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Abstract

In this thesis we study some of the properties of homogeneous spaces. We are

more interested in homogeneous spaces which are also manifolds. We have shown

that homogeneous spaces are basically quotient spaces. Working with quotient

spaces, we pushed to symplectic quotient, the Marsden-Weinstein-Meyer quotient

or the symplectic reduction using an equivariant momentum mapping. We have

shown that the reduction can be performed using an affine action of a Lie group

G on the dual g∗ of the Lie algebra g using the momentum with cocycle σ. In this

direction we also proved that a Riemannian structure on a symplectic manifold

can be induced to the symplectic quotient through a Riemannian submersion.

We have proved that if G is a compact, connected and semisimple Lie group,

acting transitively on its Lie algebra g by the adjoint representation, and acting

transitively on the dual g∗ of its Lie algebra by the coadjoint representation,

then there is a symplectic diffeomorphism between the homogeneous space g/G,

the adjoint orbit of the adjoint action and the homogeneous space g∗/G, the

coadjoint orbit of the coadjoint action. We have extended this result to the

applications to Hamiltonian mechanics and have shown that Hamiltonian vector

fields on symplectic manifold lift to Hamiltonian vector fields on the cotangent

bundle of this manifold. On the way to this result we have written equations of

Hamiltonian systems using the deformed Poisson bracket and have proved that

many properties of Hamiltonian systems with canonical Poisson bracket also hold

with a more general structure, the deformed Poisson bracket.
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1

Introduction

1.1. Overview

The study of homogeneous spaces was initiated by Kostant and Souriau and

recently developed by Chu ,(see[35, p. 113]). A homogeneous space is basically

a manifold M on which a Lie group G acts in a transitive way. For this reason,

Klein considered them (homogeneous spaces) to be the geometries in the sense

that they are obtained from a manifold M and a transitive action of a Lie group

G on M [3, p.xiii]. One of the advantages of homogeneous spaces is that if

we know the value of a geometric quantity at a point, usually taken to be the

identity coset eH ∈ G/H, then we can use some smooth maps, say translations, to

calculate the value of this quantity at any other point of G/H. There are many

examples of homogeneous spaces, however, in this thesis we have mainly used

coadjoint orbits to obtain other results. Coadjoint orbits are obtained through

the action of a Lie group G on the dual g∗ of the Lie algebra g of G through Ad∗

representation. It was shown by Kostant and Souriau that there is up to covering

(see [11, p 61 theorem 2.26]), an isomorphism between a symplectic manifold

(M,ω), homogeneous under the action of a Lie group G and a coadjoint orbit.

(See [11]).

1.2. Main results

Following are the main results which we have stated and proved in different

Sections in this thesis.

Theorem 1.2.1 Let Ψ : G × g∗ → g∗ defined by Ψ(g, α) = Ad∗gα + σ(g) be the

affine action of a Lie group G on its dual g∗ to its Lie algebra g. Let β ∈ g∗.
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Then, the orbit

G · β = {Ψ(g, β) : g ∈ G}

is a symplectic manifold with the symplectic 2-form given by

ωβ(ξg∗(v), ηg∗(v)) = −β[ξ, η] +
∑

(ξ, η),

where ξ, η ∈ g, and ξg∗ and ηg∗ are vector fields on g∗.

Theorem 1.2.2 Let (M,ω) be a symplectic manifold and G be a Lie group of

isometries of M whose action on M is a Hamiltonian action. Let g be the Lie

algebra of G, and let

µ : M → g∗

be the Ad∗-equivariant momentum mapping of the action, where g∗ is the dual

of the Lie algebra of G. Let β ∈ g∗ be a regular value of µ and Gβ the isotropy

subgroup of β which acts freely and properly on µ−1(β). Then, there exists a

Riemannian metric gβ on the reduced space µ−1(β)/Gβ such that the projection

map

πβ : µ−1(β)→ µ−1(β)/Gβ

is a Riemannian submersion. That is,

π∗βgβ = i∗gM ,

where gM is a Riemannian metric on M and

i : µ−1(β)→M

is the inclusion map.

Theorem 1.2.3 Let (M,ω) be a symplectic manifold and G a Lie group of isome-

tries of M . Let Φ : G × M → M be a Hamiltonian action of G on M with

Ad∗-equivariant momentum mapping
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µ : M → g∗.

Let β ∈ g∗ be a regular value of µ and Gβ be the isotropy subgroup of β acting

freely and properly on µ−1(β). Given a compatible almost complex structure JM

on M and a Riemannian metric gM which satisfies the compatibility condition,

ω(X, Y ) = gM(JMX, Y )

for all X, Y ∈ TM , let ωβ be the reduced symplectic form on the reduced symplectic

manifold µ−1(β)/Gβ. Then there exists an almost complex structure Jβ and a

Riemannian metric gβ on the reduced space µ−1(β)/Gβ which make

π : µ−1(β)→ µ−1(β)/Gβ

a Riemannian submersion and satisfies the condition

ωβ([u], [v]) = gβ(Jβ[u], [v])

for all [u], [v] ∈ T (µ−1(β)/Gβ) if and only if

π : µ−1(β)→ µ−1(β)/Gβ

is an almost complex mapping.

Theorem 1.2.4 Let G be a compact, connected semisimple Lie group. Let g be

its Lie algebra and g∗ the dual of g. Assume further that G acts transitively on

g by the adjoint action and transitively on g∗ by the coadjoint action. Let B[ be

as in theorem 5.5.1 and let B̂[ : g/G → g∗/G be the map induced by passage

to quotients between adjoint and coadjoint orbit spaces. Then, the map B̂[ is a

symplectic diffeomorphism.

Theorem 1.2.5 Let (M, {·, ·}r) be a Poisson manifold with a deformed Poisson

structure. If Xr
f and Xr

g are Hamilotnian vector fields with corresponding Hamil-

tonian functions f and g respectively, then their bracket [Xr
f , X

r
g ] is a Hamiltonian

vector field with the Hamiltonian function {f, g}r. Thus,
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[Xr
f , X

r
g ] = Xr

{f,g}r .

Theorem 1.2.6 Let (M,ω) be a symplectic manifold and XH be a Hamiltonian

vector field on M with the Hamiltonian function H. Then, XH induces a Hamil-

tonian vector field XT ∗M on the cotangent bundle T ∗M , whose flow is the lift of

the flow of XH .

1.3. Organisation of the thesis

The thesis is organised in the following way.

Chapter 1 is basically an introduction in which we have given an overview of the

research project as well as stating the main results.

Chapter 2 is a preliminary chapter of concepts. Here we give the notions of Lie

groups and homogeneous spaces. These notions are important in many construc-

tions and in the understanding of differential geometry of the underlying space.

We have also shown that there is a diffeomorphism between a manifold M on

which a Lie group G acts in a transitive way and the quotient manifold G/H,

where H is some closed subgroup of G.

In chapter 3 we describe symplectic manifolds and how they come about as quo-

tient manifolds of group actions. Central in this chapter is the description of the

coadjoint orbits introduced by Kirillov in the 1960’s, (see [24]). We show that a

symplectic structure can be defined on a modified action of the Lie group G on g∗

through a one cocycle σ so that the orbit obtained is a symplectic manifold. We

have described the momentum mapping with one cocycle which induces another

action which makes the momentum mapping Ad∗-equivariant with respect to the

new G-structure on g∗.

In chapter 4 we determine conditions for which the reduced space of a symplec-

tic manifold inherits an induced Riemannian structure through a Riemannian

submersion. We think that if we have a symplectic manifold with a compatible

Riemann metric, it would be good to end up with a Marsden-Weinstein-Meyer

quotient which is also a Riemannian space having a Riemannian structure (met-

ric) inherited from the one on the original space. We have also put up a great deal
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of effort to describe the spaces of positive complex structure which is compatible

with a given symplectic structure.

In chapter 5 we study the adjoint orbits under the action of a semi simple, con-

nected and compact Lie group G. We have given an example of generalised flag

manifolds as a special case of adjoint orbits. Generalised flag manifolds are a class

of homogeneous spaces which admit a symplectic structure and other structures

such as the complex structure ([3],[2]). The main result of the chapter is the

following statement.

Theorem 1.3.1 Let G be a compact, connected semisimple Lie group. Let g be

its Lie algebra and g∗ the dual of g. Assume further that G acts transitively on

g by the adjoint action and transitively on g∗ by the coadjoint action. Let B[ be

as in theorem 5.5.1 and let B̂[ : g/G → g∗/G be the map induced by passage

to quotients between adjoint and coadjoint orbit spaces. Then the map B̂[ is a

symplectic diffeomorphism.

This result also gives another proof that under certain conditions the adjoint

orbit is a symplectic homogeneous space by showing that there is a smplectic

diffeomorphism between an adjoint orbit and a coadjoint orbit.

In chapter 6 we study the Hamiltonian formalisms on symplectic manifolds. In

our paper [10], we provided a way forward on a deformation of the standard

Poisson bracket on the algebra of smooth functions. In this chapter we have dis-

cussed Hamiltonian mechanics with a deformed Poisson bracket and have shown

that many properties of Hamiltonian systems which hold with canonical Poisson

bracket also hold true with a deformed Poisson bracket. In the last section of

this chapter we investigate the relationship between the Hamiltonian systems on

the base space, the symplectic manifold g/G, taken as a single adjoint orbit of a

transitive action and the Hamiltonian systems on the phase space T ∗(g/G), where

the systems on the phase space is induced by the systems on the base space.
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2

Lie group actions and homogeneous

spaces

2.1. Lie groups and Lie algebras

Lie groups play a central role in the study of manifolds for a number of reasons.

Lie groups are manifolds in their own right, as such, they provide another class of

examples of manifolds. Perhaps another major reason is that Lie groups appear as

symmetries of various geometric objects. The link between Lie groups and their

Lie algebras provide a means of solving some of difficult problems in geometry

by methods of linear algebra.

Definition 2.1.1 A Lie group is a differentiable manifold such that the group

operations are smooth with regard to its manifold smooth structure. That is, the

operations

(i) G×G→ G, (x, y) 7→ xy

(ii) G→ G, x 7→ x−1

are smooth.

Definition 2.1.2 An algebra of vector fields, which we shall for now denote by

LA, is a vector space over R together with a bilinear operation [, ] : LA×LA → LA,

called the bracket, which is skew symmetric and satisfies the Jacobi identity. That

is, for all X, Y, Z ∈ LA, a, b ∈ R

(a) [aX + bY, Z] = a[X,Z] + b[Y, Z] and [Z, aX + bY ] = a[Z,X] + b[Z, Y ]

(b) [X, Y ] = −[Y,X]
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(c) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0, the Jacobi identity.

Definition 2.1.3 Let g ∈ G be an element of G. A left translation Lg is a map

Lg : G→ G defined by Lg(x) = gx for all x ∈ G. Similarly, a right translation is

a map Rg : G→ G defined by Rg(x) = xg for all x ∈ G.

Since Lg−1 ◦ Lg = Lg ◦ Lg−1 = idG we have Lg−1 = L−1
g . Similarly, Rg−1 = R−1

g .

Thus these maps Lg and Rg are diffeomorphisms of G.

Let Lg : G → G be the left translation on a Lie group G. Then the differential

of Lg is a linear map

(dLg)h : ThG→ TghG

Definition 2.1.4 Let G be a Lie group. A vector field X ∈ X(G) is called left

invariant if

(dLg)h(X(h)) = X(gh) = Xgh (2.1)

for all g, h ∈ G.

That is, a vector field X is left invariant if dLg(X) = X for all g ∈ G. That is,

X is Lg- related to itself.

If h = e, the identity element of the Lie group G, then equation (2.1) gives

(dLg)e : TeG→ TgG, Xe 7→ Xg.

That is, a left invariant vector field is determined by its value at the identity since

if Xe = Ye then Xg = (dLg)(Xe) = (dLg)(Ye) = Yg for all g ∈ G implying that

X = Y .

We denote by L(G) the space of all left invariant vector fields on the Lie group

G.

Proposition 2.1.1 Let L(G) be the space of all left invariant vector fields on a

Lie group G. Then
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(i) L(G) is a real vector space,

(ii) L(G) is closed under the bracket operation on vector fields.

Proof. Let X, Y ∈ L(G), then

(i) for all p, q ∈ R and for all g ∈ G we have,

dLg(pX + qY ) = dLg(pX) + dLg(qY )

= pdLg(X) + qdLg(Y )

= pX + qY,

which shows that pX + qY ∈ L(G).

(ii) for all g, h ∈ G and f ∈ C∞(G), we have,

dLg[X, Y ]hf = [X, Y ]h(f ◦ Lg)
= Xh(Y (f ◦ Lg))− Yh(X(f ◦ Lg))
= Xh(dLgY )f − Yh(dLgX)f

= XhY f − YhXf
= (XhY − YhX)f

= [X, Y ]hf.

This shows that the bracket of two left invariant vector fields is also a left

invariant vector field. �

By this proposition, the space of all left invariant vector fields of a Lie group G

is an algebra called the Lie algebra of G. The Lie algebra of G is denoted by g.

Proposition 2.1.2 Let g be the Lie algebra of left invariant vector fields of a Lie

group G. Then the map

g→ TeG, X 7→ Xe

is an isomorphism of vector spaces.

Proof. Proposition 2.1.1 implies that this map is linear. To see that it is

injective let Xe = 0. Then for all g ∈ G we have Xg = (dLg)e(Xe) = 0. Thus

only a zero left invariant vector field maps to a zero tangent vector at the identity

proving the map is injective. To see that the map is surjective, let v ∈ TeG and
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define Xg = (dLg)e(v) for every g ∈ G. Then Xg is left invariant since, for all

g, h ∈ G we have X(gh) = (dLgh)e(v) = (dLg)h(dLh)e(v) = (dLg)h(Xh). That is,

(dLg)h(Xh) = Xgh. Thus Xg is left invariant. �

Proposition 2.1.3 Left invariant vector fields of a Lie group G are smooth vec-

tor fields.

For the proof of this proposition see [17, Prop5.1.19] or [39, Prop 3.7b].

Because of the isomorphism in proposition 2.1.2 we shall from now identify the

Lie algebra g of G with the tangent space TeG of G at the identity,

g ∼= TeG

Definition 2.1.5 Let G be a Lie group. The Lie algebra of G is a vector space

g = TeG which is equipped with the bracket operation.

Definition 2.1.6 Let G1 and G2 be two Lie groups. A smooth map Φ : G1 → G2

is called a Lie group homomorphism if Φ is a homomorphism of abstract groups

G1 and G2. If Φ is a diffeomorphism, then it is called an isomorphism.

Definition 2.1.7 Let Φ : G→ G be an isomorphism of a Lie group G into itself,

then Φ is called an automorphism of G. The set of all the automorphisms of G

is a group under composition of maps and is denoted by Aut(G).

Definition 2.1.8 Let G be a Lie group and V a finite dimensional vector space.

Then the map Φ : G→ Aut(V ) is called the representation of G.

Theorem 2.1.1 Let Φ : G1 → G2 be a Lie group homomorphism. Let g = TeG

be a Lie algebra of a Lie group of G and ḡ = TēG2 be the Lie algebra of a Lie

group G2. Then the tangent map

dΦ : g→ ḡ

is a Lie algebra homomorphism.

