifold having a Riemann
metric, we would like to end up with a Marsden-Weinstein-Meyer quotient which
is also a Riemannian space with a Riemannian metric inherited from the one on

the original space.

4.1. Riemannian manifolds

A Riemannian structure (or Riemannian metric) on a smooth manifold M, which
is usually denoted by ¢ is a smooth positive definite, symmetric bilinear form such
that for each p € M we have

Gp : TyM x T,M — R
It is a smooth assignment of an inner product (-,-), to each tangent space 1, M

of M. We denote by (M, g) a manifold on which the Riemannian structure g is

defined and call it the Riemannian manifold.

For notational convenience, we shall denote the inner product at p € M by g (p)
if there is need to emphasize that g,; is the Riemannian metric on M. That is,

we shall either write g, or ga/(p) whichever is suitable.

We recall that if (M, g) is a Riemannian manifold and f : N — M an immersion,

then f*g is a Riemannian metric on N called the induced metric.

Let (M, g) and (N, h) be two Riemannian manifolds, a diffeomorphism
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f M — N is called an isometry if

9p(X,Y) = hyo(Tpf - X, T f - Y)

for all X,Y € T,M, where p € M and, where T,,f - X is the image of the tangent
vector X by the differential mapping associated with f at p. We also say that
f: M — M is an isometry on M if for all u,v € T,M, p € M, we have

9p(u,v) = gy (L f - u, Tpf - ).

It is easily checked that if f is an isometry on M, then its inverse is also an
isometry on M. Clearly the identity map on M is an isometry on M and if f, g
are isometries on M then their composition is also an isometry on M. Thus the

set of isometries on M is a group under the composition of maps.

Proposition 4.1.1 (Myers-Steenrod). A group of isometries on a Riemannian

manifold M is a Lie group.
(See [3, p 67, Theorem 4.3]).

Theorem 4.1.1 Let G be a Lie group of isometries of a Riemannian manifold

(M, g) acting transitively on M, then G is compact if and only if M is compact.
For the proof of this theorem (see [20, p 63, Theorem 2.35]).

Definition 4.1.1 Let ® : G x M — M be an action of a Lie group G on a

smooth manifold M. Then a Riemannian metric g(-,-) on M is called invariant

if for each m € M we have

gm(“? U) = Jo,(m) (qu)a " u, T ®q - U)

for all u,v € T,, M and a € G.

Theorem 4.1.2 (See [5, p. 50]).

Let G be a Lie group acting on a smooth manifold M. If G is compact then there

exists an invariant Riemannian metric on M.
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4.2. Riemannian submersions

Definition 4.2.1 Let f: M — N be a smooth map. An element x € N is called
a reqular value of f if f~*(x) is a submanifold of M, and if whenever m € f~1(z)
then

Tmf : TmM — Tf(m)N,

is surjective. A point m € M is called a regular point of f if T, f is surjective.

Definition 4.2.2 Let M and N be smooth manifolds. A smooth map ® : M — N
s called a submersion if all points of M are reqular points of ®. That is, ® is a
submersion if

(d®), : TuM — Ty N,

15 surjective for all x € M

Let V(M), = T, (b) = ker d®,, for p € d1(b),b € N.

Since M is a Riemannian manifold, it is appropriate to talk about the orthogonal
complement of V(M),. We denote by H(M), the orthogonal complement of
V(M),.

Definition 4.2.3 Let (M, g) and (B, h) be Riemannian manifolds, a smooth map

m: M — B,

15 called a Riemannian submersion if:

(i) ™ has mazimum rank at each point p € M. That is to say

(dﬂ')p : TpM — Tﬁ(p)B,

s surjective, and

1) (dm), is an isometry between H(M), and Ty B. That is, if X,,Y, €
P p () prip
H(M),, then

9p(Xp, Yp) = Ny ((dm)p Xy, (dT0),Y).
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The set V (M), is the set of vertical vectors, and H (M), is the set of horizontal

vectors.

The tangent space T, M decomposes into an orthogonal direct sum
T,M = HM), & V(M),,

where

H(M)p A V(M)p = {O}

Proposition 4.2.1 Let G be a Lie group of isometries acting properly and freely
on a Riemannian manifold (M, g) and let p: M — M /G be the canonical projec-
tion map (note that N = M/G is a manifold). Then there exists a unique metric

on N = M/G such that the projection map p is a Riemannian submersion.

For the proof see ([20, p. 61 Prop 2.28]).

We remark the following;:

(a) If b e N = M/G, and if my, my € p~'(b) then there is h € G such that

<I>h(Tnl) = Mma,

([20, Proposition 2.28]), where & is the action of G on M. Thus the isometry

group G acts transitively on each fibre so that the action of G preserves the
fibres.

(b) Let z € p~*(b). For each & € g =T.G, let

F(t) = expt¢,
be its flow of &, then

d
Env(z) = %‘b(expt&x) li=0

is a tangent vector to the fibre through x. If & # 0 then &y, (z) # 0. Thus
there is a one-to-one correspondence between g = T.G and the tangent

space to the fibre at each point z in the fibre.

62



4.3. Almost complex structure

Let C" denote n-dimensional space of complex numbers (z!,2% ... 2"). We
identify C" with R®" by the correspondence (z',---,2") — (2% yt, -, 2™, y"),
with z* = 2¥+iy*, where i = v/—1. By this identification we can consider C" as a
2n—dimensional Euclidean space. Similarly, if M is an n— dimensional complex
manifold with local coordinates (21, - -+ , 2™), by identifying these coordinates with
(2t yt, - 2™ y"), where 2% = 2F +iy* i = /=1, k=1,--- ,n, we can regard
M to be a 2n— dimensional differentiable manifold. Then for p € M, the tangent
space T,M has the basis {(327),, (a%l)p, o (55 (%)p}.

Definition 4.3.1 Let M be a smooth manifold. A map

J:TM —TM

is called an almost complex structure on M if for each p € M, J assigns a linear

transformation
Jp : TyM — T,M
such that
o\ _ (.0
Jp (axl)p - <8yl>p
9 0
p (ay‘) - (axz)p
p
i=1,2,-,n.

Clearly J2 = —Idg,u-

The definition of .J, does not depend on the choice of local coordinates (21, - - - , 2"),
(see [30, p. 107]).

The pair (M, J) is called an almost complex manifold.

Recall that if F': M — N is a smooth map and let p = (z!,---,z") be local
coordinates about p € M and ¢ = (y',--- ,4™) local coordinates about
F(p) € N. Then
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j=1
“ 0
- E:(aﬂ>(MOFH9J“@
j=1 P
"0 o F) 0
=1 Y

If f is a smooth function on N, then the pull back of f under F' is a smooth

function on M given by

F*f=foF.

Proposition 4.3.1 A differentiable map ¢ : My, — My, between two almost com-
plex manifolds My and My with almost complex structures J, and Jo respectively

s holomorphic if and only if

¢ 0 J1 = Jy 0 ¢, where ¢,

is the differential of the map ¢.

Proof. Let p € M; and let (2',---,2") be the complex local coordinates in
the neighborhood of p and identify these coordinates with (z*, 4!, -+, 2™ y") of
R?*™. Let (w',---,w™) be the local coordinates of the neighborhood of ¢(p) in

M, identified with (u!, vt .- u™ v™) of R*™ where

&= ok payk k=1,2,---.,n

wl = w4 i’ j=1,2,---.m
Set .
¢*U] = aj(lJ?yl?'” 7xn7yn) and
QS*U]' = bj(:LJ)ylf" axnayn)aj = 17 , M

Then by the above comments we have

0w o ¢) 0 =017 0 ) 0
o) —
o8 (axi)p = ]21 or (p) o \¢(p) + jzl T@)%W”)
. = aaj 0 - (%] 0
- — axz (p) 8Uj ‘¢(P) + = 8IZ (p)ﬁvj |¢(P)'
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Similarly

O (a‘} >p B Z 8u7 Z aw

Now, from

we have,

Also

gives

0\  ~~0aq, . 0 " by D
” (‘Jlayi)p = 5zt ) i o) £ Oa (P goslow- (42)

On the other hand, from

" da; 0 S b, 0
i _ J
‘]2 © ¢* (aac’ )p ' ort (p)J (81,6]) o(p) * 1 ozt (p)J (8U] ) o(p) ’

Jj=1 Jj=
we get

0 " da;, 0 " Ob,

700 (55) = >~ G W gglen =3 O D)l (43)
and
da; 0 5
oo (&), =3, 5008 (), + s o0 (35,

gives
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Jy 0 ¢, ( ) 8m }:

Now equation (4.2) = equation (4.4) if and only if

au] |¢>(p)'

Oa; _ 0b;

oxrt Oy’
that is, if and only if

oul o’

ori Oyt

and equation (4.1) = equation (4.3) if and only if

6aj . _8bj

oyt OV’
that is, if and only if

o’ ow

oxi Oyt

which are Cauchy-Riemann equations. Thus ¢ is holomorphic if and only if

¢y 0 J1 = Jy0 0,

as required. This completes the proof of the theorem. O

If (M,w) is a symplectic manifold, an almost complex structure J on M is said

to be compatible if whenever m € M and

G TnM x TpyM — R,

then

Gm (U, v) 1= wi (u, Jv)
defines a Riemannian metric on M, for all u,v € T,, M.

66



Proposition 4.3.2 For every symplectic manifold (M,w), there exists an almost
complex structure J and a Riemannian metric g(-,-) on M such that for each

m € M we have

Wi (1, JU) = g (u,v)

for all u,v € T,, M.

For the proof see ([23, p 14, Prop 5]).

Note that we can also write the compatibility condition in the form

wm(u,v) = gm(Ju,v), wu,ve T, M

Proposition 4.3.3 Let G be a compact Lie group and ® : G x M — M a sym-
plectic action of G on the symplectic manifold (M,w). Let g(-,-) be an invariant
metric on M and A a field of endomorphisms of TM, that is, A : TM — TM
such that for each m € M we have w,,(X,Y) = ¢n(AnX,Y), X, Y € T,,M, then

A is G—invariant.

Proof. Let a € G, m € M. Suppose further that X,Y are vectors such that
X eTl,MY €Tp,mM. Then we have:

9@4(m) (T ®a 0 A X,Y) = gm(AnX, (qu)a)_ly)
= WX, (Tn®,)7'Y)
= Wa4(m) (@ - X, Y)
= oo (m)(Aeym) © (Tn®a) X, Y)

Thus 1,8, 0 Ay = Ag,(m) © T1n P

This proves the proposition. U
Proposition 4.3.4 Let (M,w) be a symplectic manifold with a compatible almost
complex structure J. If G is a group of isometries of M acting in a symplectic

way, then the compatible almost complex structure J is G-invariant.