First note that Φ maps the identity of G1 to the identity of G2. Therefore, the

differential dΦ of Φ is a linear transformation dΦ : g → ḡ. Thus, it takes left

invariant vector fields of G1 to the left invariant vector fields of G2.
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Lemma 2.1.1 If F : G → G′ is a homomorphism of Lie groups, then for each

left invariant vector field X ∈ g there is a left invariant vector field X ′ ∈ g′ such

that X ′(e′) = dF (X(e)).

For the proof of this lemma, (see [12, Corollary 7.10]).

Proof of theorem 2.1.1. Let X ∈ g and let X̄ ∈ ḡ be the unique left invariant

vector field in lemma 2.1.1 such that X̄ = dΦ(X). We must first show that X̄

and X are Φ-related. But since Φ is a homomorphism we have

LΦ(a)Φ(b) = Φ(a)Φ(b) = Φ(ab) = Φ(La(b)) so that

Φ ◦ La = LΦ(a) ◦ Φ

Now
X̄(Φ(a)) = (dLΦ(a))ē(X̄(ē))

= (dLΦ(a))ē(dΦ)e(X(e)), ē = Φ(e)

= d(LΦ(a) ◦ Φ)e(X(e))

= d(Φ ◦ LΦ(a))e(X(e))

= (dΦ)La(e)(dLa)e(X(e))

= (dΦ)a(X(a)), for all a ∈ G.

Thus, X̄ and X are Φ-related.

We remain to show that if X̄ is Φ-related to X and Ȳ is Φ-related to Y then

[X̄, Ȳ ] = [X, Y ]. But [X, Y ] is Φ-related to the left invariant vector field [X̄, Ȳ ]

([12, Thm 7.9 p150]). So

[X̄, Ȳ ](ē) = dΦ([X, Y ](e))

But also lemma 2.1.1 implies that [X, Y ] is the unique left invariant vector field

on G2 whose value at the identity is dΦ([X, Y ](e)). Therefore, we must have

[X, Y ] = [X̄, Ȳ ].

This completes the proof of the theorem. �

2.1.1 Exponential map

We now turn to a very important map in the study of Lie groups and their Lie

algebras, the exponential map
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exp : g→ G.

We shall use the notion of one-parameter subgroup to define it because in general,

multiplication in g is not defined and so it would not be possible to use power

series except in the case that g is a Lie algebra of matrices.

Definition 2.1.9 Let G be a Lie group. A smooth map σ : R → G is called a

one-parameter subgroup of G if

(i) σ(0) = e, the identity element of G,

(ii) σ(t+ τ) = σ(t)σ(τ), for all t, τ ∈ R.

Note that this is a homomorphism of Lie groups since R is a Lie group under

addition operation.

The following proposition gives the existence and uniqueness of one-parameter

subgroups. (See also [17, Prop 5.1.23]).

Proposition 2.1.4 Let G be a Lie group and X ∈ g = TeG. Then, there exists

a unique one-parameter subgroup σX : R→ G such that σ̇X(0) = X(e).

Proof. We shall first prove uniqueness assuming existence.

Suppose that σ : R→ G is a one-parameter subgroup with σ̇(0) = X(e), then we

have, for all t1, t2 ∈ R, σ(t+ τ) = σ(t)σ(τ) = Lσ(t)σ(τ).

Differentiating with respect to τ using chain rule and setting τ = 0 we have

σ̇(t+ τ) = Lσ(t)∗σ̇(τ),

and putting τ = 0 yields

σ̇(t) = Lσ(t)∗σ̇(0) = Lσ(t)∗X(e).

That is, σ̇(t) = X(σ(t)).

The existence and uniqueness of integral curve ([12, Theorem 4.1]) now implies

that σ is the unique integral curve of X through e. This proves uniqueness.
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To prove existence, first note that a left invariant vector field on a Lie group G

is complete ([12, Cor 5.8, p138]). So, let ΦX
t : G→ G be the flow of X. Define a

map σX : R→ G by

σX(t) = ΦX
t (e). (2.2)

We must show that equation (2.2) defines a one-parameter subgroup of G. Now,

if X ∈ g and ΦX
t is the flow of X, then we have for all a ∈ G, the identity

La ◦ ΦX
t ◦ La−1 = ΦX

t . (2.3)

See ([17, Pro 5.1.23, p165]).

Now from equation (2.2) we have σX(0) = ΦX
0 (e) = e since ΦX

t is a flow. We also

have

σX(t+ τ) = ΦX
t+τ (e)

= ΦX
τ (ΦX

t (e))

= ΦX
τ (σX(t))

= σX(t)σX(t)−1ΦX
τ (σX(t)e)

= σX(t)ΦX
τ (e) by equation(2.3)

= σX(t)σX(τ).

Thus, σX(t) = ΦX
t (e) is a one-parameter subgroup of G. We also have

σ̇X(0) =
d

dt
ΦX
t (e)|t=0 = X(e).

This proves the existence part and completes the proof of the proposition. �

Definition 2.1.10 Let G be any Lie group with g = TeG its Lie algebra. Then

for any X ∈ g we define the exponential map

exp : g→ G

by exp (X) = σX(1).

Proposition 2.1.5 Let G be a Lie group and g its Lie algebra. If X ∈ g, then

σX(t) = exp (tX).
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See ([17, Lemma 5.1.26]).

Because of this proposition, for any X ∈ g we shall express its one-parameter

subgroup by exp (tX).

Proposition 2.1.6 The exponential map exp : TeG → G is a smooth map and

carries some neighbourhood of 0 ∈ TeG diffeomorphically onto a neighbourhood

of e ∈ G.

See ([17, Prop 5.1.27, p167]).

One of the basic properties of the exponential map is given in the following

proposition.

Proposition 2.1.7 Let f : G1 → G2 be a smooth homomorphism of Lie groups.

Then, for any η ∈ g1, the Lie algebra of G1, we have

f(expG1
η) = expG2

(df)e · η. (2.4)

Proof. Let η ∈ g1. Then Φ1 : R→ G1, t 7→ exp tη is the one-parameter subgroup

of G1 generated by η. We then have that f ◦ Φ1 : R → G2, t 7→ f(exp tη) is

the one-parameter subgroup of G2. Let Φ2(t) = f(expG1
tη). There is ξ ∈ g2,

the Lie algebra of G2, such that Φ2(t) = expG2
tξ. Differentiating the relation

expG2
tξ = Φ2(t) = f(expG1

tη), gives

d

dt
expG2

tξ|t=0 =
d

dt
Φ2|t=0

= dfexpg1 tη
d

dt
expG1

tη|t=0,

which yields ξ(e2) = dfe1 · η, where e1 and e2 are the identities of G1 and G2

respectively. Thus, Φ2(1) = expG2
ξ = expG2

dfe1 · η. �

Definition 2.1.11 Let G be a Lie group and H an algebraic subgroup of G. Then

H is called a Lie subgroup if the inclusion map i : H ↪→ G is an immersion. That

is, H is a Lie subgroup if it is a submanifold with its smooth structure as an

immersed submanifold of G.

The following theorem is called the Cartan’s Theorem on closed subgroups. For

the proof of the theorem is given in a number of text books. We refer the reader

to ([1, Prop 4.1.12, p259]) or ([33, Thm 5.1, p14]).
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Theorem 2.1.2 Let G be a Lie group and H a closed subgroup of G. Then H

is an embedded submanifold and hence a Lie subgroup of G.

2.1.2 Group actions on manifolds

As we have stated at the beginning of this chapter, Lie groups form an integral

part of the study of manifolds mainly because they appear as symmetries of

various geometric objects. We shall now study the actions of Lie groups on

smooth manifolds.

Definition 2.1.12 Let M be a smooth manifold and G a Lie group. A smooth

map Φ : G×M →M, (g,m) 7→ Φ(g,m) is called an action of G on M if

(i) Φ(e,m) = m for all m ∈M , where, e ∈ G is the identity of G,

(ii) Φ(gh,m) = Φ(g,Φ(h,m)) for all g, h ∈ G and for all m ∈M .

If we now fix g ∈ G in the definition then we get a map Φg : M →M on M . By

property (ii) in the definition we have, for each g ∈ G, Φg◦Φg−1 = Φg−1◦Φg = idM .

Thus, (Φg)
−1 = Φg−1 . Clearly if Φg is smooth then its inverse Φg−1 is also smooth.

This implies that Φg is a diffeomorphism of M for each g ∈ G. Then the map

g 7→ Φg is a smooth homomorphism of G into the group of diffeomorphisms of M

G→ Diff(M).

Suppose that M is a vector space, then for each g ∈ G, Φg : M → M is a

linear transformation and note that the map G→ Diff(M) is a map of G into the

automorphisms of M . In this case, the action of G on M is called a representation

of G on M, (see definition 2.1.8).

We have already seen that a Lie group G can act on itself by left (or right)

translation. Another way a Lie group G acts on itself is by conjugation,

I : G × G → G, Ig(a) = gag−1. For each g ∈ G, the map g 7→ Ig is a map

into the group of diffeomorphisms of G. Since Ig = Rg−1 ◦ Lg is a composition of

diffeomprphisms, Ig is a diffeomorphism of G into itself. Note that

Ig(e) = geg−1 = gg−1 = e, so that this map fixes the identity element in G. Thus,

Ig∗e : TeG→ TeG.
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Definition 2.1.13 (Adjoint representation)

Let G be a Lie group. The adjoint representation of G is a homomorphism

Ad : G → Aut(g) defined by Ad(g) = (dIa)e for all g ∈ G, where we have

identified the tangent space of G at the identity TeG with its Lie algebra g.

Proposition 2.1.8 If G is a matrix group then AdgX = gXg−1 for all g ∈ G
and for all X ∈ g. The multiplication is the ordinary multiplication of matrices.

(See [3, Prop 2.9 p29]).

Corollary 2.1.1 Let G be a Lie group of matrices, then we have;

(i) Adg ◦ Adh = Adgh,

(ii)
d

dt
Adexp tX(Y ) |t=0= [X, Y ] for all X, Y ∈ g = TeG.

Proof. (i) let X ∈ g, then from the above proposition

Adg ◦ Adh(X) = Adg(Adh(X)) = Adg(hXh
−1) = g(hXh−1)g−1 = ghX(gh)−1 = Adgh(X).

(ii) let X, Y ∈ g and let t 7→ exp tX and s 7→ exp sY be the one-parameter

subgroups associated with X and Y respectively. Then

d

dt
Adexp tX(Y ) |t=0 =

d

dt

{
(dIexp tX)Y

}
|t=0

=
d

dt

{ d

ds
Iexp tX(exp sY ) |s=0

}
|t=0

=
d

dt

{ d

ds
exp tX · exp sY · exp (−tX) |s=0

}
|t=0

=
d

dt

{
exp tX

d

ds
exp sY |s=0 exp (−tX)

}
|t=0

=
d

dt

{
exp tX(Y ) exp (−tX)

}
|t=0

= XY − Y X
= [X, Y ]. �
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Definition 2.1.14 . The adjoint representation of the Lie algebra g, is the ho-

momorphism ad : g → End(g) defined by ad(X) = (dAd)e(X), where End(g) is

the group of endomorphisms of g, ([3, p 28]).

Definition 2.1.15 (Coadjoint Representation)

Let G be a Lie group with g∗ the dual of its Lie algebra g. The coadjoint repre-

sentation of a Lie group G is the map Ad∗ : G× g∗ → g∗, (g, β) 7→ Ad∗gβ,

given by 〈Ad∗gβ,X〉 = 〈β,Adg−1X〉 for all β ∈ g∗, X ∈ g and g ∈ G.

By using g−1 in the definition of Ad∗gβ we obtain a group homomorphism Ad∗g ◦
Ad∗h = Ad∗gh, as can be seen from the following calculations; for any X ∈ g,

〈Ad∗g ◦ Ad∗hβ,X〉 = 〈Ad∗hβ,Adg−1(X)〉
= 〈β,Adh−1 ◦ Adg−1(X)〉
= 〈β,Adh−1g−1(X)〉
= 〈β,Ad(gh)−1(X)〉
= 〈Ad∗(gh)β,X〉.

Definition 2.1.16 Let Φ : G ×M → M be an action of a Lie group G on a

manifold M . If m ∈M , then the orbit of m under the action of Φ, or the Φ-orbit

of m is defined by

G ·m = {Φg(m) : g ∈ G}.

The isotropy group or the stabilizer group of m ∈M is given by

Gm = {g ∈ G : Φg(m) = m}.

The action is called transitive if there is only one orbit. That is, if for each pair

m1,m2 ∈ M there is a g ∈ G such that m2 = Φg(m1). The action is effective

or faithful if Gm = {e}. That is, if the assignment g 7→ Φg is one-to-one. The

action is called free if for each m ∈ M , g 7→ Φg(m) is one-to-one. That is, if

Φg(m) = m for some g ∈ G, then g = e.

Definition 2.1.17 Let Φ : G ×M → M be an action of a Lie group G on a

manifold M . Then the action Φ is said to be a proper action if the map Φ̃ :
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G ×M → M ×M , defined by, Φ̃(g, x) = (x,Φ(g, x)) is a proper mapping. This

means that Φ is proper if whenever K ⊂ M ×M is a compact subset, then the

inverse image Φ̃−1(K) is compact.

The alternative way to state the property of a proper action is to say that Φ is a

proper action if whenever xn converges in M , and Φ(gn, xn) converges in M , then

gn has a convergent subsequence in G. This condition is automatically satisfied

if G is a compact Lie group.

An action Φ : G×M →M of a Lie group G on a manifold M partitions M into

equivalence classes. That is, each orbit is an equivalence class. Then the relation

of belonging to the same orbit is an equivalence relation. We denote the set of

all the equivalence classes by M/G. The map which takes an element to its orbit

is π : M →M/G, x 7→ [x], where [x] is the orbit containing x.

The topology on M/G is the quotient topology, that is, U ⊂M/G is open if and

only if π−1(U) is open in M, (see [1, p 261]).

Proposition 2.1.9 Let G be a compact Lie group acting on a smooth manifold

M . Then M/G is a Hausdorff space and it is second countable.

To prove the proposition first we have the following claims:

Claim 1: Distinct orbits are disjoint.

Proof. (Of claim). Let [x] and [y] be distinct orbits through x and y respectively.

If [x] ∩ [y] 6= ∅, let z ∈ [x] ∩ [y]. Then z = g1x = g2y for some g1, g2 ∈ G. This

gives x = g−1
1 g2y so that x ∈ [y]. Then, for any w ∈ [x] such that w = gx for

some g ∈ G, we have w = g(g−1
1 g2y) = (gg−1

1 g2)y. This implies that w ∈ [y].

Thus [x] ⊂ [y]. Reversing the argument gives [y] ⊂ [x]. This gives [x] = [y].

Claim 2: Any orbit [x] is a closed subset of M .

Proof. (Of claim). We shall show that the complement M \ [x] is open. Let

y ∈M \[x], since M is Hausdorff, choose disjoint open sets Ux and Vx with y ∈ Ux
and x ∈ Vx. The collection {Vxi : xi ∈ [x]} is a covering for [x] by open sets in

M . But [x] = Gx is the image by a smooth map Φx : G→ M of a compact set,

G, hence [x] is compact. Let Vx1 , Vx2 , . . . , Vxn be the finite sub-collection which
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also covers [x], let V = Vx1 ∪ Vx2 ∪ . . . ∪ Vxn and U = Ux1 ∩ Ux2 ∩ . . . ∩ Uxn . If

z ∈ V then z ∈ Vxi for some xi and so z 6∈ Uxi . Then z 6∈ U . Thus V is an open

set containing [x] which is disjoint from U , an open set containing y. Since this

is true for each y ∈ M \ [x], we conclude that M \ [x] is an open set so that its

complement [x] is closed.

We now prove the proposition 2.1.9.

To prove Hausdorff property, suppose that the orbits [x] and [y] of x and y

respectively, cannot be separated in M/G. For each positive integer n let Un and

Vn be open balls of radius 1
n

around x and y respectively. Then since for each n,

GUn ∩GVn 6= ∅, there is gn, hn ∈ G, xn ∈ Un and yn ∈ Vn such that

Φ(gn, xn) = Φ(hn, yn), that is,

xn = Φ(g−1
n ,Φ(hn, yn)).

Taking limit as n→∞, we see that x = Φ(g−1,Φ(h, y)) so that x ∈ [y]. But x is

in the closure of its orbit [x] which is a closed set. So we must have [x] = [y] a

contradiction. Thus, M/G must be Hausdorff. (See also [1, p 261, prop 4.1.19]).

To show that it is second countable, let {Ui} be the countable basis for the

topology of M , then {πUi} is a countable collection of open subsets of M/G. We

need to show that {πUi} is a basis for the topology of M/G. First note that if

U is a subset of M/G then π−1U is the union of sets of elements whose orbits

belong to U , so if U is an open subset of M/G, then U is a collection of orbits

whose union is an open subset π−1U of M . This means that for each element x

of π−1U there is a basis element Ui containing x. But then πUi is an element of

{πUi} which contains an orbit of x an element of U . Since this is true for each

element of U , {πUi} is a countable basis for the topology of M/G. �

Theorem 2.1.3 Let Φ : G×M →M be an action of a Lie group G on a smooth

manifold M . If Φ is a proper action, then M/G has a smooth manifold structure

such that the map π : M →M/G is a submersion.

See ([1, Thm 4.1.20, p262]).

If G is a Lie group and g = TeG is its Lie algebra, then for each ξ ∈ g, the action

Φ : G ×M → M induces on M , a smooth vector field called the infinitesimal
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generator of the action corresponding to ξ and is defined by

ξM(m) =
d

dt
Φ(exp−tξ,m)|t=0. (2.5)

We shall see in the next section an extension of this theorem to Lie groups and

their closed subgroups.

2.2. Homogeneous spaces

We now come to the special kind of spaces, the homogeneous spaces on which

Lie groups acts in a transitive way. We shall be more interested in homogeneous

spaces which are also manifolds.

Definition 2.2.1 Let G be a Lie group and M a smooth space.

Let Φ : G×M →M define an action of G on M . Then the space M is called a

homogeneous space if whenever x, y ∈M , then there is a g ∈ G such that

Φg(x) = Φ(g, x) = y.

Such an action, as we have already seen, is called a transitive action

Example 2.2.0.1 Every Lie group G is a homogeneous space under the left

translation

L : G×G→ G; (g, x) 7→ Lg(x),

or indeed under the right translation

Rg(x) = xg, for all g, x ∈ G.

Example 2.2.0.2 Consider a Lie group G and any subgroup H of G. Let

G/H = {xH : x ∈ G},

be the set of left cosets of H in G. Define a left action

θ : G×G/H → G/H by θ(g, xH) = gxH.
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This is an action since θ(e, xH) = exH = xH, and

θ(g1g2, xH) = g1g2xH

= g1(g2xH) by associativity in G

= θ(g1, g2xH)

= θ(g1, θ(g2, xH)).

This action is transitive since if xH and yH are any two points of G/H, with

x, y ∈ G, then

θ(xy−1, yH) = xH.

Special type of example 2.2.0.2 is the following:

Theorem 2.2.1 Suppose that H is a closed Lie subgroup of a Lie group G. Let

G/H = {xH : x ∈ G},

be the set of the left cosets of H in G. Then there exists a unique smooth manifold

structure on G/H such that

(i) π : G→ G/H is smooth,

(ii) each point g ∈ G is the image σ(V ) of a C∞ section (V, σ) on G/H,

(iii) the natural action

θ : G×G/H → G/H, defined by θ(g, xH) = gxH,

is a C∞ action of G on G/H with respect to this structure.

The dimension of G/H is given by dimG− dimH.

For the proof of this important theorem, see [39, Thm 3.58, p120] and [12, Thm

9.2, p161].

Lemma 2.2.1 Let G be a Lie group with Lie algebra g and H its Lie subgroup

with Lie subalgebra h, then To(G/H) ∼= g/h, where o = π(e) = eH.
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Proof. We compute the differential of the projection map

π : G→ G/H,

at the identity,

dπe : Te(G)→ To(G/H).

Let X ∈ g ∼= Te(G), and let exp tX be the one-parameter subgroup corresponding

to X. Then

dπe(X) = dπe ◦
d

dt
exp tX|t=0

=
d

dt
(π ◦ exp tX)|t=0

=
d

dt
((exp tX)H) |t=0.

The last equality is because π(a) = aH for all a ∈ G. But now if x ∈ H then

xH = H. Thus, if X ∈ h then

dπe(X) = 0, the zero vector.

That is to say

ker dπe = h,

the Lie algebra of H. But dπe is onto, hence

g/h ∼= To(G/H)

as required. �

Theorem 2.2.2 Let Φ : G×M →M be a transitive action of a Lie group G on

M , so that M is a homogeneous space with respect to the action Φ. Then there is

a closed subgroup H of G such that the map F : G/H →M is a diffeomorphism.
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Proof. We want to show that the homogeneous space G/H is naturally diffeo-

morphic to the homogeneous space M .

To begin the proof, let M be a smooth manifold and G a compact Lie group. Let

G act transitively on M by the rule Φ : G×M →M defined by Φ(g, x) = gx for

g in G and x in M . Let x0 ∈M be arbitrary and let

H = {g ∈ G : Φg(x0) = x0}

be the isotropy group. H is a closed subgroup of G since if {gn} is a sequence

in H converging to g ∈ G then gx0 = lim gnx0 = limx0 = x0. Therefore, as we

have seen before, G/H is a smooth manifold and G acts naturally on G/H by

the rule θ : G×G/H → G/H, θ(g, xH) = gxH. This action is smooth since it is

a composition of the left translation Lg with the projection π : G → G/H. The

action is transitive by Example 2.2.0.2.

Let F̃ : G→M be a map defined by F̃ (g) = Φ(g, x0) = gx0.

Define a map F : G/H →M by F (gH) = gx0. That is, F (gH) = F̃ (g). Then, F

is well-defined since if aH = bH then a−1b ∈ H implying that x0 = a−1bx0 which

implies that ax0 = bx0.

We now show that the map F : G/H → M is a diffeomorphism. To do this

we shall show that F is injective, it is surjective, it is C∞ and that the map

F∗ : T (G/H)→ T (M) is an isomorphism.

The map F is injective since F (g1H) = F (g2H) implies that F̃ (g1) = F̃ (g2).

That is, Φg1(x0) = Φg2(x0), which gives g1x0 = g2x0, implying that g−1
2 g1x0 = x0,

so that g−1
2 g1 ∈ H and g1H = g2H.

To see that F is surjective, we note first that

F̃ (gh) = Φgh(x0)

= Φ(gh, x0)

= Φ(g,Φ(h, x0))

= Φ(g, x0)

= Φg(x0)

= F̃ (g), for all g ∈ G and all h ∈ H.
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Thus, if x ∈M then F̃−1(x) = gH where g is such that F̃ (g) = x.

This gives F (gH) = F̃ (g) = x. Note that we could also have used the fact that

the action Φ is transitive to show that F is surjective.

To see that F is smooth, let y ∈ G/H and let (V, σ) be the smooth section defined

on a neighborhood V of y, then F |V = F̃ ◦ σ, a composition of smooth maps.

Thus, F is C∞ in a neighborhood of every point, hence on G/H.

It remains to show that F∗ : T (G/H)→ T (M) is an isomorphism.

Let sX(t) be a 1 - parameter subgroup of G. By identification L(G) = Te(G), de-

fine exponential map exp : Te(G)→ G, exp(X) = sX(1) for X ∈ Te(G). We know

that exp : Te(G) → G is a smooth map and carries some neighborhood of 0 in

Te(G) diffeomorphically onto a neighborhood of e in G. ([17, Prop 5.1.27, p167]).

Let h = L(H) and let m be any complementary subspace of L(G) such that

L(G) = m⊕h. Let C0 be an open neighborhood of 0 in m and Ue the correspond-

ing neighborhood of e ∈ G such that exp : exp(C0) → Ue is a diffeomorphism.

We now show that F∗eH : TeH(G/H) → Tx0(M) is an isomorphism by showing

that F̃∗e : Te(exp(C0)) → Tx0(M) is an isomorphism. Let v ∈ Te(exp(C0)) = m

and consider the curve s(t) = exp(tv)x0. Then,

F̃∗e(v) = ṡ(0) =
d

dt
(exp(tv)x0) |t=0= vx0.

We only need to show that ṡ(0) = 0 implies that v = 0.

Let a = exp(t0v) so that La(s(t)) = s(t + t0). Then, L∗a(ṡ(0)) = ṡ(t0). Since

t0 ∈ R is arbitrary, this gives ṡ(0) = 0 implies that ṡ(t) = 0 for all t ∈ R. Thus,

exp(tv)x0 = x0 for all t ∈ R. This implies that exp(tv) ⊂ H, which shows that

v ∈ h. But then this means that v ∈ m ∩ h = {0} so that v = 0 as required. Thus

F̃∗e is injective, and since it is surjective, F̃∗e and hence

F∗eH : TeH(G/H)→ Tx0(M)

is an isomorphism at the identity eH. The Inverse Function Theorem then implies

that F is locally a diffeomorphism at eH. But then if aH ∈ G/H, we have by

equation 2.3,

F∗aH = (La)∗x0 ◦ F∗eH ◦ (La−1)∗aH
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is an isomorphism of TaH(G/H) → Tax0(M). Hence F∗ is an isomorphism of

T (G/H) onto T (M). This completes the proof that F is a diffeomorphism. �

We give below an example of homogeneous spaces called the Grassmann manifold.

Example 2.2.0.3 A Grassmann manifold of k-planes in Rn, denoted by Gk(Rn),

is by definition a set of all k-dimensional subspaces of Rn. (A typical k-dimensional

subspace of Rn is called a k-plane). Let Uk(Rn) be the set of all k-bases of Rn.

We shall assume that all the elements of Uk(Rn) are normalised. That is, Uk(Rn)

consists of orthonormal k-bases of Rn. For each element (u1, · · · , uk) ∈ Uk(Rn),

consider the map

Uk(Rn)→ Gk(Rn), (u1, · · · , uk) 7→ 〈u1, · · · , uk〉,

which takes each k-basis of Rn to a k-plane it generates. This map is surjective

since for any given k-plane, we can choose, using the methods of linear algebra, an

orthonormal k-basis which spans it. Let O(n) be the orthogonal group of matrices.

Consider the map

Ψ : O(n)×Gk(Rn)→ Gk(Rn), (A, 〈u1, · · · , uk〉) 7→ 〈Au1, · · · , Auk〉, A ∈ O(n).

We see that Ψ is an action since if A = In, the identity, then

Ψ(In, 〈u1, · · · , uk〉) = 〈u1, · · · , uk〉.

Also if A,B ∈ O(n) then

Ψ(AB, 〈u1, · · · , uk〉) = 〈ABu1, · · · , ABuk〉
= 〈A(Bu1) · · · , A(Buk)〉 matrix multiplication is associative,

= Ψ(A, 〈Bu1, · · · , Buk〉)
= Ψ(A,Ψ(B, 〈u1, · · · , uk〉)).

The action Ψ is transitive since given any two k-planes in Rn, choose in each

one of them a k-basis which spans it. Then both bases can be completed to an

orthonormal basis of Rn. But given any two orthonormal bases of Rn, the tran-

sitional matrix from one basis to the other basis is orthogonal. Thus, there is
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P ∈ O(n) which transforms one k-plane generated by one k-basis to the other

k-plane generated by the other k-basis.

To determine the isotropy group consider a point x = a1e1 + · · · + akuk, where,

(e1, · · · , ek) are such that ei = (0, · · · , 0, 1, 0, · · · , 0) with a 1 in the ith position.

The element of O(n) which leaves x invariant is the matrix of the form

(
A 0

0 B

)
,

where A ∈ O(k) and B ∈ O(n− k). Now, for each integer n ≥ 1 define a map

f : GL(n,R)→Mn(R); A 7→ A− AT .

Then O(n) = f−1(0) (see [3, p 10]).

Thus, O(n) is a closed set. Therefore, the matrix O(k)×O(n− k) is closed being

the product of two closed sets. Consequently, we have

Gk(Rn) ∼= O(n)/O(k)×O(n− k)

is a homogeneous space.

As a special case of Example 2.2.0.3 is when k = 1. In this case, G1(Rn) is the

set of all 1-dimensional planes. These are straight lines in Rn passing through the

origin. We call this space the projective space, and is denoted by RP n−1. Thus,

the projective space is a homogeneous space

RP n−1 ∼= O(n)/O(1)×O(n− 1).

We shall see other interesting examples of homogeneous spaces such as the flag

manifolds when we discus the adjoint orbits. Flag manifolds will be of special

interest because they are known to hold a symplectic structure as well.
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3

Symplectic manifolds

3.1. Symplectic algebra

Definition 3.1.1 Let V and W be finite dimensional vector spaces. A pairing is

a bilinear map

〈·, ·〉 : V ×W → R

It is non degenerate if 〈v0, w〉 = 0 for all w ∈ W ⇒ v0 = 0, and 〈v, w0〉 = 0 for

all v ∈ V ⇒ w0 = 0.

Example 3.1.0.4 Let V be a finite dimensional vector space and V ∗ be its dual,

then

〈·, ·〉 : V ∗ × V → R

given by

〈α, ξ〉 = α(ξ),

is a non degenerate pairing.

Proposition 3.1.1 Let V and W be finite dimensional vector spaces.

If b : V ×W → R is a non degenerate pairing, then V ∼= W ∗ and W ∼= V ∗.

Proof. Let v ∈ V and w ∈ W . Consider the map b[ : V → W ∗ defined by

(b[(v))(w) = b(v, w).

We have that b[ is a linear map since b is a linear map. The kernel of b[ is given

by

ker b[ = {v0 ∈ V : b[(v0) = 0}
= {v0 ∈ V : b(v0, w) = 0, for all w ∈ W}
= {0}, since we assumed non degeneracy.
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Thus b[ is injective so that dimV ≤ dimW ∗ = dimW .