Proof. Let g be a Riemannian metric on M such that for each x € M, we have
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9o (Ju,v) = wy(u,v)

for all u,v € T,M. Let ® : G x M — M be the action of G on M. Then, for all
xr € M we have:

g:(Ju,v) = wp(u,v) = P*w,(u,v)
wa, () (T Patt, Ty ®v)
943, (z) (JT,P,u, T, P,v)
= Jo-tow, (o) (TP 0 J 0 T ®4u,v)
= .(T.®;" 0 J o T,®,u,v)

for all u,v € T, M.

Thus

Ju = qu);l oJoT, ®,u,

which gives

T,9,0J =JoT,P,.

This completes the proof. 0

4.4. Riemannian structure on a reduced space

Definition 4.4.1 Let (M,w) be a symplectic manifold and G a Lie group.
Let ® : G x M — M be a Hamiltonian action of G on M. Let jn: M — g* be the
Ad*-equivariant momentum mapping of the action and B € g* a regular value of

. We define the symplectic reduced space of the G-action on M to be

Mg = p=(6)/Gp,

where Gg is the isotropy subgroup of B.

(i) Since 3 € g* is a regular value of y, the inverse image p~*(3) is a submanifold
of M of dimension dim M — dim G.
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(ii) If the action of Gz on u~*(B) is free and proper then the reduced space
Mg = p='(8)/Gs is a manifold of dimension dim M — dim G — dim Gp.
(See [29, p. 124)).

In this case, the projection map

T i (B) = nTH(B)/Gs

is a smooth submersion. (See [1, pp. 298-299]). By the Marsden-Weinstein-Meyer
reduction theorem there is a unique symplectic form wg on the reduced space Mg

which is characterized by the equation:

Thws = 5w, (4.5)

where

ig N (B) = M

is the inclusion map and

m i (B) = nTH(B)/Gg

is the quotient map. That is, if z is a point in x~1(3) so that

is a point on the quotient space p~'(8)/Gs and v € T,(u*(B)) is a tangent

vector so that

[u] € Thay (=" (8)/Gp) = Te(u™'(8))/Te(Gp - @),

then the equation (4.5) is equivalent to the following:
w(la])([ul, [v]) = w(@)(u, v),

for all u,v € T,(u='(B)). (See [27, p. 15]).
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Let gp be a Riemannian metric on the symplectic manifold (M,w) and let Jy,

be an almost complex structure such that

w(+ ) = gu (I, ),

then for u,v € T,,(u=*(B)), we have:

*k

Fw(x)(u,v) = w(@)(isu, i)
gu(2) (I (isu), ixv)
gm (@) (Jmu, v)

() (i (Taru), i)

where

is the inclusion map. That is,

Theorem 4.4.1 Let (M,w) be a symplectic manifold having a compatible Ria-
mannian metric gy, and G a Lie group of isometries of M whose action on M

1s a Hamiltonian action. Let g be the Lie algebra of G, and let

w:M—g*

be the Ad*-equivariant momentum mapping of the action, where g* is the dual
of the Lie algebra of G. Let 8 € g* be a regular value of 1 and Gg the isotropy
subgroup of B which acts freely and properly on p='(B). Then, there exists a
Riemannian metric gs on the reduced space ' (B3)/Gps such that the projection

map

mg p (B) = T (B)/Ga

15 a Riemannian submersion. That 1s,
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T595 = 1" g,

where gy is a Riemannian metric on M and i : p='(8) — M, is the inclusion

map.

Proof. Let 7 : p~'(B8) — u'(B)/Gp be the projection onto the reduced space.
For convenience we shall write Mg for u='(3) and Bg for u=1(8)/Gp. If x € Bg

then 7=1(z) is called the fibre over z. If m € 7~!(x), then

7 Hz)={gm:g € G and 7w(gm) =z},

is the fibre through m. Since G acts freely and properly on (), the projection
7 : Mg — Bg, is asubmersion. (See [1, pp. 298-299]). But 7 is constant on 7~ (z),
for each = € Bg, that is, m(77!(z)) = {x}, so, if u € T,,7 (), for m € 7~ 1(z),
then dm,,(u) = 0. That is, T,,7 *(z) = ker dm,,, = V(Mjp),, is the set of vertical
vectors. Let H(Mg),, be the orthogonal complement of V(Mg),,. Then, T,,Mp

decomposes into a direct sum

TnMpg = H(Mg)m ©V(Mg)m,

with H(Ms)m O V(Ms), = {0}. Thus, if X € T,,Ms, then X = Y + Z, with
Y € H(Mpg),, and Z € V(Mg),. It follows that dm,(X) = dr,,,Y.

So, if X & V(Mpg)m, then dm,,(X) # 0, and dm,,,(X) € Ty Bg, where [m] = m(m).
Thus, for each X € H(Ma),,, we have

d’irm(X) € T’[m]Bﬁ
Let dmy,|m,, be the restriction of dm,, to H(Mp),, the space of horizontal vectors.
Since 7 and drm are surjective ([1, p. 299]), then dm,,|n,, is surjective and it is
linear. But

ker dm,,|n,, = {0},

so if [u] € T} B, there is a unique u € H(M3),, such that

At n,, (u) = [u].
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That is the map dm,, |, is also injective. It follows therefore that the map

dﬂ'm‘Hm : H(Mﬁ)m — T[m]B/g

is an isomorphism of vector spaces. Because of this isomorphism, we shall write
the tangent vectors of T}, Bs as say w instead of [w], when we refer to the

restriction map dm,,|q,, -

Let v,w € T,Bg. Then there exists unique vectors 9,w € H(Mpg),, m € 7! (x)
such that
dmm|m,, (V) = v,

and

A7 | m,, (W) = w.

Define a metric h on T, Bz by

hy(v,w) = i*gp (0, W).
We shall show that the assignment x — h, smoothly depends on x. First note
that, if mi, my € 71(x), then there is an isometry f € G with f(m;) = ma, and
mo f=m,( see [20, proposition 2.20]). We then have,

Tf(ml)ﬂ' o Tmlf = Tmlﬂ'.

Thus, T}, f is an isometry between H(Mpg),,, and H(Mgz),,,. This shows that h,

does not depend on the choice of m in the fibre 771(z).

Let m — p,, be a smooth assignment of the orthogonal projection

Pm - TmM/g — H(Mﬁ)m

of T,, Mgz onto H(Mg),,. Since dm,,|n,, is an isomorphism, 7 is a local diffeomor-
phism. Let o be the local section of 7. If U is an open subset of Bz and z € U,
let v/, w" € T, Mpg, then
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hﬂ»‘ (U7 w) = Z*gM(O'(iL‘)) (pa(x)vla pa(x)w/)7

where

pg(x)v/ =9 € H(Mg)g(x)

and

Doy =W € H(Mg)o().

As the right side is the composition of smooth maps we conclude that x — h, is

smooth and

dﬂ'mle : H(Mg)m — Tﬂ.(m)Bﬁ

is an isometry. By this construction we have shown that
T (B) = TN (B)/ G
is a Riemannian submersion. 0

Definition 4.4.2 An almost Hermaitian manifold is an almost complex manifold

(M, J) with a chosen Riemannian structure gy such that

for all XY € TM.

Definition 4.4.3 Let (M, Jy) and (N, Jy) be almost Hermitian manifolds, a

map

d: M —- N

is called almost complex if it commutes with almost complex structures, that is, if
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(I)*OJM:JNO(I)*.

An almost complex mapping between almost Hermitian manifolds which is also

a Riemannian submersion is called a almost Hermitian submersion.

Proposition 4.4.1 Let & : M — N be an almost Hermitian submersion, then

the horizontal and the vertical distributions determined by ® are Jys-invariant.

That is
Ju{V (M)
Ju{H (M)

= V(M)

}
Y = H(M).

Proof. Let (M, Jy,gn) and (N, Jy,gn) be two almost Hermitian manifolds
and ® : M — N an almost Hermitian submersion. Then ® is an almost complex

mapping and we have

D, 0Jy =Jyod,.

Let V be a vertical vector, then &,V = 0 since V' € ker &,. We now have

O, (JyV) = Jy(®,V) =0.

Thus ®.(Jp V) = 0 which shows that Jy/V is a vertical vector. If now X is a

horizontal vector, then for any vertical vector V, we have

g (X, V) =0,
since they belong to orthogonal complement subspaces. We then have,

= —gM(X, JMV>
= 0.

Thus, Jy X is horizontal vector.() See [40, p. 151]). O

Definition 4.4.4 Let ® : M — N be an almost Hermitian submersion. A hori-

zontal vector field X on M is called a basic vector field if there is a smooth vector
field denoted by X, on N such that X and X, are ®-related.
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We shall first state the difficulties that may arise with regard to transformation

of the almost complex structure to the reduced space by the projection map.

Let the symplectic manifold (M,w) be a real manifold and gp; a Riemannian

structure on M such that

w('? ) = gM(J" )

Let X be a vector field on M. Then

0=w(X,X) = gu(JX,X).

That is, gy (JX, X) = 0, and since gy is positive definite we conclude that JX
is orthogonal to X. Thus, if X is a horizontal vector field then JX belong to the
orthogonal complement which in this case is the vertical space. Therefore, even

if X is a basic vector field there is no guarantee that JX will be a basic vector
field.

Another difficulty arises from the push-forward of the almost complex structure.
Even when the kernel of the differential of 7 is preserved by J, there need not
be an almost complex structure on the image mg(Mg) which make dms complex

linear as the following example shows.

Consider the twistor fibration (see [13]).

m : CP?®— HP!=5*
C-v—H-v, veC

which sends a complex line through the origin in C* to its quaternionic span
in H?. For each point z € HP!, the inverse image 7 !(z) are complex lines
in CP3. Thus the fibers of 7 are holomorphic submanifolds of CP? which are
compact and connected. However, it has been proved that HP! does not admit
any almost complex structure. This shows that the push-forward of an almost
complex structure by a submersion does not necessarily yield an almost complex
structure on its image for which the differential of the map is complex linear.
(See [6, p. 8]) for the details of this example.

Another example of this phenomenon is found among covering maps of smooth

manifolds 7 : F — B where E has a complex structure. The immediate example
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is the covering map CP! — RP2. It is immediate that RP? does not admit any

complex structure since it is not orientable. For the next theorem see also [9].

Theorem 4.4.2 Let (M,w) be a symplectic manifold and G a Lie group of isome-
tries of M. Let ® : G x M — M be a hamiltonian action of G on M with
Ad* -equivariant momentum mapping

we M — g*.