Similarly we have dimW ≤ dimV ∗ = dimV . Combining the two inequalities we

get

dimV = dimW . Hence b[ is an isomorphism. �

Definition 3.1.2 Let V be a finite dimensional vector space over R and V ∗ its

dual space. Then the space
∧2 V ∗ is identified with the space of skew symmetric

bilinear forms

ω : V × V → R,

where ω(u, v) = −ω(v, u) for all u, v ∈ V .

The form ω is called a symplectic form if it is non degenerate, that is if ω(u, v) = 0

for all v ∈ V implies that u = 0.

Definition 3.1.3 A vector space V equipped with a symplectic form ω, is called

a symplectic vector space. That is, a symplectic vector space is a pair (V, ω),

where V is a finite dimensional real vector space and ω a non degenerate skew

symmetric bilinear form.

Example 3.1.0.5 Let V = R2n. If x = (x1, · · · , x2n) and y = (y1, · · · , y2n) are

vectors in V , define ω(x, y) by:

ω(x, y) =
n∑
i=1

xi+nyi − xiyi+n

Then (R2n, ω) is a symplectic vector space.

Clearly ω is bilinear. We must show that it is skew symmetric and non degenerate.

To see that it is skew symmetric, we have from the definition:

ω(x, y) =
n∑
i=1

xi+nyi − xiyi+n

=
n∑
i=1

−(xiyi+n − xi+nyi)

=
n∑
i=1

−(yi+nxi − yixi+n)

= −
n∑
i=1

yi+nxi − yixi+n

= −ω(y, x).
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To prove non degeneracy, suppose that ω(x, y) = 0 for all y ∈ R2n, then it is zero

on all the basis elements. Thus, for example

0 = ω(x, e1) = x1+n · 1− x1 · 0 = x1+m.

Thus, x1+n = 0. Trying each basis element gives xi = 0 for i = 1, · · · , 2n. Hence

x = 0 proving that ω is non degenerate.

The skew symmetric condition implies that ω(u, u) = 0 for all u ∈ V .

If (e1, · · · , en) is the given basis for V , then the bilinear form ω on V can be

expressed, relative to this basis, in matrix form

ω 7→ (ωij) ∈Mn(R),

where ωij = ω(ei, ej).

Definition 3.1.4 Let (V, ω) be a symplectic vector space, and let W be a linear

subspace of V . Then the symplectic complement (or symplectic orthogonal) of W

in V , denoted by W ω, is defined by

W ω = {v ∈ V : ω(v, w) = 0, for all w ∈ W}.

Lemma 3.1.1 Let (V, ω) be any symplectic vector space and let W ⊂ V be any

linear subspace. Then

(i) dimW + dimW ω = dimV,

(ii) (W ω)ω = W.

Proof. Define a map

ω[ : V → V ∗; v 7→ ω[(v) : V → R, such that w 7→ ω(v, w),

for all v, w ∈ V , where V ∗ is the dual space of V . Since ω is non degenerate, we

have

kerω[ = {v ∈ V : ω(v, w) = 0 for all w ∈ V } = {0}.

Thus ω[ is an isomorphism. Note that if W ⊂ V then ω[(W ω) = W⊥ ⊂ V ∗, is

the orthogonal complement of W . That is,

W⊥ = {α ∈ V ∗ : α(w) = 0, for all w ∈ W}.
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Part (i) now follows from the fact that dimW + dimW⊥ = dimV .

To prove (ii), note that W ⊂ (W ω)ω since if w ∈ W and v ∈ W ω then ω(v, w) = 0

which implies that w ∈ (W ω)ω. But from Part (i) above we have

dimW = dimV − dimW ω = dim (W ω)ω.

Combining the two we conclude that W = (W ω)ω. �

Theorem 3.1.1 Let (V, ω) be any symplectic vector space, then there exists a

basis u1, · · · , un, v1, · · · , vn of V such that

ω(uj, uk) = ω(vj, vk) = 0, ω(uj, vk) = δjk.

In particular, dimV = 2n for some positive integer n.

Proof. We prove by induction on the dimension of V , dimV .

Note that dimV ≥ 2 since ω 6= 0.

When dimV = 2, since ω is non degenerate, there exists non zero vectors u, v ∈ V
such that ω(u, v) 6= 0. This implies that u and v are linearly independent so that

they form a basis for V . After multiplying v by a scalar, it can be assumed that

ω(u, v) = 1 and the condition is satisfied for dimV = 2 and the theorem is true

for this case.

Now suppose that the theorem is true when dimV ≤ m − 1. We prove that it

is also true when dimV = m. Again the non degeneracy condition of ω implies

that there exists u1, v1 ∈ V such that u1 and v1 are linearly independent and

ω(u1, v1) = 1. Set W = span(u1, v1) and consider the space (W ω, ω|Wω). To

see that this space is a symplectic vector space we must show that ω|Wω is non

degenerate. Let w ∈ W ω be such that ω(w, z) = 0 for all z ∈ W ω. We need

to show that w = 0. From lemma 3.1.1 part (i) we note that W ∩W ω = {0},
so that V = W ⊕ W ω. Now for any z ∈ V we can write z = z1 + z2 where

z1 ∈ W and z2 ∈ W ω. Thus ω(w, z1) = 0 because w ∈ W ω and ω(w, z2) = 0

by assumption on w. Hence ω(w, z) = 0 and therefore w = 0 since ω is non

degenerate on V . Therefore, (W ω, ω|Wω) is a symplectic vector space. Since

dimW ω = dimV − 2 ≤ m − 1, the inductive hypothesis implies that there

is a symplectic basis u2, · · · , un, v2, · · · , vn of (W ω, ω|Wω). Therefore, the basis

u1, u2, · · · , un, v1, v2, · · · , vn is a symplectic basis for (V, ω) and the theorem is

proved. �
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With respect to symplectic basis, the form ω is represented by the matrix

J =

(
0 In

−In 0

)
, where In ∈Mn(R) is the identity matrix.

Remark 3.1.1 Note that for V = R2n with the standard Euclidean inner product

〈·, ·〉, the form defined in example 3.1.0.5 is the form given by ω(x, y) = 〈Jx, y〉.

Definition 3.1.5 A subspace W ⊆ V of a symplectic vector space is called

(a) Isotropic if W ⊆ W ω;

(b) Co-isotropic if W ω ⊆ W ;

(c) Lagrangian if W = W ω;

(d) Symplectic if W ∩W ω = {0}.

Example 3.1.0.6 (a) W = Span{u1, u2} is isotropic.

(b) W = Span{u1, · · · , un, v1} is co-isotropic.

(c) W = Span{u1, u2, · · · , un} is Lagrangian.

(d) W = Span{u1, u2, · · · , uk, v1, v2, · · · , vk} for some k ≤ n is symplectic.

Corollary 3.1.1 Let V be a symplectic vector space and let ω1 and ω2 be two

symplectic forms on V , then there exists an invertible linear map A : V → V

such that

ω1(Au,Av) = ω2(u, v) for all u, v ∈ V . That is, A∗ω1 = ω2,

where A∗ω1(u, v) = ω1(Au,Av).

Proof. Let e1, · · · , en, f1, · · · , fn be a basis for V such that ω1 =
∑
e∗i ∧f ∗i , where

e∗1, · · · , e∗n, f ∗1 , · · · , f ∗n is its dual basis. There also exists a basis u1, · · · , un, v1, · · · , vn
for V such that ω2 =

∑
u∗i ∧ v∗i , where u∗1, · · ·u∗n, v∗1, · · · , v∗n is the dual basis rel-

ative to the basis u1, · · · , un, v1, · · · , vn. Define a map A : V → V by A(ui) = ei

and A(vj) = fj, i, j = 1, · · · , n. Then A∗(e∗i ) = u∗i , A
∗(f ∗j ) = v∗j . Therefore,

A∗ω1 = A∗(
∑
e∗i ∧ f ∗i )

=
∑
A∗(e∗i ∧ f ∗i )

=
∑
A∗(e∗i ) ∧ A∗(f ∗i )

=
∑
u∗i ∧ v∗i

= ω2. �
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Corollary 3.1.2 Any even dimensional vector space V admits a symplectic form.

Proof. Let n = 1
2

dimV and choose a basis e1, · · · , en, f1, · · · , fn for V . Let

e∗1, · · · , e∗n, f ∗1 , · · · , f ∗n be the dual basis. Let ω =
∑
e∗i ∧ f ∗i . We must show that

ω is non degenerate.

Let u =
n∑
i=1

aiei + bifi ∈ V be such that ω(u, v) = 0 for all v ∈ V . Then we have

ω(u, ei) = ω(u, fi) for each basis element. Thus

0 =
n∑
i=1

e∗i ∧ f ∗i (u, ej)

=
n∑
i=1

(e∗i (u)f ∗i (ej)− e∗i (ej)f ∗i (u))

= 0− bj = −bj.

Thus bj = 0 for all j = 1, 2, · · · , n.

Similarly,

0 =
n∑
i=1

e∗i ∧ f ∗i (u, fk)

=
n∑
i=1

(e∗i (u)f ∗i (fk)− e∗i (fk)f ∗i (u))

= ak − 0 = aj.

Giving ak = 0 for all k = 1, 2, · · · , n.

Hence u = 0 and ω is non degenerate. �

Remark 3.1.2 Let (V, ω) be a symplectic vector space. A subspace U ⊂ V is

symplectic if the restriction of the symplectic form ω to U is non degenerate.

Proof. We must show that U is even dimensional if ω|U is non degenerate. Let

u1, · · · , uk, v1, · · · , vl be the basis for U . We must show that l = k. Note that

this basis can be extended to the symplectic basis for V , so that

ω(ui, uj) = ω(vi, vj) = 0 and ω(ui, vj) = δij. Suppose that l 6= k, we first assume

that l > k. We pair up u1v1, u2v2, · · · , ukvk such that ω(ui, vi) = 1. Let p be

such that k < p < l and ω(ui, vp) 6= 0. We scale vp so that ω(ui, vp) = 1. Thus

ω(ui, vi) = ω(ui, vp) which implies that ω(ui, vi − vp) = 0. But since ui 6= 0 and

ω is non degenerate, we must have vi − vp = 0 so that vi = vp. Thus l > k is not
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possible. A similar argument shows that k > l is also not possible. Therefore, we

must have l = k and dimU = 2n for some positive integer n. �

Remark 3.1.3 Let (V, ω) be a symplectic vector space. A subspace U ⊂ V is

symplectic if and only if U ∩ Uω = {0}.

Proof. Suppose U is symplectic, let u1, · · · , uk, v1, · · · , vk be its symplectic basis.

Now if w =
n∑
i=1

(aiui + bivi) ∈ U ∩ Uω, then w ∈ Uω and it follows

that 0 = ω(w, ui) = −bi. Thus, bi = 0 for i = 1, 2, · · · , n. Similarly,

0 = ω(w, vj) = aj showing that aj = 0 for j = 1, 2, · · · , n. Therefore, w = 0

and U ∩ Uω = {0}. Suppose now that U ∩ Uω = {0}. Consider the restriction

ω|U . The condition that U ∩ Uω = {0} implies that ω restricted to U is non

degenerate. By remark 3.1.2, U is symplectic. �

Example 3.1.0.7 Let (V, ω) be a symplectic vector space and let e1, · · · , en, f1, · · · , fn
be its symplectic basis. Then, U = Span{e1, · · · , ek, f1, · · · , fk} for some k ≤ n

is a symplectic subspace.

Remark 3.1.4 From lemma 3.1.1 we have (Uω)ω = U , it follows

that U ∩ Uω = {0} if and only if Uω ∩ (Uω)ω = {0}. Thus, a subspace U is

symplectic if and only if its symplectic orthogonal Uω is symplectic.

3.1.1 Lagrangian subspaces

Lemma 3.1.2 Let (V, ω) be a symplectic vector space, and let U,W be subspaces

of V . Then

(i) U ⊂ W ⇒ W ω ⊂ Uω;

(ii) (U +W )ω = Uω ∩W ω;

(iii) (U ∩W )ω = Uω +W ω.

Proof. To prove (1) we have v ∈ W ω ⇒ ω(u, v) = 0 for all u ∈ W , and in

particular, ω(u, v) = 0 for all u ∈ U so that v ∈ Uω. Thus v ∈ W ω ⇒ v ∈ Uω.

Hence W ω ⊂ Uω.
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To prove (2) and (3) first note that

U ∩W ⊆ U ⇒ Uω ⊆ (U ∩W )ω, and

U ∩W ⊆ W ⇒ W ω ⊆ (U ∩W )ω. Then

Uω +W ω ⊂ (U ∩W )ω. (3.1)

We also have,

U ⊂ U +W ⇒ (U +W )ω ⊆ Uω, and

W ⊆ U +W ⇒ (U +W )ω ⊆ W ω. Thus

(U +W )ω ⊆ Uω ∩W ω. (3.2)

We already have (Uω)ω = U . So from inclusion (3.1) and inclusion (3.2) we have,

U ∩W = ((U ∩W )ω)ω ⊆ (Uω +W ω)ω ⊆ (Uω)ω ∩ (W ω)ω = U ∩W.

It follows that both inclusions are equalities. Therefore, we have

(U +W )ω = Uω ∩W ω

proving 2, and

(U ∩W )ω = Uω +W ω

proving 3. �

Let (V, ω) be a symplectic vector space and let {Uk} be a strictly increasing

sequence of isotropic subspaces of V . If V is finite dimensional then this sequence

terminates at a maximal isotropic subspace.

Lemma 3.1.3 Any maximal isotropic subspace L of a finite dimensional sym-

plectic vector space (V, ω) is a Lagrangian subspace.

Proof. We must show that L = Lω. But since if k is a scalar,

ω(v, kv) = kω(v, v) = 0 we note that a one dimensional subspace is necessarily

isotropic. Suppose L ⊂ Lω and L 6= Lω, let v ∈ Lω \ L and consider L′ = L+ kv

for some scalar k. From (L + kv)ω = Lω ∩ (kv)ω, we have L ⊂ (L + kv)ω since

L ⊂ Lω and kv ⊂ Lω. This last inclusion implies that L ⊂ (kv)ω. We also have

v ∈ (L + kv)ω since v ∈ Lω and v ∈ (kv)ω. It follows that L + kv ⊂ (L + kv)ω

which implies that L′ = L+ kv is isotropic and dimL′ = dimL+ 1. Therefore, L
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is a maximal isotropic linear subspace if and only if L = Lω. Hence L is maximal

isotropic subspace if and only if L is a Lagrangian subspace. �

This lemma also shows that for any symplectic vector space (V, ω) there exists a

Lagrangian subspace.

Lemma 3.1.4 Let (V, ω) be a symplectic vector space with dimV = 2n. For any

Lagrangian subspace L of V there exists another Lagrangian subspace M of V

such that L ∩M = {0} and V = L⊕M .

Proof. Let M be isotropic subspace such that M 6= Mω. Then, there exists

v ∈Mω\M such that if M ′ = M+kv then L∩M ′ = {0}, for if L∩M ′ 6= {0}, then

there exists w ∈M and a scalar b such that u = w+bv is a non zero element of L.