Let B € g* be a regular value of 1 and Gg be the isotropy subgroup of B acting
freely and properly on u=*(8). Given a compatible almost complex structure Jy

on M and a Riemannian metric gy which satisfies the compatibility condition,

forall X, Y € TM, let wg be the reduced symplectic form on the reduced symplectic
manifold p=*(8)/Gg. Then there exists an almost complex structure Js and a

Riemannian metric gz on the reduced space p=*(8)/Ggz which make

mop N (B) = H(B)/Gs

a Riemannian submersion and satisfies the condition

wa([ul, [v]) = ga(Js[ul, [v])

for all [u], [v] € T(u(B)/Gp) if and only if

mop (B) = (B)/Gs

15 an almost complex mapping.

Proof. Let hg be the Riemannan metric on p'(8)/Gs as in theorem 4.4.1.
Since p~'(8)/Gps is a symplectic manifold, there is a almost complex structure
Js and a Riemannian metric gz such that if [u], [v] € T(u"'(8)/Gp) then
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wa([u], [v]) = gs(Jslul, [v]), see Proposition 4.3.2.

It is sufficient to find a condition for which

hs = gp-

Let z € u='(8)/Gs, we have seen from theorem 4.4.1 that if m € 7!(z), then

mH(z) = {gm:g € G}

is the fibre through m . The tangent space to the fibre T,,(77(z)) is the kernel
of the differential of m at m. That is,

ker dm,, = Tp,(7 1 (x)).

We have classified this tangent space as the set of vertical vectors of the Rieman-
nian submersion 7. We also have by the Symplectic Reduction Theorem (see [27,
p. 15]) that

(Tm(ﬂil(ﬁ)))w =T, (G -m).

But G-m = {gm : g € G} = 7~ !(z) is the fibre through m. So if X & T, (7~ *(z))
then there is a Y € T,,,(u~'(53)) such that w(X,Y) # 0. That is,

w(m)(X,Y) = ws([m])([X], [Y]) = gs([m])(Js[X], [Y]) # 0. (4.6)

But we also have that

w(m)(X,Y) = gu(m)(JuX,Y) = hg(m(m))(m.(Ju X), 7.Y),  (47)

by Theorem 4.4.1. In particular, if X and Y are basic vector fields, then equation
(4.6) and (4.7) imply that

gs(m(m))(Jo(m. X), m.Y) = hg(m(m))((JuX)., Vi) om
= 7mhg(m)(JX,Y)
= hg(m(m)(m(JuX), 7.Y).
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But this relation holds if and only if

Jp(mX) = m(Ju X),

if and only if

w0 Jy = Jgomy,

if and only if 7 is an almost complex mapping. This completes the proof of the

theorem. 0
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5

Adjoint orbits and coadjoint Orbits

This chapter involves background ideas from representation theory. That is, the
adjoint and coadjoint representations as well as the actions of Lie groups giving
orbit spaces. We are more interested in those quotient spaces that result from
transitive actions, the homogeneous spaces. We mention flag and generalised flag
manifolds. These are an important class of homogeneous spaces which admit a
complex structure, a Kahler structure and a symplectic structure as mentioned
in [3]

5.1. Adjoint action

Definition 5.1.1 Let G be a Lie group and g = T.G be its Lie algebra where e

is the identity element in G. Then the smooth action

P:Gxg—g; (9,8 Adg)¢

15 called the adjoint action of G on its Lie algebra g, which we denote by
Ad: G xg—ag.

Definition 5.1.2 Let Ad : G x g — g be the adjoint action of a Lie group G on
its Lie algebra g and let &€ € g. We define the adjoint orbit of £ to be

O¢ ={Ad(9)§: g€ G} Cg.
The stability group also called the isotropy group of £ is given by

Ge={g€G: Ad(g) = £},
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This is a closed subgroup of G (see [18, p 16]). If n € O then there is some g € G
such that n = Ad(g)¢.

We shall now show that an adjoint orbit can be represented as homogeneous

space. For a similar construction (see [10, pp 127-129]). Define a map

p:Og—)G/G&

p(n) = gGe,

for all n € O¢ and g € G such that
n = Ad(g)¢.

The map p is well defined since if also p(n) = hG¢ for some h € G then

Ad(g)€ = Ad(h)¢,

which implies that

Ad(h™) o Ad(g)€ = €.

This gives h™'g € G¢ and

gGg = hGg
The map p is injective. Let n = Ad(g)¢, 1 = Ad(h)§ and suppose that ¢G¢ = hGe.
Then

h_lg S Gg,

so that

Ad(h™g)¢ = Ad(h™") 0 Ad(g)§ = €.
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This implies then that

n = Ad(g)§ = Ad(h)§ = p.

Clearly p is surjective, since for g € G and n = Ad(g)¢ € O¢ gives p(n) = gG¢ by

construction.

If n = Ad(h)E, for some h € G, then G,, = Ad(h)G¢Ad(h™'). Thus, for all g € G
we have

G/Ge = G /G aqgye

This shows that the definition of G/G¢ does not depend on the choice of the
element ¢ in its adjoint orbit. Thus,
G/Ge = Og.

Now let M = G/G¢ = O¢. Then the Lie group G acts transitively on M so that

M is a homogeneous space. (See Example 2.2.0.2).

Let X € g. The vector field on g corresponding to X, called the infinitesimal

generator of the action, is defined by

X,(6) = £ (Ad(exp X)) o

To determine the tangent space to the adjoint orbit O¢ at £, let X € g and let
z(t) = exptX be the curve in G which is tangent to X at ¢t = 0, then

§(t) = Ad(exp £X)¢

is the curve on O such that {(0) =&. Let Y € g, then

(€(2),Y) = (Ad(exptX)§,Y),

where (-, -) is the natural pairing on g. Differentiating with respect to t at t =0

we get
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€(0),Y) = %(Ad(exth)ﬁ,Y> li=o
= (A im0, V)
= (ad(X),Y).

Thus £'(0) = ad(X)E{. Therefore, the tangent space to the orbit O, at & is given
by

T:O¢ = {ad(X){ : X € g}

5.2. An example of adjoint orbits as flag manifolds

The examples of adjoint orbits that will be of interest to us are the generalized
flag manifolds. These orbits are known to hold a symplectic structure. General-
ized flag manifolds are homogeneous spaces which can be expressed in the form
G/C(S5), where G is a compact Lie group and

C(S)={g € G:gx=uxg, forall z € S}

is the centraliser of a torus S in G.

Definition 5.2.1 Let C" be an n—dimensional complex space. A flag is an in-

creasing sequence of complex subspaces ordered by inclusion

W=vcWVc.---cV,=C"

in the sense that each V; 1s a proper subset of Viy1 fori=1,--- n—1 and such

that dimVy =k fork=1,--- n.

Remark 5.2.1 This definition holds for subspaces of a finite dimensional vector

space.
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Since V,, ~ K", the example below deal with the flags in the canonical vector

space or field K.

Example 5.2.0.1 Let {ej,eq, - ,e,} be the canonical basis for the complex vec-

tor space C". Then the standard flag is given by
Wy = Spanc{ei} C Spanc{ei, e} C -+ C Spanc{e,---e,} = C".
We shall now show that flag manifolds are homogeneous spaces.
Let F,, be the set of all flags in C™ and let W, be the standard flag above. The
Lie group
Un)={A€GIl(n,C): ATA=1T},

where AT denotes the transpose of the conjugate of A, will play a key role here.
First the action of the Lie group U(n) on F,, is transitive. To see this consider

an arbitrary flag

wW=vcV,c.---cV,=C"

Then U(n) acts on F, by left multiplication. That is, if S € U(n) then

SW=8v,cSv,c---cSV,=0Cc"

Let v; be a unit vector in V; such that

Vi = Spanc{v }.

Next choose a unit vector vy in V5 orthogonal to Vi such that

Vo = Spanc{v,v2}.

Having chosen unit vectors {vy, -+ , v} with

Vi = Spanc{vi,- - , v},

83



choose a unit vector vg,q in Vi orthogonal to Vi such that

Vir1 = Spanc{vy, -+, kg1 }-
Continuing this construction we obtain a set of orthonomal unit vectors {vy, - ,v,_1}
such that
V; = Spanc{vi, - ,v;}.
Let v, be a unit vector in V,, orthogonal to V,,_;. The set {vy,vq,--- ,v,} is

another orthonormal basis for C". It is now a result of linear algebra that there

is n x n matrix S = (a;;) such that

n
V; = E Ai €.
J=1

Then S € U(n) and SW, = W. Thus U(n) acts transitively on F, as earlier

claimed.

The isotropy subgroup of W is

{AecUn): AV, = V;}.

In particular, this is a set of matrices A € U(n) such that

Avk = )\k’ljk,

for some complex number A, with | Ay |= 1 since A € U(n). Thus

)\k = ewk € U(l)

Since this must be true for each v;, j =1,2,--- ,n, the matrix A must be of the

form

A = diag(e,- -, en),
Thus
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F,=U(n)/U(1) x --- x U(1).

The generalized flag manifold can now be constructed as follows:

Let {ny,--- ,nk} be a set of positive integers such that n; +ng+---+nx =n. A

partial flag is an element

W=V,C---CV,

with

dimVy =ny + - + ng.

We can visualize this as a sum of vector spaces. For example, let QQ1,Q2, -+ ,Q,
be a set of subspaces of C" with dim @ =n; , dim Qs =ny---dim@Q,_1 =n—1.
Set

Vi = @
Vo = Q13Q

Vet = Q1P Q2® - D Q.

Then V; C --- C V,—y and dimV; = ny + --- +n;. The flag

W=V,C---CV,

with

dimVy=ny+---+ng, k<n,
is called a partial flag.

A generalized flag manifold is a set F'(nq,--- ,ng) of all partial flags with ny +ngs+
---+ng = n. Generalized flag manifolds just like flag manifolds are homogeneous

spaces (see[3, p 70]).
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Throughout, the discussion that follow, the Lie group G will be compact and

connected.

Let
Un)={A € GL(n,C): ATA =1},

be the unitary group, where A7 denotes the transpose of the conjugate of A.
Then

(i) U(n) is compact:

First notice that U(n) is a closed subgroup of GL(n,C) since
U(n) = det™(S') = det " (U(1). Also, U(n) is bounded. For
let A= (a;;) € U(n). One has Z ;- Bjk = dik, the Kronecker delta, with

Bjr = au;. Hence, if k =i one has

D g - i = 1

n n
> ( \%’F) =n.
i=1 \j=1

Al = (Z |aij|2> =./n<vn+1.

1,j=1

which implies that

Now,

Thus,
A€ B(0,v/n+1), where r =+/n + 1.

One concludes that A € U(n) implies that A € B(0,r) and U(n) C B(0,r),
where 7 = v/n + 1. Since this is true for each A € U(n), then U(n) is also
bounded. Thus, U(n) is compact. (See [7]).

(ii) U(n) is connected since if we consider the action of U(n) on C" given by

(A, X)— AX,

for all A € U(n) and X € C", then
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JAX|P = (AX)7(AX)
= XTATAX
= XTX

X2

Thus, this action takes sets of the form

{1, zn) | 2 Pz P+ | 2z P= 13

into sets of the same kind. In particular, the orbit of e; under this action is

the unit sphere S?"~!. The stabilizer of the same element e, are matrices
1 0
0 A )

S#=l =U(n)/U(n —1).

of the form

where A; € U(n —1). Thus

But S?"~1 is connected which implies that U(n) is connected if and only
if U(n — 1) is connected. Since U(1) = S is connected, we conclude by

induction on n that U(n) is connected.

The Lie algebra of U(n) is the space of all skew-Hermitian matrices

u(n) = {A € Mat,x,(C) : A+ AT = 0}.

We now want to determine the orbits of adjoint representation of the Lie group
G = U(n) on its Lie algebra g = u(n).

Let Ad : G x g — g be the action of G on its Lie algebra g. Let X € g, then the
orbit of X is given by:

= {Yeg:Y=gXg!, for some g € G}
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This is a set of similar matrices since the action is by conjugation. Recall that
every skew Hermitian matrix is diagonalizable and that all the eigenvalues of a
skew Hermitian matrix are purely imaginary. This means that X is

U(n)— conjugate to a matrix of the form X, = diag(i\i,i\e, -+ ,i),) for

Aj €R, 57 =1,---,n. Since similar matrices have same eigenvalues, without
loss of generality we can describe the adjoint orbit of X to be the set of all
skew Hermitian matrices with eigenvalues iA1,iAg, -+ ,i)\,. Denote this set of
eigenvalues by A and the orbit determined by the corresponding eigenspaces by
H(X). Note that H()) is a vector space since it is a closed subgroup of a linear
group GL(n,C).

Case 1 : All the n eigenvalues are distinct.

Let x; be the eigenvector corresponding to the eigenvalue i);, then we have
gzr; = t\jz;. This gives a 1-dimensional subspace P; of C" which is a line in the

complex plane passing through the origin.

Assuming A\ < Ay < --- < \,. Note that the eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. Now each element in H () has same eigenvalues
IA1, - i\, however, it is only distinguished by its corresponding eigenspaces
Py, -, P,. Thus for each n—tuple (P, P,,-- -, P,) of complex lines in C™ which
are pairwise orthogonal, there will be an associated element h € H(\) and each

element h € H(\) determines a family of eigenspaces (Pi, Pa, -, B,).

Let (P, - ,P)—» PP CP®PC---CP®P® - @ P, =C" and define the
vector space V; by V; = Pi®---@®P;. Then W =V, CcV; C---CV, =C"isaflag
we have already seen and the totality of such flags F,, = U(n)/U(1) x --- x U(n)
is the flag manifold described earlier. There is a bijection from H(\) to F,, which
associates to each element h € H(\) the subspaces V; = P, @ --- & P; where P,
is the eigenspace of h corresponding to the eigenvalue i);. This shows that the

adjoint orbits are diffeomorphic to flag manifolds.

Case 2: There are k < n distinct eigenvalues.

We again order the eigenvalues \; < --- < Ag. Let ny,ng,--- ,ng be their mul-
tiplicities respectively. Let (); be the eigenspace corresponding to the eigenvalue
iA;. We assume that dim @Q; =n,;, ¢ =1,--- k. Then the orbit of X is again de-

termined by the eigenspaces (1, - - - , Q. We form an increasing sequence ordered
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by inclusion as before
(Q1,Qa,+ , Q) > Q1 CQLBQC - CQ D DQp=C"

Let F(ni,ng,---,ng) be the set of all such sequences. Then the orbit of X is
diffeomorphic to the homogeneous space

F(ny,--- ,ng) =U(n)/(U(ny) x --- x U(ng)) which as we have already seen is a
generalized flag manifold. (See also [5, proposition I1.1.15]).

5.2.1 Killing form

Definition 5.2.2 Given any Lie algebra g, the Killing form of g denoted by B,

15 a symmetric bilinear form B : g x g — R given by
B(X,)Y) =tr(ad(X)oad(Y)), forall X,Y € g

where tr is the trace of the composition.

We call B the Killing form of the Lie group G provided g is the Lie algebra of G.

Remark 5.2.2 [f g is the Lie algebra of the Lie group G, then the Killing form
B is Ad-invariant. That is,
B(X,Y) = B(Ad(g)X, Ad(g)Y)

forallge G and X,Y € g.

(See [3, proposition 2.10]).

By Cartan’s criterion for semisimplicity, a finite dimensional Lie group G is said

to be semisimple if its Killing form is non-degenerate. (See [3, p. 34]).

Proposition 5.2.1 Let G be an n-dimensional semisimple Lie group. Then the

center of its Lie algebra is trivial, that is Z(g) = 0.

Proof. Let X € Z(g), then for all Y € g we have [X,Y] = 0 since X commutes

with every element of g. Thus
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[X,Y] = adx(Y) =0.

This shows that adx is a zero operator. But then we have

B(X,X) =tr(ad(X) ocad(X)) = 0.
Since B is non-degenerate we must have X = 0. This completes the proof. [

For the following two theorems see ([3, pp. 34-35]).

Theorem 5.2.1 Let G be an n-dimensional semisimple Lie group. If G is com-

pact then its Killing form is negative definite.

Theorem 5.2.2 Let G be an n-dimensional connected Lie group. If the Killing

form of G is negative definite on g, then G is compact and semisimple.

5.3. Adjoint orbits as symplectic manifolds

We have seen that the adjoint orbits of flag manifolds are determined by the
eigenspaces corresponding to a set of eigenvalues iAq, - - - ,i\;. Denote this set of
eigenvalues by A and the orbit determined by the corresponding eigenspaces by
H(X). Let G = U(n) be a Lie group and g = u(n) its Lie algebra. First note that

the dimension of orbit H()) is n? — n which is even.

For X € g we have seen that if z(f) = exptX is a curve in G tangent to X
at t = 0, then &(t) = Adyp)§ = Adexpex€ is a curve in H(\) passing through
¢ € u(n). Then the tangent vector to this curve at ¢ = 0 is given by

gl(t) - d%Adexthg |t:07

or



We shall now construct a symplectic 2-form on the orbit H(\). Let h be an

element of u(n). Define a map

whp:gxg—R

Wh(Xv Y) = B(h’ [X’ Y])>

where B is the Killing form of g, the Lie algebra of G.

Proposition 5.3.1 Let wy be as defined above. Then

(1) wp, is skew symmetric bilinear form on g = u(n);
(11) kerwy, = {X € u(n) : [h, X] =0}

(71) wy, is G-invariant. That is, for each g € G we have

wAd(g)(h)(Ang, Ade) = wh(X, Y).

Proof. Part (i) follows from the properties of the Lie bracket.
For part (ii) (see [2, p 19]). We prove part (iii).

Wadlgm)(Ad, X, Ad)Y) = B(Adgh, [Ad,X, Ad,Y])
= B(Adgh,[9Xg ', gYg™"])
B(Adgh,{gXY g™ — gY Xg™'})
B(Adyh, g[X,Y]g™")
B(Ad,h, Ad,[X,Y))
(h,

= B(h[X.Y])
= wh(X,Y). O

Now for h € u(n), we consider the orbit map

O, U(n) — u(n)
g ghg™*

That is
®p, : U(n) — H(\) C u(n).
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Then we have:

T[(I)h : u(n) — ThH<)\)

But the tangent space on the orbit is generated by the vector field

ad(X)¢ = [X, ¢,
where X, ¢ € g. Define a 2-form €, on T}, H(\) by the formula

Qu(h, X1, (1, Y]) = wi(X,Y), for X,Y € u(n)

Proposition 5.3.2 The 2, defined above is a closed and nondegenerate 2-form
on the orbit H(\).

Proof. First note that €2, does not depend on the choice of X, Y € u(n) since if

Z € ker wy, then we have:

([, X +Z),[hY +Z]) = wp(X+Z,Y+Z)=BMh,[X+2Z)Y+Z])
= B, [X,Y]+[X, 2]+ 2, (Y + 2)))
= B, [X,Y]) + B(h,[X, Z]) + B(h, [Z,(Y + Z)])
= wp(X,Y)+wn(X, Z)+wn(Z, (Y + 2))
= wp(X,Y)
= Qu([h, X],[n,Y)).

Thus €2, is well defined. It is skew-symmetric bilinear form and G—invariant by
the construction so it is smooth. Since the Killing form B is non-degenerate, €,

is non-degenerate. We only have to show that it is closed.

Let X,Y,Z € u(n). Then,

dQ([h, X], [, Y], [h, Z]) = dwn(X,Y, Z)
= {Lth<Y> Z) —Lywh<X, Z)+szh(X, Y)}
+ A{wn(X, Y, Z]) —wn(Y, [X, Z]) + wr(Z, [ X, Y]) }.

We now apply the Jacobi identity to each bracket given by the braces. The second

bracket gives:
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wh(Xv [KZD - wh(ya [XvZ]>+wh(Zv [X’YD
and the term in the bracket is zero by the Jacobi identity since u(n) is the Lie
algebra of U(n). To deal with the first bracket we have:

Lth(}/, Z) = wh(Z, [X, Y]) - wh(Y, [X, Z])
Lywn(X, Z) = wi(Z,]Y, X]) — wp(X, [Y, Z])
Lywn(X,Y) = wp(Y,[Z, X]) — wa(X, [Z,Y]).

Substituting into the first bracket and simplifying gives:

wah(Y,Z) — Lywh(X,Z)+Lth(X,Y)
= 2 (Wh(Xa [Y> Z]) +Wh<y7 [Z7 X]) +wh(Za [Xv Y])) )

which again vanishes by Jacobi identity.

Thus, df2, = 0 proving that €2, is indeed closed on the orbits of the adjoint action
of the Lie group G on its Lie algebra g. O

5.4. Coadjoint orbits

We now describe briefly the orbits of the coadjoint action of a Lie group G on
the dual of its Lie algebra. There are many references to this section such as [1]

as well as [38].