Then v ∈ L+M . If this is the case for every v ∈Mω \M , then Mω \M = L+M

which implies that L ∩ Mω = Lω ∩ Mω = (L + M)ω ⊂ (Mω)ω = M . But

L ∩M = {0}, this implies that L ∩Mω = {0}. On the other hand, we have,

dimMω = dimV − dimM > dimV − n = dimV − dimL

This gives dimMω + dimL > dimV and

dimL ∩Mω = dimL + dimMω − dimV > 0 which is a contradiction since

L ∩Mω = {0}. Hence M = Mω and V = L⊕M . �

3.1.2 Symplectic maps

Definition 3.1.6 Let (V1, ω1) and (V2, ω2) be two symplectic vector spaces. A

linear map Φ : V1 → V2 is called symplectic if

ω2(Φu,Φv) = ω1(u, v) for all u, v ∈ V1.

(See [11, p 35]).

Note that if Φv 6= 0, then by the non degeneracy of ω2 we have

0 = ω2(Φu,Φv)⇒ Φu = 0. But Φv 6= 0⇒ v 6= 0 since Φ is linear. Therefore,

0 = ω2(Φu,Φv) = ω1(u, v)⇒ u = 0.

Thus, Φu = 0⇒ u = 0 shows that Φ is injective.
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3.2. Symplectic manifolds

Let M be a C∞ manifold and ω ∈ Ω2(M). Then ω is non degenerate if and only

if for all m ∈M , ωm ∈ ∧2(TmM) is non degenerate.

That is, ωm(Xm, Ym) = 0 for all Ym ∈ TmM ⇒ Xm = 0, or equivalently,

ω(X, Y ) = 0 for all Y ∈ X(M)⇒ X = 0.

Let M be a C∞ manifold and ω a 2-form on M . Define a map

ω[ : X(M)→ Ω1(M); X 7→ ω[(X) = iXω = α

such that

Y 7→ iXω(Y ) := ω(X, Y ),

for all X, Y ∈ X(M).

Proposition 3.2.1 ω ∈ Ω2(M) is non degenerate if and only if ω[ defined above

is an isomorphism of modules X(M) and Ω1(M) on C∞(M).

Proof. If ω[ is an isomorphism then kerω[ = {0}. If ω(X, Y ) = 0

for all Y ∈ X(M) then ω(X, Y ) = iXω(Y ) = ω[(X)(Y ) = 0 for all Y ∈ X(M).

This gives X = 0 and ω is non degenerate. On the other hand, if ω is non

degenerate, then ω[(X) = 0 implies that ω[(X)(Y ) = ω(X, Y ) = 0

for all Y ∈ X(M). But ω is non degenerate, implying that X = 0. Thus we get

that ω[ is injective. ω[ is also surjective since for any α ∈ Ω1(M) we can find

X ∈ X(M) such that α = iXω = ω[(X). Thus ω[ is an isomorphism. �

Theorem 3.2.1 (Darboux) Let ω ∈ Ω2(M) be non degenerate with dimM = 2n

for some integer n. Then ω is closed if and only if for each m ∈ M there is

a chart (U,ϕ) containing m such that ϕ(m) = 0 ∈ R2n and for all u ∈ U ,

ϕ(u) = (x1(u), · · · , xn(u), y1(u), · · · , yn(u)) with ω|U =
n∑
i=1

dxi ∧ dyi.

(See [1, Thm 3.2.2 p175]).

Definition 3.2.1 A symplectic structure on a manifold M of dimension n is a

given 2-form ω ∈ Ω2(M) which is;
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(i) closed. That is, dω = 0,

(ii) non degenerate. That is, ω(X, Y ) = 0 for all Y implies that X = 0 for

X, Y ∈ X(M). That is to say, for each x ∈ M , ωx(Xx, Yx) = 0 for all Yx

implies that Xx = 0, Xx, Yx ∈ TxM .

For x ∈M , ωx is a non degenerate bilinear form on the tangent space TxM . Also

ωx is skew symmetric. From Linear algebra, the condition ωx is skew symmetric

implies that the dimension of TxM is even. That is, dimTxM = 2n(= m), and

ωx has maximal rank. Therefore, M is an even dimensional manifold. The form

Ωω = (−1)[
n
2 ]

n!
ωn denote the standard volume form, where ωn = ω ∧ ω ∧ · · · ∧ ω is

the volume on M. The rank of ω is 2n which is the dimension of M. (See also [1,

p 166]).

Definition 3.2.2 If ω is a symplectic structure on a manifold M , then we call

(M,ω) a symplectic manifold.

Note that a symplectic manifold is always even dimensional.

Definition 3.2.3 Let (M,ω) be a symplectic manifold and (U,ϕ) a chart on M

such that for each u ∈ U , ϕ(u) = (x1(u), · · · , xn(u), y1(u), · · · , yn(u)), then the

coordinates (xi, yi) are called symplectic coordinates about u ∈ U and the chart

(U,ϕ) is called a symplectic chart about u ∈ U .

Definition 3.2.4 Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A

smooth map f : M1 →M2 is called a symplectic map if f ∗ω2 = ω1.

Proposition 3.2.2 (a) Let f : M1 →M2 be a symplectic map and

dimM1 = dimM2, then

(i) f perserves a volume form

(ii) f is a local diffeomorphism

(b) Let (M,ω) be a symplectic manifold. If Φ : M → M ′ is a diffeomorphism

onto a manifold M ′, then (M ′, (Φ−1)∗ω) is a symplectic manifold.
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Proof. For (a) see ([1, Prop 3.2.2 p177]).

We prove (b) of the proposition. We need to show that (Φ−1)∗ω is non degener-

ate and also closed. Closedness is straight forward since pullbacks and exterior

differentiation commute. That is, df ∗ = f ∗d. So we have

d((Φ−1)∗ω) = (Φ−1)∗dω = 0. Thus, (Φ−1)∗ω is closed. To show that it is non

degenerate suppose (Φ−1)∗ω(Y, Z) = 0 for all Z ∈ (M ′). Then

ω(Φ−1
∗ Y,Φ

−1
∗ Z) = 0 for all Z ∈ X(M ′) and note that Φ−1

∗ Y,Φ
−1
∗ Z ∈ X(M) since

Φ and Φ−1 are diffeomorphisms. But ω is non degenerate so that Φ−1
∗ Y = 0.

Since Φ−1
∗ is an isomorphism, we must have that Y = 0.

To see that Φ : (M,ω) → (M, (Φ−1)∗ω) is symplectic, we need to show that the

pullback Φ∗, takes back (Φ−1)∗ω to ω on M . But this is straight forward since

Φ∗(Φ−1)∗ω = (Φ−1 ◦ Φ)∗ω = ω.

�

We shall show that under some conditions, the coadjoint orbit is a symplectic

manifold.

Definition 3.2.5 Given a finite Lie group G with its Lie algebra g,

let Ad∗ : G × g∗ → g∗ be the coadjoint action of G on g∗, the dual of its Lie

algebra, we define the coadjoint orbit of β ∈ g∗ to be

Oβ = {Ad∗gβ : g ∈ G} ⊂ g∗.

The isotropy subgroup of β is given by

Gβ = {g ∈ G : Ad∗gβ = β}.

We show that Oβ
∼= G/Gβ. That is, the coadjoint orbit is a homogeneous space.

Define a map ϕ : Oβ → G/Gβ as follows. If η = Ad∗gβ for some g ∈ G, then

ϕ(η) = gGβ. The map ϕ is well-defined (single-valued) because if ϕ(η) = hGβ

also, thenAd∗gβ = Ad∗hβ so thatAd∗h−1(Ad∗gβ) = β. This implies thatAd∗h−1gβ = β

so that h−1g ∈ Gβ and gGβ = hGβ.

The map ϕ is injective because if η = Ad∗gβ, µ = Ad∗hβ and gGβ = hGβ, then

h−1g ∈ Gβ so that Ad∗h−1gβ = β. This implies that Ad∗h−1 ◦ Ad∗gβ = β. It follows

then that

η = Ad∗gβ = Ad∗hβ = µ.
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The map is surjective since if gGβ ∈ G/Gβ, then since g ∈ G, η = Ad∗gβ ∈ Oβ

gives ϕ(η) = gGβ by construction.

Definition 3.2.6 Let G be a Lie group and g the Lie algebra of G. Let Gβ be

the isotropy subgroup of β. We shall denote the Lie algebra of Gβ by LieGβ.

Proposition 3.2.3 Let η ∈ Oβ be related to β by the equation η = Ad∗hβ for

some h ∈ G, then the isotropy subgroups Gβ and Gη are conjugates.

Proof. Define a map ψ : G/Gβ → G/Gη by [g]β 7→ [hgh−1]η. To see that ψ is

a well-defined isomorphism, let x ∈ Gβ so that Ad∗xβ = β. Since η = Ad∗hβ, we

have

Ad∗h(Ad
∗
x)Ad

∗
h−1η = Ad∗h(Ad

∗
x)Ad

∗
h−1(Ad∗hη)

= Ad∗hAd
∗
x(Ad

∗
h−1Ad∗hβ)

= Ad∗hAd
∗
xβ

= Ad∗hβ

= η.

Since x ∈ Gβ was arbitrary, it follows that Ad∗hGβAd
∗
h−1 is a subgroup of Gη.

Taking β = Ad∗h−1η gives the reverse inclusion. Therefore, Gη = Ad∗hGβAd
∗
h−1 .

This concludes the proof. It follows that ψ : G/Gβ → G/Gη, [g]β 7→ [hgh−1]η is

an isomorphism. �

We have shown that if G is a finite Lie group acting on the dual g∗ of its Lie

algebra, g and if η and β are in the same coadjoint orbit, then the

map γAd∗h : Gβ → Gη, where γAd∗h is conjugation by Ad∗h, is an isomorphism.

The above discussion also implies that if Mβ = G/Gβ
∼= Oβ is the coadjoint orbit

through β, then for all g ∈ G we have a diffeomorphismG/Gβ
∼= G/GAd∗gβ,induced

by the map g 7→ hgh−1. Thus the definition of Mβ does not depend on the choice

of the element β in its orbit.

We want to define a symplectic structure on the coadjoint orbit.

Let X ∈ g. The infinitesimal generator of the action corresponding to X is given

by

Xg∗(β) =
d

dt
(Ad∗exp tXβ)|t=0
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Now let Y ∈ g, then we have that

(Xg∗(β))Y =
d

dt
(Ad∗exp tXβ)Y |t=0

=
d

dt
(βAdexp(−tX)(Y ))|t=0

= β(
d

dt
Adexp(−tX)(Y ))|t=0

= β(−[X, Y ]).

Define β([X, Y ]) := 〈β, [X, Y ]〉, where 〈·, ·〉 is the natural pairing.

Then we have

〈 d
dt
Ad∗exp tX(β), Y 〉|t=0 =

d

dt
〈Ad∗exp tX(β), Y 〉|t=0

=
d

dt
〈β,Adexp−tX(Y )〉|t=0

= 〈β, d
dt
Adexp−tX(Y )〉|t=0

= 〈β,−[X, Y ]〉

= 〈β,−adX(Y )〉

= 〈ad∗Xβ, Y 〉.

where, d(Ad∗) = ad∗ and ad∗X = (−adX)∗.

Let X ∈ g, denote by X] the vector field on g∗ generated by X. That is;

X]
β = X](β) =

d

dt
(Ad∗exp tXβ)|t=0.

To compute the tangent space of Oβ at β, let x(t) = exp tX be a curve in G

which is tangent to X at t = 0. Then

β(t) = Ad∗x(t)β = Ad∗exp tXβ

is a curve in Oβ such that β(0) = β. If Y ∈ g then,
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〈β(t), Y 〉 = 〈Ad∗exp tXβ, Y 〉 = 〈β,Adexp(−tX)(Y )〉.

Differentiating with respect to t at t = 0 yields,

〈β′(0), Y 〉 = 〈β,−adX(Y )〉 = 〈ad∗Xβ, Y 〉.

This shows that

β′(0) = ad∗Xβ. (3.3)

Therefore, the tangent space of the orbit Oβ at β is given by

TβOβ = {ad∗Xβ : X ∈ g}. (3.4)

Proposition 3.2.4 Let ωβ : g× g→ R be defined by

ωβ(X, Y ) = β([X, Y ]) = 〈β, [X, Y ]〉,

for all X, Y ∈ g and β ∈ g∗. Then

(i) ωβ is a skew-symmetric bilinear form on g.

(ii) kerωβ = LieGβ where Gβ = {g ∈ G : Ad∗gβ = β}.

(iii) ωβ is G-invariant. That is, given any h ∈ G we have

ωAd∗hβ(AdhX,AdhY ) = ωβ(X, Y ).

Proof.

(i) The fact that ωβ is skew-symmetric and bilinear follows directly since the Lie

bracket is symmetric and bilinear.

(ii) We have
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kerωβ = {X ∈ g : ωβ(X, Y ) = 0, for all Y ∈ g}
= {X ∈ g : 〈β, [X, Y ]〉 = 0, for all Y ∈ g}
= {X ∈ g : 〈β, adX(Y )〉 = 0, for all Y ∈ g}
= {X ∈ g : 〈−ad∗Xβ, Y 〉 = 0, for all Y ∈ g}
= {X ∈ g : −ad∗Xβ = 0}
= LieGβ.

(iii) Let h ∈ G. Then

ωAd∗hβ(AdhX,AdhY ) = Ad∗hβ([AdhX,AdhY ]

= Ad∗hβ([hXh−1, hY h−1])

= Ad∗h{hXh−1hY h−1 − hY h−1hXh−1}
= Ad∗hβ{hXY h−1 − hY Xh−1}
= Ad∗hβ(h[X, Y ]h−1)

= 〈Ad∗hβ, h[X, Y ]h−1〉
= 〈β,Adh−1(h[X, Y ])h−1〉
= 〈β, h−1h[X, Y ]h−1h〉
= 〈β, [X, Y ]〉
= ωβ(X, Y ).

The proof of (iii) shows that ωβ is G-inveriant and hence it is smooth. �

For β ∈ g∗ define a map

Ωβ : TβOβ × TβOβ → R by Ωβ(X], Y ]) = ωβ(X, Y ) for all X, Y ∈ g. (3.5)

Proposition 3.2.5 Let G be a Lie group and g∗ the dual of its Lie algebra. Then,

Ωβ defined above is a well-defined G-invariant differential 2-form on the coadjoint

orbit Oβ, through β, of the action of G on g∗.

Proof. To see that Ωβ is well defined we must show that the definition of Ωβ does

not depend on the choice of X, Y ∈ g. To this effect first note that if Z ∈ LieGβ

then
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Ωβ(Z], Y ]) = ωβ(Z, Y )

= β([Z, Y ])

= 〈β, [Z, Y ]〉
= 〈β, adZ(Y )〉
= 〈−ad∗Zβ, Y 〉
= 0.

for all Y ∈ g. But now it follows that if Z ∈ LieGβ and X, Y ∈ g then

Ωβ(X] + Z], Y ]) = ωβ(X + Z, Y ) = β([X + Z, Y ])

= 〈β, [X + Z, Y ]〉
= 〈β, [X, Y ]〉+ 〈β, [Z, Y ]〉
= 〈β, [X, Y ]〉 = β([X, Y ])

= ωβ(X, Y )

= Ωβ(X], Y ]).

Hence Ωβ is well-defined.