Consider the Lie group G acting on itself by left translation L, : G — G, h — gh,
for g € G. This map is a diffeomorphism so by lifting of diffeomorphisms induces

a symplectic action on its cotangent bundle

d . GXxT*G—=T*G
(ga Oéh) = (I)(ga ah) - szl(ah)'

This action has a momentum mapping which is equivariant with the coadjoint
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action. The momentum mapping of this action is given by

w o T°G — g*
plag)é = ay(alg)) = ag(Ry)«é = (RZOzg)f,

for all € € g.

That is, pu(ay) = Ryay. Every point 8 € g* is a regular value of the momentum

mapping p (see [38, p 282]). So we have for each € g*

p(B) = {ay € T°G: play) = B}
= {ay € TG : Rya,§ = - for all £ € g}.

In particular, Ria.§ = 3 - ¢ implying that a. = 8. Denote this 1-form by ag so
that

as(e) = B. (5.1)

For g € G, applying the right translation R, to Equation (5.1) gives a right-

invariant 1-form on G

ag(g) = Ry B. (5.2)
But now for all g € G we have

wlaglg)) = play)
= RR:.B=0.

Thus, Equation (5.2) defines all and only points of y~*(3). Since the action is
defined by

(g, o) = Ly (o),

the isotropy subgroup of ( is

Gy ={9€G: L (a5) = B},

From the map

Ly i i (h,ag(h)) — (gh, as(gh))
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we see that G acts on p~'(3) by left translation on the base points. This action
is proper (see [38, p 283]). Since ( is also a regular value of the momentum

mapping u, then p~(8)/Gp is a symplectic manifold. There is a diffeomorphism

pt(B))Gp~G-B={Ad; .p:g€ G} Cg* (see [38, p 284]),
of the reduced space u~(8)/Gg onto the coadjoint orbit of 3 € g*. Thus the

coadjoint orbit GG - f is a symplectic manifold. The symplectic 2-form is given by

the Kirillov-Kostant-Souriau form

wﬁ(y)<€g* (’/)a%* (V>) =V [6777] (See [17 pp 302'303])7
where £, € g and v € g*.

If G is semisimple, it is known that in this case, H'(g,R) = 0. (see [2, p 19]).
Thus if w is closed then it is exact. So, there is a 1-form a € g* such that

da = w where g* is the dual to the Lie algebra of G. The 1-form « satisfies
do(X,Y) = o([X,Y]).

Thus if the Lie group G is semisimple, compact and connected, then we have the

relation:

a([Xv Y]) = da(X7 Y) = W(Xv Y) = B([gaX]vY) = B(f, [Xv Y])? (53)

where « € g*,w a 2-form on the homogeneous space G/H, B the Killing form on
G/H and &, XY € g, the Lie algebra of G. Note that the first term in equation
(5.3), is the 2-form on the coadjoint orbit while the last term is the 2-form on the
adjoint orbit.

5.5. Adjoint and coadjoint orbits are symplectomorphic

homogeneous spaces

We shall now show that the adjoint orbit is diffeomorphic to the coadjoint orbit
and that the diffeomorphim between them is actually a symplectic morphism. As
such, we can use this map to pull back the symplectic structure on the coadjoint
orbit to the adjoint orbit. This will provide another proof that the adjoint orbit

is a symplectic homogeneous space. (See also [8]).
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In this section we make a general assumption that the Lie group G acts transi-
tively on its Lie algebra g by the adjoint action, and also acts transitively on the

dual g* by the coadjoint action.

Theorem 5.5.1 Let Ad : G x g — g be an adjoint action of an n-dimensional
semasimple, compact, connected Lie group G on its Lie algebra g = T.G. Let g*

be the dual of g. Then there is an Ad*-equivariant isomorphism B® : g — g*.

Proof. Let
B’ :g— g% (X — B(X):g— R)such that Y — B°(X)Y := B(X,Y),

where B is the Killing form. Then B’ is linear since of for all X,Y,Z € g and
using the fact that the Killing form B is bilinear, we have:

B (aX +bY)Z = B(aX +bY,2)
= aB(X,Z)+bB(Y,Z)
= aB(X)Z +bB"(Y)Z
= (aB(X)+bB(Y))Z.

Thus

B’ (aX +bY) = aB’(X) + bB°(Y).

To see that B’ is injective let B’(X) = B’(Y). Then for all Z € g,

B (X)Z =B ()7 = B(X,Z)=B(Y,Z)= B(X -Y,Z) =0,

and since the Killing form is non degenerate, we get

X =Y.

To see that the map is surjective first note that G is finite dimensional Lie group,
we have dim g* < dim G = dim g. But B’ is injective so that

dimg < dimg*. We have ker B” = {0} implying that dimker B> = 0. But
dim ker B* + RankB’ = dim g, so we must have

dim g* = dim ImB” = RankB’ = dim g. This shows that the map B’ is surjective.
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To show that B’ : g — g* is equivariant with respect to the adjoint action of G

on g and the coadjoint action of G on g* define a map

u : Gxg—=Gxg: (¢,X)— (¢9,B°X), forall X € gand g € G,

where the map u is defined by

w:=Ids x B°.

We must then show that the following diagram commutes:

G X g = G x g*

Ad, Ad*

Bb .

In effect let (g, X) € G x g, then for all Y € g, and using the natural pairing we

have

B (Ad,X)Y = B(Ad,X,Y)
= B(Ady1 0 AdyX, Ad,1Y)
= B(X,Ad,Y)
= B’(X)(Ad,Y)
= AZB(X)(Y).

The second and the third equalities is because the Killing form B is Ad-invariant.
The last equality is by definition of Ad*, see definition 2.1.15.

That is,

B’ (Ad,X) = AdZBbX,
and the above diagram commute as we required.

This gives the equivariance relation

B’ o Ady = Ad; 0 B’. (5.4)
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This completes the proof of the theorem. O

Let

T8 — g/G

and

7Tg* : g* — g*/G7

be the projection maps into the respective orbit spaces. Then, (see [32, p 10])
and theorem 2.1.3, there is at most one manifold structure on g/G respectively on
(g*/G) such that 7, respectively (my+) are submersions. In fact note for example
that the rank of dm, is equal to the dimension of its image and since dim g/G <

dim g then 7y is a submersion. Since

B :.g—g
is equivariant, and 7y and 7y are submersions, the criterion of passage to quo-

tients (see [1, p 264]) implies that there is an induced unique map

~

B g/G—>g*/G,
B[X] = [a] := [B"(X)],

where [X] is adjoint orbit through X and [a] := [B’(X)] the corresponding coad-
joint orbit through B’(X) = a. This gives the following commutative diagram:

G xg “ G x g*

Adg Ad*
BP *
g g
Tl'g 7'('9*

p = (Idg x B).
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Theorem 5.5.2 Let G be a compact, connected semisimple Lie group. Let g be
its Lie algebra and g* the dual of g. Assume further that G acts transitively on
g by the adjoint action and transitively on g* by the coadjoint action. Let B’ be
as in theorem 5.5.1 and let B’ : g/G — g*/G be the map induced by passage to
quotients as described above between adjoint and coadjoint orbit spaces. Then,

the map B is a symplectic diffeomorphism.

Proof. The map B’ is well defined because of [37, proposition 1.3.5]. To show

that B is injective note first that the following diagram commute:

BP .

g—————49

g 7Tg*

0/G —2—g/G

The commuting of this diagram is now a consequence of the fact that B” is both
an isomorphism and is equivariant with respect to the adjoint action and the

coadjoint action. That is,

B’ o Ady(X) = Ady o B (X),

for all X € g and for all ¢ € G. If we fix X € g and let g run through all
the elements of GG then on the left we get all the elements in the orbit through
X while on the right we get all the elements in the orbit through B°(X) = a.

Consequently, we must have

B’ o my(X) = my- 0 B'(X),

for all X € g.

We can now show that B’ is injective. The commuting of the above diagram says
that

B o Mg = Tg= O B’ (5.5)
Suppose
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then

Tgr 0 B(X) = mpe 0 B(Y),

so that

[B(X)] = [B'(Y)).

This implies that B°(Y) € [B’(X)]. Thus

B(Y) = Ad;B"(X),

for some g € G, so that

B'(Y) = B’(Ady (X)),

by equivariance of B’. But B’ is an isomorphism, so we must have

Y = Ady(X),
and it follows that
Y € [X]
But this means that
Y e [X]N[Y]
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and B’ is injective. From the relation B o Ty = Mg+ O B’ the right hand side is a
composition of smooth map and on the left 7, is smooth, this then implies that

B’ must be a smooth map.

To show that B’ is a surjective map consider the following commutative diagram:

g 71'0*

We have ¢ = g o B’. But the right hand side is surjective since B’ is an
isomorphism hence bijective and my+ is the projection which is surjective, this
shows that

p:g—g"/G, X — [B(X)],

is surjective. But B’ is the factorization of ¢ through g/G,(see also [37, pp 15-
16]), that is, ¢ = B” o ;. Therefore, for any [B’(X)] € g*/G there is X € g such
that

This gives

p(X) = B (my(X)) = B ([X]) = [B*(X)].

Thus, for each [B°(X)] € g*/G there is [X] € g/G such that

~

B ([X]) = [B*(X)],

~

which shows that B’ is bijective so that its inverse (B?)~! exists. We must show

that the inverse is smooth. But now

~

(B) om0 B =g,
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and since 7y is smooth and the other two maps on the left are smooth, this forces
(B”)~! to be smooth. Therefore, B’ is a diffeomorphism. Denote by Ox the orbit
[X] and by Ops () the orbit [B’(X)].

Let Ox be the adjoint orbit through X € g. First notice that each element in Ox
is of the form gX for some g € G. Now, for any two points y = hX and z = g X

in Oy, define a set map fxy on Oy, as follows:
fx:0x = Ox; y= fx(y) = (gh ")y = 2.

Then, fxy maps all points of Ox into points of Ox. Since G is a Lie group and

gh~! is smooth for all g, h € G, the map fx is smooth with smooth inverse

f)}l — hgfl.

In a similar way, define a set map k, on the coadjoint orbit Ops(y) = O, corre-

sponding to the adjoint orbit Ox. That is,

kot Oa = O3 B ka(B) = (rs™)B =1,

where a = B’(X),3 = sa,y=ra and r,s € G. Let B’y be the restriction of B’
to a small neighborhood of the point Ox. Then,

koo By o fx': Ox —= Ops(x) = Oa, (5.6)

maps points of Ox into points of Ops(x) = O, and it is smooth since it is a
composition of smooth maps. It is known that coadjoint orbits are symplectic
manifolds with the two form @, called the Kirillov-Kostant-Souriau (KKS) form.
Notice that the orbit Op»x) = O, is symplectic since it is a coadjoint orbit. Let
the KKS form be the two form on Ops(x) = Oq, then for all Y, Z € gand r,s € G

we have:

koY, Z) = 0(kasY, kasZ)
= @ ((rsH.Y,(rs 1. 2)
= W(rsY), (s, 2))
= w(r.Y,r.2)
= oY, 2),
since Y, Z € g are left invariant. Thus, k@ = @. By similar calculations, for any

9-form 2 on the adjoint orbit Oy we must have f)*(Q = .
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Consider now the pull back of the form @ by the map in equation (5.6),

(koo B o f);l)* 2.