We have already seen that, locally, ωβ is skew-symmetric, bilinear, G-invariant

form on the tangent space TeG. Therefore, it follows that Ωβ is skew symmetric

on the tangent space TβOβ. To show that Ωβ defines a differential 2-form on the

coadjoint orbit through β, we must show that it is non-degenerate and closed.

To prove non-degeneracy we must show that if X 6∈ LieGβ, that is, if −adXβ 6= 0

then there exists a Y ∈ g such that Ωβ(X], Y ]) 6= 0. Now pick any Y ∈ g and

any X 6∈ LieGβ, then

Ωβ(X], Y ]) = ωβ(X, Y )

= β([X, Y ])

= 〈β, [X, Y ]〉
= 〈β, adX(Y )〉
= 〈−ad∗Xβ, Y 〉.

But then ad∗Xβ 6= 0 if and only if X 6∈ LieGβ. Therefore, 〈−ad∗Xβ, Y 〉 6= 0 as

required. Hence Ωβ is non-degenerate.

It remains to show that Ωβ is closed. To prove closure we shall use the formula
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dω(X, Y, Z) = (LXω)(Y, Z)− (LY ω)(X,Z)

+ (LZω)(X, Y ) + ω(X, [Y, Z])

− ω(Y, [X,Z]) + ω(Z, [X, Y ])

whose proof can be found in [11, p 53]. Therefore,

dΩβ(X], Y ], Z]) = dωβ(X, Y, Z)

= [(LXωβ)(Y, Z)− (LY ωβ)(X,Z) + (LZωβ)(X, Y )]

+ [ωβ(X, [Y, Z])− ωβ(Y, [X,Z]) + ωβ(Z, [X, Y ])] .

Dealing with the second square bracket first, we have

ωβ(X, [Y, Z])− ωβ(Y, [X,Z]) + ωβ(Z, [X, Y ]) = 〈β, [X, [Y, Z]]〉 − 〈β, [Y, [X,Z]]〉
+ 〈β, [Z, [X, Y ]]〉
= 〈β, [X, [Y, Z]]− [Y, [X,Z]]

+ [Z, [X, Y ]]〉
= 0

by Jacobi identity.

To deal with the first square bracket, note that (LXω)(Y, Z) = ω(Z, [X, Y ]) −
ω(Y, [X,Z]). Therefore

(LXωβ)(Y, Z)− (LY ωβ)(X,Z) + (LZωβ)(X, Y ) = (ωβ(Z, [X, Y ])− ωβ(Y, [X,Z]))

− (ωβ(Z, [Y,X])− ωβ(X, [Y, Z]))

+ (ωβ(Y, [Z,X])− ωβ(X, [Z, Y ]))

= 〈β, [Z, [X, Y ]]〉 − 〈β, [Y, [X,Z]]〉
− 〈β, [Z, [Y,X]]〉+ 〈β, [X, [Z, Y ]]〉
+ 〈β, [Y, [Z,X]]〉 − 〈β, [X, [Z, Y ]]〉
= 2〈β, [Z, [X, Y ]]〉 − 2〈β, [Y, [X,Z]]〉
+ 2〈β, [X, [Y, Z]]〉
= 2〈β, [X, [Y, Z]]− [Y, [X,Z]]

+ [Z, [X, Y ]]〉
= 0
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again by Jacobi identity.

Thus dΩβ = 0. Hence Ωβ is closed.

We therefore conclude that Ωβ defines a symplectic structure on the coadjoint

orbit through β for action of the Lie group G on the dual of its Lie algebra. �

We have proved that the coadjoint orbit is a symplectic homogeneous space.

3.2.1 The momentum map

Definition 3.2.7 Let G be a Lie group and (M,ω) a symplectic manifold. Let

Φ : G×M →M

(g,m) 7→ Φg(m) = g ·m

be an action of G on M . The action Φ is called symplectic if the diffeomorphisms

Φg : M →M

m 7→ Φg(m)

are symplectic. That is, if Φ∗gω = ω for each g ∈ G.

Let g be the Lie algebra of the Lie group G. For X ∈ g let

XM(m) =
d

dt
Φexp tXm|t=0 (3.6)

be the infinitesimal generator of the action. If Ft is the corresponding flow of

XM , then

LXMω =
d

dt
(F ∗t ω)|t=0. (3.7)

(See [11, p72]).

Definition 3.2.8 Let (M,ω) be a symplectic manifold. A vector field X on M

is said to be symplectic if it preserves the two form ω. That is, X is symplectic

if LXω = 0.
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If the vector field X on a symplectic manifold M is symplectic, then the flow Ft

corresponding to X also preserves ω. That is, F ∗t ω = ω for all t. (See [14, p106]).

Suppose now that the vector field XM in equation (3.6) is symplectic, then

LXMω = 0. But by Cartan’s formula

LXMω = diXMω + iXMdω = diXMω,

we have 0 = LXMω = diXMω. This implies that the 1-form iXMω is closed.

Poincare Lemma (see [17, p261]), now states that iXMω is locally exact. That is,

a function

µ̂(X) : M → R

can be defined on M such that locally,

iXMω = dµ̂(X). (3.8)

Definition 3.2.9 Let (M,ω) be a symplectic manifold. A vector field X ∈ X(M)

is called locally Hamiltonian if for each point m ∈M there is a neighbourhood U

and a function F ∈ C∞(U) such that on U ,

iXω = dF

In particular, the vector field XM defined by equation 3.8 is locally Hamiltonian.

Suppose now that for every X ∈ g the vector field XM defined by equation (3.8)

is globally Hamiltonian on M , then the functions µX ’s are globally defined on M .

Let g∗ be the dual of the Lie algebra of G, g, it follows that we can then define

a map

µ : M → g∗

m 7→ µ(m),

such that for every X ∈ g we have

〈µ(m), X〉 = µ̂(X)(m) or µ(m) ·X = µ̂(X)(m) (3.9)

The map µ defined by equation (3.9) is called the momentum map (or the moment

map).
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Definition 3.2.10 Let Φ : G×M → M , (g,m) 7→ Φg(m) be an action of a Lie

group G on a symplectic manifold (M,ω) such that Φ∗gω = ω for all g ∈ G. Let

g∗ be the dual of the Lie algebra g of G. Then the map

µ : M → g∗

is called the momentum map (or the moment map) for the action if for each

X ∈ g there is a function

µX : M → R with dµX = iXMω

such that equation (3.9) holds, where XM is the infinitesimal generator of the

action corresponding to X ∈ g.

The equation dµX = iXMω implies that

XµX = XM for all X ∈ g. (3.10)

The space (M,ω,Φ, µ) is called a Hamiltonian G-space.

Definition 3.2.11 Let G act on a symplectic manifold (M,ω) by a symplectic

action Φ. If the action admits a momentum map, then the action is called a

Hamiltonian action.

Note that not every locally Hamiltonian vector field is globally Hamiltonian (see

[11, p78]). Therefore, it follows that not every symplectic action has a momentum

map. However, if the vector field XM is globally Hamiltonian, then there is a

momentum map.

Definition 3.2.12 Let Φ : G×M →M be the symplectic action of a Lie group

G on a symplectic manifold (M,ω) which admits a momentum map. Let g be the

Lie algebra og G and let g∗ be its dual. Then the momentum map µ : M → g∗

is called equivariant if it is equivariant with respect to the coadjoint action Ad∗ :

G× g∗ → g∗. That is, if for every g ∈ G, the following equation holds

µ ◦ Φg = Ad∗g ◦ µ. (3.11)
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Since Ad∗ : G × g∗ → g∗, then for each g ∈ G, we have Ad∗g : g∗ → g∗ is an

automorphism on the dual of its Lie algebra. So, Ad∗ maps G into automorphims

of g∗. We can express this as a map Ad∗ : G→ Aut g∗.

Now if ρ : G′ → G is a homomorphism of Lie groups, then ρ defines a representa-

tion ρ : G′ → Aut g∗ of G′ into the automorphisms of the dual of the Lie algebra

of G by the composition

G′ → G→ Aut g∗,

since the map G′ × g∗ → G× g∗ → g∗ defined by

(g′, α) 7→ (ρ(g′), α) 7→ Ad∗ρ(g′)(α),

is smooth.

Taking ρ = IdG, the identity map on G, then the momentum map is equivariant

with respect to the coadjoint action if the following diagram commute:

G×M

Φg

��

(IdG× µ) // G× g∗

Ad∗

��
M

µ // g∗

Equivariant momentum maps play an important role in many constructions in

symplectic geometry. One such area is the constructions in symplectic reduction

theory. However, there are cases when the momentum mapping is not equivariant

with respect to the coadjoint action of the Lie group G. In such cases we can

define an action of G on g∗ such that the momentum mapping is equivariant with

respect to this action.

Much of the material which now follows in the remainder of this chapter is con-

tained in our first paper. (See [10]).

3.2.2 Momentum with cocycle

Let (M,ω,Φ, µ) be a Hamiltonian G-space. For g ∈ G and ξ ∈ g, define a function
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Ψg,ξ : M → R

by Ψg,ξ(x) = µ̂(ξ)(Φg(x))− µ̂(Adg−1ξ)(x), for all x ∈M.

We shall show that Ψ is constant on M . Differentiating at x ∈M gives

dΨg,ξ(x) = d(µ̂(ξ)(Φg(x)))− d(µ̂(Adg−1ξ)(x))

= d(µ̂(ξ)(Φg(x)))TxΦg(x)− dµ̂(Adg−1ξ)(x)

= iξMω(Φg(x)) · TxΦg(x)− i(Adg−1ξ)Mω(x)

by definition of momentum mapping.

This gives dΨg,ξ(x) = Φ∗g(iξMω)(x)− i(Adg−1ξ)Mω(x).

Now, using the identities:

(a) (Adg−1ξ)M = Φ∗gξM and

(b) Φ∗giξMω = iΦ∗gξMΦ∗gω,

we get dΨg,ξ(x) = 0.

If M is connected then Ψ is constant on M , otherwise it is constant on connected

components.

Now define a function

σ : G→ g∗, g 7→ µ(Φg(m))− Ad∗gµ(m),

for all m ∈M so that

σ(g) · ξ = Ψg,ξ(m),

for all g ∈ G, ξ ∈ g and all m ∈M .

The map σ is called a coadjoint cocycle on G. It satisfies the cocycle identity

σ(gh) = σ(g) + Ad∗gσ(h), (3.12)

for all g, h ∈ G.
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Proposition 3.2.6 Let Φ be a symplectic action of a Lie group G on a symplectic

manifold (M,ω) which admits a momentum mapping µ. Let σ be a one-cocycle.

Define a map

Ψ : G× g∗ → g∗,

by

Ψ(g, α) = Ad∗gα + σ(g).

Then the map Ψ is an action and the momentum map is equivariant with respect

to this action.

For the proof see ([10, Prop 3.4]).

In order to discuss commutation relations associated with a given momentum

map, we first state the following proposition.

Proposition 3.2.7 Let Φ : G ×M → M be a smooth action of a Lie group G

on a smooth manifold M . For ξ ∈ g let

ξM(m) = d
dt

Φ(exp tξ,m) |t=0,

be the infinitesimal generator of the action. Then for ξ, η ∈ g, we have:

[ξM , ηM ] = −[ξ, η]M .

For the proof see ([1, p 269, Prop 4.1.26]).

Theorem 3.2.2 Let Φ : G ×M → M be a symplectic action of G on M which

admits a momentum mapping

µ : M → g∗,

and let
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σ : G→ g∗,

be the cocycle of the momentum map µ. Let the function

σ̂η : G→ R,

be defined by

σ̂η(g) = σ(g) · η.

Define also a function

Σ : g× g→ R,

by

Σ(ξ, η) = dσ̂η(e) · ξ,

for all ξ, η ∈ g. Then,

(i) Σ is skew symmetric bilinear form on g and satisfies the Jacobi’s identity

0 = Σ(ξ, [η, ζ]) + Σ(η, [ζ, ξ]) + Σ(ζ, [ξ, η]).

(ii) {µ̂(ξ), µ̂(η)} = µ̂([ξ, η])− Σ(ξ, η), and since Σ(ξ, η) is a constant, we have

X{µ̂(ξ),µ̂(η)} = Xµ̂([ξ,η]).

Proof. We first obtain an expression for Σ(ξ, η). From the expression

σ̂η(g) = µ(Φg(x)) · η − Ad∗gµ(x) · η
= µ̂η(Φg(x))− µ̂Adg−1η(x),

differentiating in g at g = e in the direction of ξ ∈ g we get;
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dσ̂η(e) · ξ = d(µ̂η(Φg(x)) · ξ − µ̂Adg−1η(x) · ξ)
= d

dt
µ̂η(Φexp tξ(x)) |t=0 − d

dt
µ̂Adexp(−tξ)η(x) |t=0

= (iηMω) d
dt

Φexp tξ(x) |t=0 − d
dt
〈Adexp(−tξ)η, µ(x)〉 |t=0

= (iηMω)(ξM(x))− 〈 d
dt
Adexp(−tξ)η |t=0, µ(x)〉

= (iξM iηMω)(x)− 〈[η, ξ], µ(x)〉
= −{µ̂ξ, µ̂η}(x)− µ̂[η,ξ](x)

= −{µ̂ξ, µ̂η}(x) + µ̂[ξ,η](x).

Thus,

Σ(ξ, η) = −{µ̂ξ, µ̂η}+ µ̂[ξ,η]. (3.13)

But both the Poisson bracket {µ̂ξ, µ̂η} and the Lie bracket [ξ, η] are skew symmet-

ric bilinear. This implies that the right side of equation (3.13) is skew symmetric

and bilinear. Therefore, Σ(ξ, η) is skew symmetric and bilinear form on g. The

right side also satisfies Jacobi’s identity which implies that Σ(ξ, η) also satisfies

the Jacobi’s identity. This proves the first part.

To prove the second part first we show that

−{µ̂ξ, µ̂η}+ µ̂[ξ,η]

is a constant. We shall show that

d{µ̂ξ, µ̂η} = dµ̂[ξ,η]. (3.14)

Evaluating the right hand side of equation (3.14), we have
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dµ̂[ξ,η] = i[ξ,η]Mω

= −i[ξM ,ηM ]ω by the proposition 3.2.7

= −(LξM iηMω − iηMLξMω), an identity,

= −LξM iηMω (since ξM = Xµ̂ξ so that LξMω = 0)

= −LξMdµ̂η
= −dLξM µ̂η
= −d(LXµ̂ξ µ̂η)

= −d(−{µ̂ξ, µ̂η})
= d({µ̂ξ, µ̂η}).

Thus, d{µ̂ξ, µ̂η} = dµ̂[ξ,η]. This shows that

Σ(ξ, η) = −{µ̂ξ, µ̂η}+ µ̂[ξ,η]

is a constant and from equation (3.13) we have

{µ̂ξ, µ̂η} = µ̂[ξ,η] − Σ(ξ, η).�

The main result of this section is the following:

Theorem 3.2.3 Let Ψ : G × g∗ → g∗ defined by Ψ(g, α) = Ad∗gα + σ(g) be the

affine action of a Lie group G on its dual g∗ to its Lie algebra g. Let β ∈ g∗.