We have

~

(kao By of5') @ = (fx') o (B
b

Y okiw

= (fx') o (BY)@.

*
*

We now consider the 2-form (é&)*dj induced by the map BAE( We check if the

form (B%)*@ is symplectic. First we have

dB%o = (B)*dis = 0,

since w is closed. Thus, the 2-form (BAg{)*d) is closed. To show non degeneracy,
let

(B%)*(Y,Z) =0, for all Z € g,

then

o(dB’x(Y),dB'x(Z)) =0, for all Z € g.

But now since & is symplectic, &(dB’x (Y),dB’x(Z)) = 0, for all Z € g implies
that

dB'x(Y) = 0.

Thus, since dB’ is a linear isomorphism,

dB'x(Y) =0=Y € kerdB’ = {0},

which gives
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Thus, (BAE()*QJ(Y, Z) =0, for all Z € g implies that Y = 0 and (Bb)}@ is non

degenerate.

But now the orbit space g/G is a single orbit Oy since the action of G on g is
transitive, and the orbit space g / G cons&sts of a single orbit O, since the action
of G on g* is transitive. Thus Bb d) — B oisa symplectic form on Ox. This

proves that B is a symplectic map. O

The existence of adjoint orbits that support a symplectic structure is now not in
question. For a connected compact and semi simple Lie group G and a stabilizer of
an element hy € g, the Lie algebra of G, Alekseevsky have described homogeneous

spaces G/K which admit an invariant symplectic structure w. (See [2, p 19]).
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6

Applications to Hamiltonian

mechanics

We now turn to the discussion of Hamiltonian mechanics which centers mainly
around a real valued function, usually denoted by H and called the Hamiltonian
function, or the energy function. The smooth real valued function H can be
used to define a Hamiltonian system on a symplectic manifold (M, w). Because
the Hamiltonian functions play a fundamental role in Hamiltonian mechanics,
we shall introduce a more general structure than the symplectic structure, the
Poisson structure. The Poisson structure gives a Lie algebra structure to vector

space of smooth functions on the manifold.

6.1. Poisson algebra on a symplectic manifold

There are several ways to introduce a Poisson structure. However, we will be more
concerned about the Poisson structure which is induced by the symplectic struc-
ture. For this reason, we will fix a symplectic manifold (M, w) and then introduce
the Poisson bracket of 1-forms first before we introduce the Poisson bracket of
smooth functions. We will extend the discussion of Hamiltonian systems using a

deformed Poisson bracket.

Let (M,w) be a symplectic manifold, X € X(M) and w € Q*(M). We define the
inner (interior) product of X and w by ixw(Y) = w(X,Y) for all Y € X(M).
Other notation for ixw is w’(X). That is, ixw(Y) = " (X)Y = w(X,Y). Since
ixw : X(M) — R, we see that ixw = «’(X) € Q'(M). First note that w’ is
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linear. That is, if X,Y,Z € X(M), then

ix+yw(Z) = UJ(X -+ Y, Z)
= wX,2)+w(,2)
= ixw(Z) +iyw(Z).

We also have that if (M, w) is a symplectic manifold with w given in symplectic
coordinates by w = dx A dy, then for a vector field X € X(M), the interior
product of a 2-form w by X is given by

ixw = (ixdx) Ndy — dz A (ixdy).

Secondly, since w is non degenerate, the map «” : X(M) — Q'(M) is injective

and it is also surjective by Proposition (3.2.1), hence
W X(M) = QY(M)
X —ixw=aq,
is an isomorphism [1, p 162], with the inverse

(W)™t QY M) — X(M)
a = (W) Ha) = X,

6.1.1 Poisson algebra of 1-forms

Definition 6.1.1 Let a, 3 € QY(M). Then, the Poisson bracket of o and 3 is a
1-form on M given by

{a, B} = —iix,.vsw,

1
where (X, Y| = %ir% ;(Yg — d®,(Yp)) is the Lie bracket, and {®;} is the flow of
%
X, satisfying the property;

L[X7y} = LxLy — LyLX.
So the module of forms Q'(M) provided with the Poisson bracket {-,-}, is a Lie
algebra on R by the structure induced by that of (X(M),],]), the Lie algebra of

vector fields. It is denoted by (QY(M), {-,-}).
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Proposition 6.1.1 Let a, 8 € Q' (M). Then

(i) {a, B} = —Lx,(B) + Lx,(a) + d(ix, o ix,w)

(i) If a and (8 are closed, then {a, B} is exact. This leads to the conclusion that
the set of all closed 1-forms on M 1is a Lie subalgebra of the Lie algebra
QY(M).

Proof. See [11, Theorem 3.11 p 79].

Proposition 6.1.2 «’ : (X(M),[,]) = (Q* (M), {-,-}) is

antimorphism of Lie algebras. That is, W’ ([X,Y]) = —{w’(X),w’(Y)}

Proof. See [11, Definition 3.10 p 79].

6.1.2 Poisson algebra of smooth functions

Let f,g € C®°(M) = Q°(M), then df,dg € Q'(M). It follows from (w”)~* above
that there are vector fields X; and X, such that df — Xy and dg — X,;. Then
by w1 X(M) — QY (M), X; — df = ix,w and X, — dg = ix,w.

Definition 6.1.2 Let f and g be smooth functions on a Poisson manifold M,
then, the Poisson bracket of the functions f and g is defined by

{f, 9} = —ix, oix,w € Q°(M).

Note that we have {f,g} = —ix, oix,w = ix, 0 ix,w.

Proposition 6.1.3 (i) {f, g} = —£x,(9) = £x,(f);
(ir) dif. g}y = {df,dg};

(i) Xs.gy = —[Xy, Xl

Proof. See [11, pp 80-83].
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Proposition 6.1.4 In a local symplectic chart (U, p) with local coordinates

(T1, Tny Y1, Yn), the Poisson bracket of functions f and g is given by

of 99 Of dg
{91 = Z (8x1 dyi Oy 8x’3)

Proof. We have {f, g} = —ix, oix,w where w|y = dei A dy!
i=1
by Darboux theorem, see theorem 3.2.1.
We also have that X; = Z <X1 0 Y’i) We shall find the X¢ and Y*
— ox’ oy’

according to f which dlstlngulshes it from X,.

Now ix,w = w’(X;) = df so that first we have

ix,w=1n . 9 i 9 dei/\dyi, (6.1)
v v i=1
Z( Jat ayi)

i=1

but we also have

df = Z( a; ) (6.2)

A typical term in equation (6.1) is given by

iyi o frie dz' A dy'. (6.3)

dxt

Simplifying expression (6.3) we get

zxzazﬁyl o dr' Ndy' = ixiﬁd:ﬂi/\dyi +iyie dz' A dy'
= X'da' (5%) A dy' —da: AXidy' (52%)
+Y'idz ( )/\dy dx' AY'idyt (cfﬁ)
— Xidy — Yida'.
Thus .
ix,W = ZXidyi —Y'da'. (6.4)
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Equating equation(6.2) to equation(6.4) we get

oy T
Xz—ayi and Y' = —5=.

This gives the vector field X in terms of f as

 ~—(0f 0 of 0
Xp= Zil (ayi dzt Oz’ 8yi) ’ (6.5)
Similarly,
B ) dg 0
X = Z¢1 <8yi drt Oz ayi> . (6.6)

But {f, g} = —ix,; oix,w. Computing the right hand side and using equation 6.5

and equation 6.6 we have;

—inz'ng = —in log o _ og o dx’ /\dy)

= —ix, | tog o dr' Ndy' —iog o dx’ /\dy)

ayl ozt axt oyt

0 0

= —Zafa_afa(agd —|—agdl

Oyt 9zt Oz Iy (9 i 8 ¢

!, 9 i 4 99 B 99 , i, 99  ;
RN (a o dx) oo (ayidy T o™
of dg  Of Jg
oyl Ox'  Ox' Oy
of dg  Of dg
ozt Jy’ 8y Oxt’

where summation is understood in the above calculations.

Therefore, the Poisson bracket is given by

~~(0f 39 9f dg
This proves the theorem. [l

Definition 6.1.3 Let M be a finite dimensional C*°-manifold. We define a C*

Poisson structure on M to be an R-bilinear skew-symmetric map
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C=(M) x C=(M) = C=(M), (f,g9) = {[,9}

on the space of smooth functions on M which satisfies the following two identities:

(i) {fg,.h} ={f,h}g+ f{g,h}, the Leibniz identity;

(i) {{f, g9}, h}+{{g,h}, f} +{{h, f}, g} = 0, the Jacobi identity,

forall f,g,h € C®°(M).

The bracket {-,-} is called the Poisson bracket. The space of smooth functions
on M, C*(M) equipped with the Poisson bracket {-,-}, is a Lie algebra which
satisfies the Leibniz identity. The manifold M equipped with the Poisson bracket
{-,-} is called a Poisson manifold, and is denoted by (M, {-,-}). For the reasons
that will appear in the next section, this bracket will be called the canonical or

standard Poisson bracket.

6.2. Hamiltonian systems with deformed Poisson bracket

In our discussion of results on conservation laws, we would like to extend such
results using a deformed Poisson bracket which looks more general than the

canonical Poisson bracket.

The philosophy of deformations on algebras of functions over a Poisson manifold
with Poisson bracket is largely attributed to Flato in the 70’s ([21, p3]). Motivated
by the potential of having a large number of applications in mathematical physics,
he looked at deformations of infinite-dimensional Lie algebras of functions with
Poisson bracket on symplectic manifolds. The theory of deformations inspired
deformation quantization in physics. It was suggested that quantization should
be understood as a deformation of the structure of algebra of classical observables

rather than a radical change in the nature of observables ([36, p3]).

According to Flato, a formal deformation of the Lie algebra of smooth functions

on a Poisson manifold M, is a new Lie algebra law

[f? g])\ = Z)\TCT<f7 g)
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where C,.(f,g) are 2-cochains on C*°(M,R) with Cy(f,g) = {f, g} ([19]).
For more readings on the genesis of deformation theory, (see [21] and [19]).

Deformation of Poisson bracket has also come about as classical limit of de-
formed Heisenberg algebras.(See [16]). It is used in performing transition from
the phase space of classical observables, such as functions depending on positions
and momentums to the Hilbert space of physically well-defined Hermitian opera-
tor, ([22]). For applications to a Hamiltonian operator for the harmonic oscillator

system see ([22]).

We have taken a general form of a deformed Poisson bracket on a symplectic
manifold with canonical coordinates ¢ and p to give the mathematical formalism

of the deformed Poisson bracket.

Definition 6.2.1 Let f and g be smooth functions on a 2n-dimensional symplec-
tic manifold M. Let (¢;,p;), j = 1,---,n be the canonical coordinates and let

k(p) be smooth a function of the momentum variable p. We define a generalized

deformed bracket of f and g by

{f93p =1f, 9} + k@A S 9}, (6.8)

where f,g € C®°(M) and {f, g} is the canonical Poisson bracket defined by
" (0f Og Of Og

We shall write this bracket in short by

dfdg  Of dg

since operations on the right of equation (6.9) can be done term by term. We
shall then write the bracket of the deformed Poisson bracket as

o= (5i5~ dyan), 10
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Proposition 6.2.1 Let M be a smooth manifold with the Poisson bracket defined
by the equation 6.10, then for all f,g,h € C>®(M) we have;

(a) {f,g}p is bilinear in f and g;

(b) {f»g}p =" {g>f}pa

(C) {fg> h}p = f{gv h’}p _I— {fa h}pga

(d) {{fv g}p; h}p + {{h7 f}p7 g}p + {{ga h}p: f}p = 0
Proof. The proof of (a) and (b) is straight forward from the definition (6.2.1).
We shall prove (c¢), the Leibniz identity and (d) the Jacobi identity.

(c) To show that {fg,h}, = f{g,h}, + {f, h}pg. We have

{fo,h}p = {fg,h}+k(p){fg h}.

The right hand side consists of canonical Poisson brackets which satisfies the

Leibniz rule. This proves (c).

(d) We now prove the Jacobi identity
{{f7 g}pa h}p + {{h7 f}p> g}p + {{ga h};!h f}p = 0.

First note that

{fa {ga h}P}P = {.fa {ga h}P} + k(p){fa {97 h}p}
= {/. (g, n} + k@9, h})} + k){S ({9, 1} + k(){g,h})}
= {SAg, 3} +A{F kg, hiy + k) {S {9, 13} + LS k(0){g, h}-

Similarly,
{940, fip}p = {9, {h, £} + {9, E@{h, [}} +k(p){g, {h, [}} + {9, k(p){h, f}}],

and

AL, gtpte = {0 AL 93} + {0 k(S 93} + E(@) LR, {f, 91} + {h, k(p){ ], 9}}].

Now, since the canonical Poisson bracket satisfies the Jacobi identity as proved

by Hounkonnou M. N. in ([4, pp 7-9]), we only need to show that

{f, k@19, b} +{g, kA, f}} +{h k(p){f g}} =0.
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Now,

of o(k ,h of o(k h
(£, k(p){g. h}} = ai; (pplodd) _ Gf e k)

= YK p)g,h}+k@p >8{g M — k(p) 2L gkt

— (R (p) (g, h)) + k(p) 2O (2T Dta
= (K (p){g, h}) + KOS {0, B}
Thus,
k)9, h}} = Z—é(k%pm 1Y) + k). {9 1)), (6.11)
Similarly,
(9. k(p) {1 f}} = g—go«@{h, )+ kg, (b 1.} (6.12)
and
(h k). g}} = g—Z(k’(p){f,g}) k) (b {f. 0}, (6.13)

Adding equation (6.11), equation (6.12) and equation (6.13), we get

1, k({9 by} + {9, k(){h, f}} +{h k(p){f 9}}
= LW p){g, 1)) + EHF ), 1) + L HF){f,9})
+k(p){f, {9, h}} + {9, {nh, f}} +{h, {f, 9}}].

The last sum in square brackets disappears since it is the Jacobi identity of the

canonical Poisson bracket. So, we have

{f: k()9 hi} + {9, k(){h, 1}

_l_

{

SIS

S a1}
i

{9, 1} + 524h, 1} + 52{ /. 9}]
(69 Oh _ 0Og ah)
dq Op dp Oq
__@QQ
Op dq
- o)
Op dq/1"

h, k(
K (p)
K ()l

0
0
o)

+

+
Qale Q:l[Q
wqu&m

% TIES

A
/

+ (57 52

>

This term is zero by equality of mixed partials.
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This proves the Jacobi identity for the deformed Poisson bracket

{f,9}p =1{f 9} + k@IS g}

Proposition 6.2.2 Let M be a smooth manifold. Then M endowed with the
bracket {-,-}, on C*(M) is a Poisson manifold, and is denoted by (M, {-,-},).

Given a function H € C*°(M) on a symplectic manifold (M,w), a vector field

Xp such that ix,w = dH is called a Hamiltonian vector field. This vector field
OH 0 0H 0 )

0y; 0x; a O0z; 0y;

is given in local coordinates by Xy = Z (

i=1
In terms of the deformed Poisson bracket, and using the canonical coordinates,

we shall write this vector field as

- (G- 5w (614
Xu) = (54— %8) O

We have proved the following proposition.

Proposition 6.2.3 Let (M,{-,-},) be a Poisson manifold and H € C*®(M).
Then there is a unique vector field Xy on M such that

XZ(f) = {H’f}Pa

for all f € C®(M).

We call X7,(f) the derivative of f in the direction of X7;.

Clearly X?(f) = {9, f}p, = —{f. 9}, = =X} (9).
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Theorem 6.2.1 Let (M, {-,-},) be a Poisson manifold with a deformed Poisson
structure. If XJ‘? and XV are Hamilotnian vector fields with corresponding Hamil-
tonian functions f and g respectively, then their bracket [XJIZ, Xg] 15 a Hamiltonian
vector field with the Hamiltonian function {f,g},. That is,

p — p
I:Xf’ X.g] o X{fvg}T—"

Proof. Let h € C*°(M) be an arbitrary function, then we have:

(X7 XP1(h) = Xp(XP(h)) — XP(XF(h))
= Xi({g.h}p) = XP(S )
{fAg.htptp — 9. {f. h}p}p
{fAg.htptp + {9, {h, [1p}s
_{ha{f79}p}10

- {{fvg}imh}p
= Xfﬁg}(h). O

Definition 6.2.2 Let (M,{-,-},) be a Poisson manifold. Let X € X(M) be a
Hamiltonian vector field corresponding to a Hamiltonian function H, a function
[ €C™®(M) is called a first integral of X5, if

Xu(f)=A{H, [}, =0.
The following theorem is called the Law of conservation of energy.

Theorem 6.2.2 Let (M, {-,-},) be a Poisson manifold and X%, € X(M) a Hamil-
tonian vector field corresponding to a Hamiltonian function H, then H is a first
integral of the flow of X%.

Proof. We have

OH 0 OH O

p — -
KnH) = (319 dq  Oq 0p> ()
B (aH OH 0HOH

Thus, X% (H) = {H,H}, = 0. 0
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Theorem 6.2.3 Let (M, {-,-},) be a Poisson manifold and X%, € X(M) a Hamil-
tonian vector field corresponding to a Hamiltonian function H. If f,g € C*°(M)
are first integrals of XY, then their bracket, {f, g}, is also a first integral.

Proof. We have
{H7 f}p = 07

and

{Hag}P = 0

We must show that {H, {f,g},}, = 0. But Jacobi identity gives

{H7 {f?g}p}P + {f7 {H79}P}P + {97 {H7 f}P}P = 0

The second term and the third term are zero since f and g are first integrals.

This then gives

{H7 {fag}p}p = O

as required. O

In the next section we shall write the Hamiltonian equations of mechanics using

the deformed Poisson bracket.

6.3. Hamiltonian systems on a symplectic manifold

Definition 6.3.1 Let (M,w) be a symplectic manifold and let H : M — R be a
smooth function on M. A wvector field X € X(M) such that

IxW = dH,

is called a Hamiltonian vector field. The corresponding function H is called the
Hamiltonian function or the energy function. We denote this vector field by Xp.
That is, Xy is a Hamiltonian vector field if

ix,w=dH, (6.15)
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for some function H € C*(M).
We call (M,w, Xy) a Hamiltonian system on M.

Definition 6.3.2 Let M be a smooth manifold and X € X(M) a smooth vector
field on M. Let I be an open and connected subset of R such that 0 € I. An

integral curve of X through a point p € M is a curve

Yp i L — M

such that

(i) 7p<0) =D
(ii) Ap(t) = %’5#%(3) =X, )-
Let H : M — R be a smooth function on a symplectic manifold M. Then on a lo-

cal symplectic chart (U, (¢, -+ ,¢", p*,--- ,p")) wehave H = H(¢*,--- , ¢, p', -+ ,p"),
so that

"~ (OH , OH
dH:;(aqidq—kapidp).

- 0 0
Let Xg = Z <A13_qz + Blﬁ_pl) be a Hamiltonian vector field corresponding to
i=1

the function H. From equation (6.4), we have

n

IxyW = Z (qidpi — pidqi) .

i=1

Then, tx,w = dH gives

PR
Wy,
i Gq’ .

Thus,
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~(0H 0 OH 0
Xy = — = —— ] 6.16
Now let v(¢) = (q(t),p(t)), t € I be an integral curve of Xy. Then, we have

3(0) = (00300 = 3 (050 + 50 )

i=1

But, we also have

om0 o o
i=1 (9p 8q e dq" Op* o)

Thus, the equation §(t) = (X#) ) gives the Hamiltonian equations of the

mechanics with the Hamiltonian function H as follows;

= G(t)

= —pi(t).

We shall now write these equations of Hamiltonian mechanics using the deformed

Poisson bracket.

From equation (6.14), we have, {H, ¢'}, = X&(q") = g—;{ and {H,p'}, = X% (p') =
OH

-5

Thus,

G(t) = {H.q'}(1+k(p))
pit) = {H.p'}H1+k(p)).

Clearly, these equations are not independent of the deformation factor.