Then, the orbit

G · β = {Ψ(g, β) : g ∈ G}

is a symplectic manifold with the symplectic 2-form given by

ωβ(ξg∗(v), ηg∗(v)) = −β[ξ, η] +
∑

(ξ, η),

where ξ, η ∈ g, and ξg∗ and ηg∗ are vector fields on g∗.

Proof. We shall first show that the orbit Oβ = {Ψ(g, β) : g ∈ G} is a manifold.

Thereafter we shall define a symplectic structure on it.

Define the orbit of β ∈ g∗ by Oβ = {Ψ(g, β) : g ∈ G} ⊂ g∗. The isotropy group

of β is given by

Gβ = {g ∈ G : Ψ(g, β) = β}.
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This is a closed subgroup of G since if gn is a sequence in Gβ which converges to

g ∈ G then we have:

β = lim
n→∞

Ψ(gn, β)

= Ψ( lim
n→∞

gn, β)

= Ψ(g, β).

The second equality is because Ψ is an action and so it is smooth. This shows

that g ∈ Gβ.

We now show that Oβ
∼= G/Gβ. Define a map

ϕ : Oβ → G/Gβ

by

ϕ(η) = gGβ

for η ∈ Oβ, where η = Ψ(g, β) for some g ∈ G.

The map ϕ is well-defined since if ϕ(η) = hGβ also, then we have

Ψ(g, β) = Ψ(h, β)

so that

Ψ(h−1,Ψ(g, β)) = β ⇒ Ψ(h−1g, β) = β,

which implies that

h−1g ∈ Gβ,

and consequently

gGβ = hGβ.

The map ϕ is injective. To see this let η = Ψ(g, β), ζ = Ψ(h, β) and gGβ = hGβ

for h, g ∈ G and η, ζ ∈ Oβ. Then h−1g ∈ Gβ so that Ψ(h−1g, β) = β. This implies

that Ψ(h−1,Ψ(g, β)) = β. It follows that Ψ(g, β) = Ψ(h, β) so that η = ζ.
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The map is surjective since if gGβ ∈ G/Gβ, then η = Ψ(g, β) ∈ Oβ gives

ϕ(η) = gGβ by construction.

Hence ϕ is an isomorphism. �

Lemma 3.2.1 Suppose that η ∈ Oβ so that η = Ψ(h, β) for some h ∈ G, then

the isotropy groups Gβ and Gη are conjugates.

Proof. We shall change the notation a bit and write Ψg(β) for Ψ(g, β). We have

already seen that Ψ is an action and so, it is a homomorphism

Ψ(gh, β) = Ψ(g,Ψ(h, β)).

Define a map

γ : G/Gβ → G/Gη,

by

[g]β 7→ [hgh−1]η.

Then γ is a well-defined isomorphism. To see this, let x ∈ Gβ so that

Ψx(β) = β.

Since η = Ψh(β), we have

Ψh ◦Ψx ◦Ψh−1(η) = Ψh ◦Ψx ◦Ψh−1(Ψ(h, β))

= Ψh ◦Ψx(Ψ(hh−1, β))

= Ψh ◦Ψx(β)

= Ψ(h,Ψ(x, β))

= Ψ(h, β)

= η.

Since x ∈ Gβ was arbitrary, it follows that ΨhGβΨh−1 is a subgroup of Gη.

Taking β = Ψ(h−1, η) gives the reverse inclusion. Thus Gη = ΨhGβΨh−1 .
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Hence γ is an isomorphism. �

We now write the orbit of Ψ through β as G · β = G/Gβ
∼= Oβ. From the

discussion above, it is clear that the orbit G · β does not depend on the choice of

the element β in its orbit. We already have that Gβ is a closed subgroup of G.

Thus

G · β = G/Gβ

is a manifold.

We shall now define a symplectic structure on the orbit of the action Ψ through

β.

Let ξ ∈ g. We define the vector field on g∗, called the infinitesimal generator of

the action to be:

ξg∗(β) = d
dt

Ψ(exp tξ, β) |t=0

= d
dt

[Ad∗exp tξβ + σ(exp tξ)] |t=0

= d
dt
Ad∗exp tξβ |t=0 + d

dt
σ(exp tξ) |t=0

= d
dt
Ad∗exp tξβ |t=0 +dσ(e) · ξ

= d
dt
Ad∗exp tξβ |t=0 +dσ̂ξ(e).

If now η ∈ g, then we have:

(ξg∗(β))η = d
dt

(Ad∗exp tξβ)η |t=0 +dσ̂ξ(e) · η
= β( d

dt
Adexp−tξ(η)) |t=0 +

∑
(η, ξ)

= β(−[ξ, η]) +
∑

(η, ξ).

To compute the tangent space to the orbit G · β at β, for ξ ∈ g let x(t) = exp tξ

be a curve in G which is tangent to ξ at t = 0, then β(t) = Ψ(x(t), β) is the curve

in G · β such that β(0) = β since σ(e) = 0.

If η ∈ g, then

〈β(t), η〉 = 〈Ψ(x(t), β), η〉
= 〈Ad∗x(t)β + σ(x(t)), η〉
= 〈Ad∗exp tξβ, η〉+ 〈σ(exp tξ), η〉,

55



where 〈·, ·〉 is the natural pairing of g and its dual g∗.

Differentiating with respect to t at t = 0 gives

〈β′(0), η〉 = 〈ad∗ξβ, η〉+
∑

(η, ξ).

This implies that

β′(0) = ad∗ξβ +
∑

(·, ξ).

Therefore, the tangent space to G · β at β is given by;

TβG · β = {ad∗ξβ +
∑

(·, ξ) : ξ ∈ g}.

Consider now the function ωβ : g× g→ R defined by:

ωβ(ξ, η) = β(−[ξ, η]) +
∑

(η, ξ).

Clearly ωβ is skew symmetric and bilinear on g since both the Lie bracket [·, ·]
and the form

∑
(·, ·) are skew symmetric bilinear.

kerωβ = {ξ ∈ g : ωβ(ξ, η) = 0,∀η ∈ g}
= {ξ ∈ g : β(−[ξ, η]) +

∑
(η, ξ) = 0, ∀η ∈ g}

= LieGβ.

Now, for ξ ∈ g let ξ̃ denote the vector field on g∗ generated by ξ. That is,

ξ̃β = ξ̃(β) = d
dt

Ψ(exp tξ, β) |t=0 .

Then for β ∈ g∗, define the function Ωβ : TβG · β × TβG · β → R by

Ωβ(ξ̃, η̃) = ωβ(ξ, η), (3.15)

for all ξ, η ∈ g.

Now to complete the proof of theorem 3.2.3, we have the following proposition.
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Proposition 3.2.8 Ωβ defined by equation (3.15) above is a well-defined 2-form

on G · β, the orbit of the affine action Ψ : G× g∗ → g∗ through β.

Proof. First note that if ζ ∈ LieGβ, then Ωβ(ζ̃ , ξ̃) = ωβ(ζ, ξ) = 0 for all ξ ∈ g.

Now let ξ, η ∈ g. If ζ ∈ LieGβ then

Ωβ(ξ̃ + ζ̃ , η̃) = ωβ(ξ + ζ, η)

= ωβ(ξ, η) + ωβ(ζ, η) since ωβ is bilinear

= ωβ(ξ, η) since ωβ(ζ, η) = 0

= Ωβ(ξ̃, η̃).

Thus Ωβ does not depend on the choice of ξ, η ∈ g. Hence Ωβ is well-defined.

Since locally ωβ is skew symmetric, bilinear on the tangent space TeG, it follows

that Ωβ is skew symmetric bilinear on the tangent space TβG · β. It remains to

show that Ωβ is non-degenerate and closed on G · β.

To prove non-degeneracy let ξ ∈ g be such that ξ 6∈ LieGβ, we must show that

there exists η ∈ g such that Ωβ(ξ̃, η̃) 6= 0.

But now if η ∈ g and ξ 6∈ LieGβ then Ωβ(ξ̃, η̃) = ωβ(ξ, η) 6= 0 if and only if

ξ 6∈ kerωβ = LieGβ. This shows that if ξ 6∈ LieGβ, there exists η ∈ g such that

Ωβ(ξ̃, η̃) 6= 0. Hence Ωβ is non-degenerate.

To show that Ωβ is closed, let ξ, η, ζ ∈ g, then

dΩβ(ξ̃, η̃, ζ̃) = dωβ(ξ, η, ζ)

= (Lξωβ)(η, ζ)− (Lηωβ)(ξ, ζ)

+ (Lζωβ)(ξ, η) + ωβ(ξ, [η, ζ])

− ωβ(η, [ξ, ζ]) + ωβ(ζ, [ξ, η]).

Repeated application of Jacobi identity then shows that dΩβ = 0 which implies

that Ωβ is closed.

We have therefore shown that if the affine action Ψ : G× g∗ → g∗ defined by

Ψ(g, α) = Ad∗gα + σ(g) is used in place of the coadjoint action, then the orbit

G · α is a symplectic manifold with the 2-form given by:

ωα(ξg∗(v), ηg∗(v)) = −α[ξ, η] +
∑

(η, ξ).
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This completes the proof of the theorem. �
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4

Riemannian structure on

homogeneous spaces

We now study the inheritance of a Riemannian metric of a symplectic manifold on

its symplectic quotient. Starting with a symplectic manifold having a Riemann

metric, we would like to end up with a Marsden-Weinstein-Meyer quotient which

is also a Riemannian space with a Riemannian metric inherited from the one on

the original space.

4.1. Riemannian manifolds

A Riemannian structure (or Riemannian metric) on a smooth manifold M , which

is usually denoted by g is a smooth positive definite, symmetric bilinear form such

that for each p ∈M we have

gp : TpM × TpM → R

It is a smooth assignment of an inner product 〈·, ·〉, to each tangent space TpM

of M . We denote by (M, g) a manifold on which the Riemannian structure g is

defined and call it the Riemannian manifold.

For notational convenience, we shall denote the inner product at p ∈M by gM(p)

if there is need to emphasize that gM is the Riemannian metric on M . That is,

we shall either write gp or gM(p) whichever is suitable.

We recall that if (M, g) is a Riemannian manifold and f : N →M an immersion,

then f ∗g is a Riemannian metric on N called the induced metric.

Let (M, g) and (N, h) be two Riemannian manifolds, a diffeomorphism

59



f : M → N is called an isometry if

gp(X, Y ) = hf(p)(Tpf ·X,Tpf · Y )

for all X, Y ∈ TpM , where p ∈M and, where Tpf ·X is the image of the tangent

vector X by the differential mapping associated with f at p. We also say that

f : M →M is an isometry on M if for all u, v ∈ TpM , p ∈M , we have

gp(u, v) = gf(p)(Tpf · u, Tpf · v).

It is easily checked that if f is an isometry on M , then its inverse is also an

isometry on M . Clearly the identity map on M is an isometry on M and if f, g

are isometries on M then their composition is also an isometry on M . Thus the

set of isometries on M is a group under the composition of maps.

Proposition 4.1.1 (Myers-Steenrod). A group of isometries on a Riemannian

manifold M is a Lie group.

(See [3, p 67, Theorem 4.3]).

Theorem 4.1.1 Let G be a Lie group of isometries of a Riemannian manifold

(M, g) acting transitively on M , then G is compact if and only if M is compact.

For the proof of this theorem (see [20, p 63, Theorem 2.35]).

Definition 4.1.1 Let Φ : G × M → M be an action of a Lie group G on a

smooth manifold M . Then a Riemannian metric g(·, ·) on M is called invariant

if for each m ∈M we have

gm(u, v) = gΦa(m)(TmΦa · u, TmΦa · v)

for all u, v ∈ TmM and a ∈ G.

Theorem 4.1.2 (See [5, p. 56]).

Let G be a Lie group acting on a smooth manifold M . If G is compact then there

exists an invariant Riemannian metric on M .
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4.2. Riemannian submersions

Definition 4.2.1 Let f : M → N be a smooth map. An element x ∈ N is called

a regular value of f if f−1(x) is a submanifold of M , and if whenever m ∈ f−1(x)

then

Tmf : TmM → Tf(m)N,

is surjective. A point m ∈M is called a regular point of f if Tmf is surjective.

Definition 4.2.2 Let M and N be smooth manifolds. A smooth map Φ : M → N

is called a submersion if all points of M are regular points of Φ. That is, Φ is a

submersion if

(dΦ)x : TxM → TΦ(x)N,

is surjective for all x ∈M

Let V (M)p = TpΦ
−1(b) = ker dΦp, for p ∈ Φ−1(b), b ∈ N.

Since M is a Riemannian manifold, it is appropriate to talk about the orthogonal

complement of V (M)p. We denote by H(M)p the orthogonal complement of

V (M)p.

Definition 4.2.3 Let (M, g) and (B, h) be Riemannian manifolds, a smooth map

π : M → B,

is called a Riemannian submersion if:

(i) π has maximum rank at each point p ∈M . That is to say

(dπ)p : TpM → Tπ(p)B,

is surjective, and

(ii) (dπ)p is an isometry between H(M)p and Tπ(p)B. That is, if Xp, Yp ∈
H(M)p, then

gp(Xp, Yp) = hπ(p)((dπ)pXp, (dπ)pYp).
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The set V (M)p is the set of vertical vectors, and H(M)p is the set of horizontal

vectors.

The tangent space TpM decomposes into an orthogonal direct sum

TpM = H(M)p ⊕ V (M)p,

where

H(M)p ∩ V (M)p = {0}.

Proposition 4.2.1 Let G be a Lie group of isometries acting properly and freely

on a Riemannian manifold (M, g) and let p : M →M/G be the canonical projec-

tion map (note that N = M/G is a manifold). Then there exists a unique metric

on N = M/G such that the projection map p is a Riemannian submersion.

For the proof see ([20, p. 61 Prop 2.28]).

We remark the following:

(a) If b ∈ N = M/G, and if m1,m2 ∈ p−1(b) then there is h ∈ G such that

Φh(m1) = m2,

([20, Proposition 2.28]), where Φ is the action of G on M . Thus the isometry

group G acts transitively on each fibre so that the action of G preserves the

fibres.

(b) Let x ∈ p−1(b). For each ξ ∈ g = TeG, let

F (t) = exp tξ,

be its flow of ξ, then

ξM(x) =
d

dt
Φ(exp tξ, x) |t=0

is a tangent vector to the fibre through x. If ξ 6= 0 then ξM(x) 6= 0. Thus

there is a one-to-one correspondence between g = TeG and the tangent

space to the fibre at each point x in the fibre.
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4.3. Almost complex structure

Let Cn denote n-dimensional space of complex numbers (z1, z2, · · · , zn). We

identify Cn with R2n by the correspondence (z1, · · · , zn) → (x1, y1, · · · , xn, yn),

with zk = xk+iyk, where i =
√
−1. By this identification we can consider Cn as a

2n−dimensional Euclidean space. Similarly, if M is an n− dimensional complex

manifold with local coordinates (z1, · · · , zn), by identifying these coordinates with

(x1, y1, · · · , xn, yn), where zk = xk + iyk, i =
√
−1, k = 1, · · · , n, we can regard

M to be a 2n− dimensional differentiable manifold. Then for p ∈M , the tangent

space TpM has the basis {( ∂
∂x1

)p, (
∂
∂y1

)p, · · · , ( ∂
∂xn

)p, (
∂
∂yn

)p}.