Remark 6.3.1 Let h : M — N be a diffeomorphism of manifolds, X a C*
vector field on M. Then the map h maps integral curves of X into integral curves
of h.X
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Proof. Let v, : (—€,e) — M be an integral curve of X through p € M. Then
we have 7,(0) = p and

(71))*%'1&0 — X (tO fOl" all to & ( )

The map h oy, : (—e.) — N is smooth as a composition of smooth maps and
(ho~,)(0) = h(p). Then we have

(o yp)lgilin) = (dsye) © (1) (t0)) (lto)
= (h)yt0) (1)< (t0) G lto)
= *( o ( to)

Thus, h o7, is the integral curve of h,(X) passing through h(p). O

Recall that if F': N — M is a diffeomorphism of smooth manifolds, then for each
n € N, the map

T,F : T,N = TpmM

is an isomorphism. Thus, if Y € X(N) there is X € X(M) such that

(TF)'X =Y. (6.17)

Proposition 6.3.1 Let F : N — M be a diffeomorphism of smooth manifolds
and w € QP(M). If X € X(M), then

iF*XF*w = F*ixw.

Proof. Let X € X(M), n € N and m = F(n). Given the vector

Uy, -+, Up—1 € T, N, we have

ipsxFrw(n)(uy, -+ yup—1) = Fro®)(F*X(n),ur, -, up-1)
Fro(n)(Y(n),us,- - ,up—1), where (T'F)Y (n) =
Fron)(TE) ' X (m),u1, -, up_1)
W(Fn))(TF o (TF) X (m),(TF)uy,-- ,(TF)u,_1)
)



Thus, ip« x F*w = F*ixw as required. ]

Example 6.3.0.1 We have shown in the previous chapter in theorem 5.5.2 that
the map B’ : 9/G — g*/G is symplectic. Further we assume that the action of
G on its Lie algebra g, and on the dual g* are both transitive actions. Since the
coadjoint orbit g*/G is a symplectic manifold , let wg- be the symplectic 2-form
on g*/G. This allows us to define Hamiltonian systems on the adjoint orbit g/G

as follows:

Let X}, be a Hamiltonian vector field on g*/G with the corresponding energy
function h : g*/G — R. Then

hoB’:g/G - R

is a smooth function on g/G. We then have

d(ho B*) = d((B")*h)
= (B")*dh
= (éb)*ithg*
i(Bb)*Xh(Bb)*wg*

= ix, ., (B")*wg+ by Proposition 6.3.1.

But B’ is symplectic so that (Eb)*wg* is a 2-form on g/G. This gives that X, g, is
a Hamiltonian vector field with the energy function hoB’. Thus (g/G, (B”)*wge, X,oi)

is a Hamiltonian system on the space g/G.
In fact we have the following:

Remark 6.3.2 The vector fields X, 5 € X(g/G) and X, € X(g*/G) are B’

related.

Proof. Let v € X(g/G) be a vector field on g/G, then we have
ix . (B")wg(v) = d(hoB)(v)
= dho (dB"-v)

= ixhwg* (de : U).

hoBPb
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Thus

or

wee (AB” - X, g, dB” - v) = wy- (X, dB’ - v).

Since v € X(g/G) was arbitrary, we have that

dB" - X, 5 = Xp.

Theorem 6.3.1 Let (M,w) be a symplectic manifold and Xy be a Hamiltonian
vector field on M with the Hamiltonian function H. Then, Xp induces a Hamil-
tonian vector field X<y on the cotangent bundle T* M, whose flow is the lift of
the flow of Xp.

Proof. Let X = Xy be the Hamiltonian vector field on M. Assume that M
is compact, or Xy has compact support, then Xy is complete. It generates a
one-parameter group of diffeomorphisms on M. Denote this group by G. Then

G is a Lie group (see [20, p 63]), and its Lie algebra is as a vector space, the space
of vector fields on M. (see [1, p 274 Exercise 4.1G]).

Let @ : G x M — M, (h,q) = ®u(q), h € G,q € M, be the action of the group
G on M. We lift this action to the action of G' on the cotangent bundle T*M,
T 1 G x T*M — T*M, (h,aq) = ®F () = T"®p-1(e), h € G,y € TEM.
The infinitesimal generator of X € X(M) on T*M is given by

d

XT*M(&Q) = %T*(I)expftX<aq)|t:O7 (618)

where exp tX is the flow of X.

Let oy : T*M — M be the canonical projection. Then o), is equivariant wth
respect to the action on T*M and the action on M. That is, the following

diagram,
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T*®

T*M — " T\
oM oM
M n M

commutes. We have

oy oI Pp-1 = Dy 0 0yy.

Differentiating this relation with respect to t at t = 0 we get

. d
;oM ° T*®exp —tx|t=0 = %Cbexth 0 o |t=o-
This gives
dUM'XT*M:XM'O‘M. (619)

Since T*®,-1 is symplectic, it preserves the canonical 1-form # on T*M, so that
Lx,.,,0 = 0.(See [25, Proposition 13.18 p 343]). Thus, by Cartan’s identity we

have

0= Lx,.,,0=dix,.,0+ix,.,db.

This gives
VX ey, A0 = —dix.., 0. (6.20)

But now using the definition of canonical one-form we have the following
iXT*A19<QQ) = eaq (XT*M<aq))
= agdoy (Xr-n(ayg))
= og(Xy 0 onr(ayg))

= a,(Xum(q))
— F(X)(ay)

For some function F'(X): T*M — R.
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Let @ be the canonical 2-form on T*M defined by @ = —df. Then since
ixp.,,0 = F(X), differentiating both sides gives dix...,,0 = dF(X). Equation(6.20)
now gives

—ix,., d6 = dF(X),

or
iy @ = AF(X).

This implies that

Xrer = Xp(x).- (6.21)
This shows that X7+, is a Hamiltonian vector field whose Hamiltonian function
is

F(X) =ixg.,,9,

where 6 is the canonical 1-form on the cotangent bundle 7M. 0J

To continue with the Example 6.3.0.1 above, we shall use this proposition to
study the Hamiltonian dynamics on the cotangent bundles by the lifting

T*B : T*(g*/G) — T*(g/G) of the map B’ : g/G — g*/G. Tt is known that the
map T*B’ is symplectic and each cotangent bundle has a natural symplectic

2-form arising from the canonical one-form, (see [28, Def 6.3.1 and Prop 6.3.2, p 170]).
Let

0% T*(g*/G) — g*/G
be the projection from the cotangent bundle T*(g*/G) onto the coadjoint orbit

¢g*/G, and let

ot : T"(g/G) — 9/G,

be the projection from the cotangent bundle 7%(g/G) onto the adjoint orbit g/G,
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then the following diagram commutes:

where,

= T*(g/G);
= g/G;
= T*(g"/G);

S QW

We have that

B oo®oT* B =ov. (6.22)

Now let X} be the Hamiltonian vector field on g*/G and Xz, the corresponding
Hamiltonian vector field on g/G as in example 6.3.0.1. Let X,?*(g*/G) be the
induced Hamiltonian vector field on 7*(g*/G) of proposition 6.3.1. Then equation
(6.22) gives

d(Bb 0o%o T*Bb)(X;f*(g*/G)) — do¥ (X;—LF*(E*/G))
= X -0%, by equation (6.19).

Thus,

dB’ 0 d(0® o T*B’)(X] /) = X}, - 07"

The Remark 6.3.2 now implies that

d(o% o T*B")(X, /) = X, 5.

or

do% o dT*B’ - X,?*(g*/G) = X,op - 0Y,
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by the Proposition 6.3.1. The same proposition now implies that
. B T*(g* /G T*(g/G)
AT B - X, 9 = x T8

is the induced Hamiltonian vector field by X, 4, on the cotangent bundle 7*(g/G).
We have shown that while the symplectic diffeomorphism B g/G — g*/G
pushes forward Hamiltonian vector fields from g/G to g*/G, the lift of this diffeo-

morphism pushes Hamiltonian vector fields from the cotangent bundle T*(g*/G)
to the cotangent bundle 7*(g/G).
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7

Conclusion

Our contribution in this thesis has been mainly to symplectic geometry. We have
investigated the effects of a Lie group GG acting transitively on a smooth manifold
M and another parallel action Ad* of G on the dual g* of its Lie algebra g,
called the coadjoint representation. In a number of cases, when the action ® of
G on M is Hamiltonian, it turns out that the momentum mapping p : M — g*
is equivariant with respect to the action Ad*. Comparisons can then be made
between the manifold M and the coadjoint orbits of Ad* action of G on g*.
However, there are cases when the momentum mapping fails to be equivariant.
We have shown that in this case it is possible to redefine the action of G on
g* through a one-coycle ¢ in such a way that, with this action, the momentum
mapping becomes equivariant with respect to the new affine action and the result
is that investigations that can be done with an equivariant momentum mapping

can now be done with the momentum with one-cocycle.

Actions of Lie groups on smooth manifolds have led to constructions of new
spaces. Some of the new spaces are the quotient spaces. In particular, when the
action of a Lie group G on a symplectic manifold (M,w) is Hamiltonian, a new
space called the reduced space can be constructed. However, this space may not
be symplectic itself due to a number of reasons such as, the dimension of the new
space may not even be even. We have worked with the known reduced space,
the Marsden-Mayer-Weinstein reduced space, which is known to be symplectic,
to investigate the transfer of Riemannian structure from the original manifold M
to the reduced space. Our investigations have shown that when the Lie group G
is compact, there are some Riemannian submersions that make, under suitable
conditions, the reduced space inherit an induced Riemannian structure from the
original manifold. Our investigations in this case have involved another structure,

the almost complex structure.

Finally, we have substituted the action ® of a Lie group G on an arbitrary sym-
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plectic manifold M with the action Ad of G on its Lie algebra g, called the adjoint
representation while maintaining the parallel action Ad* of G on the dual g*, of
its Lie algebra g. When the Lie group G is semi-simple, compact and connected,
we have used the Killing form to show that in this case there is a symplectic
diffeomorphism between g/G and g*/G if and only if the actions of G on its Lie
algebra g and on the dual g* of its Lie algebra, are both transitive actions. Note
that these findings cannot immediately be extended to a case when the action of
G is not transitive. The difficult here is that the spaces g/G and g*/G are both
disjoint unions of orbits and it is not yet known if in this case these spaces are
manifolds. It would therefore be interesting to investigate further the case when

the action of G is not transitive.

In the last chapter we have extended the application of Hamiltonian mechanics to
deformed Poisson bracket. We have noted that many properties of Hamiltonian
systems which hold with the standard Poisson bracket also hold with the deformed
Poisson bracket. We have used the spaces g/G and g*/G as homogeneous spaces,
to investigate some Hamiltonian formalisms on the cotangent bundle through the
lifting of the integral curves of Hamiltonian vector fields on these spaces. The
result is that Hamiltonian vector fields are lifted to Hamiltonian vector fields on
the cotangent bundle. However, more investigations on the lifting of Hamiltonian

systems to the cotangent space are needed in the future to generalise the findings.
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