Definition 4.3.1 Let M be a smooth manifold. A map

J : TM → TM

is called an almost complex structure on M if for each p ∈M , J assigns a linear

transformation

Jp : TpM → TpM

such that

Jp
(
∂
∂xi

)
p

=
(

∂
∂yi

)
p

Jp

(
∂
∂yi

)
p

= −
(
∂
∂xi

)
p

i = 1, 2, · · · , n.

Clearly J2
p = −IdTpM .

The definition of Jp does not depend on the choice of local coordinates (z1, · · · , zn),

(see [30, p. 107]).

The pair (M,J) is called an almost complex manifold.

Recall that if F : M → N is a smooth map and let ϕ = (x1, · · · , xn) be local

coordinates about p ∈M and ψ = (y1, · · · , ym) local coordinates about

F (p) ∈ N . Then

63



F∗
(
∂
∂xi

)
p

=
m∑
j=1

(
F∗

(
∂

∂xi

)
p

yj

)
∂

∂yj
|F (p)

=
m∑
j=1

(
∂

∂xi

)
p

(yj ◦ F )
∂

∂yj
|F (p)

=
m∑
j=1

∂(yj ◦ F )

∂xi
(p)

∂

∂yj
|F (p)

If f is a smooth function on N, then the pull back of f under F is a smooth

function on M given by

F ∗f = f ◦ F.

Proposition 4.3.1 A differentiable map φ : M1 →M2, between two almost com-

plex manifolds M1 and M2 with almost complex structures J1 and J2 respectively

is holomorphic if and only if

φ∗ ◦ J1 = J2 ◦ φ∗, where φ∗

is the differential of the map φ.

Proof. Let p ∈ M1 and let (z1, · · · , zn) be the complex local coordinates in

the neighborhood of p and identify these coordinates with (x1, y1, · · · , xn, yn) of

R2n. Let (w1, · · · , wm) be the local coordinates of the neighborhood of φ(p) in

M2 identified with (u1, v1, · · · , um, vm) of R2m, where

zk = xk + iyk k = 1, 2, · · · , n
wj = uj + ivj j = 1, 2, · · · ,m

Set
φ∗uj = aj(x

1, y1, · · · , xn, yn) and

φ∗vj = bj(x
1, y1, · · · , xn, yn), j = 1, · · · ,m

Then by the above comments we have

φ∗
(
∂
∂xi

)
p

=
m∑
j=1

∂(uj ◦ φ)

∂xi
(p)

∂

∂uj
|φ(p) +

m∑
j=1

∂(vj ◦ φ)

∂xi
(p)

∂

∂vj
|φ(p)

=
m∑
j=1

∂aj
∂xi

(p)
∂

∂uj
|φ(p) +

m∑
j=1

∂bj
∂xi

(p)
∂

∂vj
|φ(p).
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Similarly

φ∗

(
∂
∂yi

)
p

=
m∑
j=1

∂aj
∂yi

(p)
∂

∂uj
|φ(p) +

m∑
j=1

∂bj
∂yi

(p)
∂

∂vj
|φ(p).

Now, from

φ∗
(
J1

∂
∂xi

)
p

= φ∗

(
∂
∂yi

)
p
,

we have,

φ∗

(
J1

∂

∂xi

)
p

=
m∑
j=1

∂aj
∂yi

(p)
∂

∂uj
|φ(p) +

m∑
j=1

∂bj
∂yi

(p)
∂

∂vj
|φ(p). (4.1)

Also

φ∗

(
J1

∂
∂yi

)
p

= −φ∗
(
∂
∂xi

)
p
,

gives

φ∗

(
J1

∂

∂yi

)
p

= −
m∑
j=1

∂aj
∂xi

(p)
∂

∂uj
|φ(p) −

m∑
j=1

∂bj
∂xi

(p)
∂

∂vj
|φ(p). (4.2)

On the other hand, from

J2 ◦ φ∗
(
∂
∂xi

)
p

=
m∑
j=1

∂aj
∂xi

(p)J2

(
∂

∂uj

)
φ(p)

+
m∑
j=1

∂bj
∂xi

(p)J2

(
∂

∂vj

)
φ(p)

,

we get

J2 ◦ φ∗
(
∂

∂xi

)
p

=
m∑
j=1

∂aj
∂xi

(p)
∂

∂vj
|φ(p) −

m∑
j=1

∂bj
∂xi

(p)
∂

∂uj
|φ(p). (4.3)

and

J2 ◦ φ∗
(

∂
∂yi

)
p

=
m∑
j=1

∂aj
∂yi

(p)J2

(
∂

∂uj

)
φ(p)

+
m∑
j=1

∂bj
∂yi

(p)J2

(
∂

∂vj

)
φ(p)

,

gives
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J2 ◦ φ∗
(
∂

∂yi

)
p

=
m∑
j=1

∂aj
∂yi

(p)
∂

∂vj
|φ(p) −

m∑
j=1

∂bj
∂yi

(p)
∂

∂uj
|φ(p). (4.4)

Now equation (4.2) = equation (4.4) if and only if

∂aj
∂xi

=
∂bj
∂yi

,

that is, if and only if

∂uj

∂xi
=
∂vj

∂yi
.

and equation (4.1) = equation (4.3) if and only if

∂aj
∂yi

= −∂bj
∂xi

,

that is, if and only if

∂vj

∂xi
= −∂u

j

∂yi
.

which are Cauchy-Riemann equations. Thus φ is holomorphic if and only if

φ∗ ◦ J1 = J2 ◦ φ∗

as required. This completes the proof of the theorem. �

If (M,ω) is a symplectic manifold, an almost complex structure J on M is said

to be compatible if whenever m ∈M and

gm : TmM × TmM → R,

then

gm(u, v) := ωm(u, Jv)

defines a Riemannian metric on M , for all u, v ∈ TmM .

66



Proposition 4.3.2 For every symplectic manifold (M,ω), there exists an almost

complex structure J and a Riemannian metric g(·, ·) on M such that for each

m ∈M we have

ωm(u, Jv) = gm(u, v)

for all u, v ∈ TmM .

For the proof see ([23, p 14, Prop 5]).

Note that we can also write the compatibility condition in the form

ωm(u, v) = gm(Ju, v), u, v ∈ TmM

Proposition 4.3.3 Let G be a compact Lie group and Φ : G×M → M a sym-

plectic action of G on the symplectic manifold (M,ω). Let g(·, ·) be an invariant

metric on M and A a field of endomorphisms of TM , that is, A : TM → TM

such that for each m ∈M we have ωm(X, Y ) = gm(AmX, Y ), X, Y ∈ TmM , then

A is G−invariant.

Proof. Let a ∈ G, m ∈ M . Suppose further that X, Y are vectors such that

X ∈ TmM Y ∈ TΦa(m)M . Then we have:

gΦa(m)(TmΦa ◦ AmX, Y ) = gm(AmX, (TmΦa)
−1Y )

= ωm(X, (TmΦa)
−1Y )

= ωΦa(m)(TmΦa ·X, Y )

= gΦa(m)(AΦa(m) ◦ (TmΦa)X, Y )

Thus TmΦa ◦ Am = AΦa(m) ◦ TmΦa.

This proves the proposition. �

Proposition 4.3.4 Let (M,ω) be a symplectic manifold with a compatible almost

complex structure J . If G is a group of isometries of M acting in a symplectic

way, then the compatible almost complex structure J is G-invariant.

Proof. Let g be a Riemannian metric on M such that for each x ∈M , we have
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gx(Ju, v) = ωx(u, v)

for all u, v ∈ TxM . Let Φ : G×M →M be the action of G on M . Then, for all

x ∈M we have:

gx(Ju, v) = ωx(u, v) = Φ∗aωx(u, v)

= ωΦa(x)(TxΦau, TxΦav)

= gΦa(x)(JTxΦau, TxΦav)

= gΦ−1
a ◦Φa(x)(TxΦ

−1
a ◦ J ◦ TxΦau, v)

= gx(TxΦ
−1
a ◦ J ◦ TxΦau, v)

for all u, v ∈ TxM .

Thus

Ju = TxΦ
−1
a ◦ J ◦ TxΦau,

which gives

TxΦa ◦ J = J ◦ TxΦa.

This completes the proof. �

4.4. Riemannian structure on a reduced space

Definition 4.4.1 Let (M,ω) be a symplectic manifold and G a Lie group.

Let Φ : G×M →M be a Hamiltonian action of G on M . Let µ : M → g∗ be the

Ad∗-equivariant momentum mapping of the action and β ∈ g∗ a regular value of

µ. We define the symplectic reduced space of the G-action on M to be

Mβ := µ−1(β)/Gβ,

where Gβ is the isotropy subgroup of β.

(i) Since β ∈ g∗ is a regular value of µ, the inverse image µ−1(β) is a submanifold

of M of dimension dimM − dimG.
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(ii) If the action of Gβ on µ−1(β) is free and proper then the reduced space

Mβ = µ−1(β)/Gβ is a manifold of dimension dimM − dimG − dimGβ.

(See [29, p. 124]).

In this case, the projection map

πβ : µ−1(β)→ µ−1(β)/Gβ

is a smooth submersion. (See [1, pp. 298-299]). By the Marsden-Weinstein-Meyer

reduction theorem there is a unique symplectic form ωβ on the reduced space Mβ

which is characterized by the equation:

π∗βωβ = i∗βω, (4.5)

where

iβ : µ−1(β)→M

is the inclusion map and

πβ : µ−1(β)→ µ−1(β)/Gβ

is the quotient map. That is, if x is a point in µ−1(β) so that

πβ(x) = [x]

is a point on the quotient space µ−1(β)/Gβ and u ∈ Tx(µ
−1(β)) is a tangent

vector so that

[u] ∈ T[x](µ
−1(β)/Gβ) ∼= Tx(µ

−1(β))/Tx(Gβ · x),

then the equation (4.5) is equivalent to the following:

ωβ([x])([u], [v]) = ω(x)(u, v),

for all u, v ∈ Tx(µ−1(β)). (See [27, p. 15]).
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Let gM be a Riemannian metric on the symplectic manifold (M,ω) and let JM

be an almost complex structure such that

ω(·, ·) = gM(JM ·, ·),

then for u, v ∈ Tx(µ−1(β)), we have:

i∗ω(x)(u, v) = ω(x)(i∗u, i∗v)

= gM(x)(JM(i∗u), i∗v)

= gM(x)(JMu, v)

= gM(x)(i∗(JMu), i∗v)

= i∗gM(x)(JMu, v),

where

i : µ−1(β)→M,

is the inclusion map. That is,

i∗ω(·, ·) = i∗gM(JM ·, ·).

Theorem 4.4.1 Let (M,ω) be a symplectic manifold having a compatible Ria-

mannian metric gM , and G a Lie group of isometries of M whose action on M

is a Hamiltonian action. Let g be the Lie algebra of G, and let

µ : M → g∗

be the Ad∗-equivariant momentum mapping of the action, where g∗ is the dual

of the Lie algebra of G. Let β ∈ g∗ be a regular value of µ and Gβ the isotropy

subgroup of β which acts freely and properly on µ−1(β). Then, there exists a

Riemannian metric gβ on the reduced space µ−1(β)/Gβ such that the projection

map

πβ : µ−1(β)→ µ−1(β)/Gβ

is a Riemannian submersion. That is,
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π∗βgβ = i∗gM ,

where gM is a Riemannian metric on M and i : µ−1(β) → M, is the inclusion

map.

Proof. Let π : µ−1(β) → µ−1(β)/Gβ be the projection onto the reduced space.

For convenience we shall write Mβ for µ−1(β) and Bβ for µ−1(β)/Gβ. If x ∈ Bβ

then π−1(x) is called the fibre over x. If m ∈ π−1(x), then

π−1(x) = {gm : g ∈ G and π(gm) = x},

is the fibre through m. Since Gβ acts freely and properly on µ−1(β), the projection

π : Mβ → Bβ, is a submersion. (See [1, pp. 298-299]). But π is constant on π−1(x),

for each x ∈ Bβ, that is, π(π−1(x)) = {x}, so, if u ∈ Tmπ−1(x), for m ∈ π−1(x),

then dπm(u) = 0. That is, Tmπ
−1(x) = ker dπm = V (Mβ)m is the set of vertical

vectors. Let H(Mβ)m be the orthogonal complement of V (Mβ)m. Then, TmMβ

decomposes into a direct sum

TmMβ = H(Mβ)m ⊕ V (Mβ)m,

with H(Mβ)m ∩ V (Mβ)m = {0}. Thus, if X ∈ TmMβ, then X = Y + Z, with

Y ∈ H(Mβ)m and Z ∈ V (Mβ)m. It follows that dπm(X) = dπmY.

So, if X 6∈ V (Mβ)m, then dπm(X) 6= 0, and dπm(X) ∈ T[m]Bβ, where [m] = π(m).

Thus, for each X ∈ H(Mβ)m, we have

dπm(X) ∈ T[m]Bβ.

Let dπm|Hm be the restriction of dπm to H(Mβ)m, the space of horizontal vectors.

Since π and dπ are surjective ([1, p. 299]), then dπm|Hm is surjective and it is

linear. But

ker dπm|Hm = {0},

so if [u] ∈ T[m]Bβ, there is a unique u ∈ H(Mβ)m such that

dπm|Hm(u) = [u].
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That is the map dπm|Hm is also injective. It follows therefore that the map

dπm|Hm : H(Mβ)m → T[m]Bβ

is an isomorphism of vector spaces. Because of this isomorphism, we shall write

the tangent vectors of T[m]Bβ as say w instead of [w], when we refer to the

restriction map dπm|Hm .

Let v, w ∈ TxBβ. Then there exists unique vectors ṽ, w̃ ∈ H(Mβ)m, m ∈ π−1(x)

such that

dπm|Hm(ṽ) = v,

and

dπm|Hm(w̃) = w.

Define a metric h on TxBβ by

hx(v, w) = i∗gM(ṽ, w̃).

We shall show that the assignment x 7→ hx smoothly depends on x. First note

that, if m1,m2 ∈ π−1(x), then there is an isometry f ∈ G with f(m1) = m2, and

π ◦ f = π, ( see [20, proposition 2.20]). We then have,

Tf(m1)π ◦ Tm1f = Tm1π.

Thus, Tm1f is an isometry between H(Mβ)m1 and H(Mβ)m2 . This shows that hx

does not depend on the choice of m in the fibre π−1(x).

Let m 7→ pm be a smooth assignment of the orthogonal projection

pm : TmMβ → H(Mβ)m

of TmMβ onto H(Mβ)m. Since dπm|Hm is an isomorphism, π is a local diffeomor-

phism. Let σ be the local section of π. If U is an open subset of Bβ and x ∈ U ,

let v′, w′ ∈ Tσ(x)Mβ, then
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hx(v, w) = i∗gM(σ(x))(pσ(x)v
′, pσ(x)w

′),

where

pσ(x)v
′ = ṽ ∈ H(Mβ)σ(x)

and

pσ(x)w
′ = w̃ ∈ H(Mβ)σ(x).

As the right side is the composition of smooth maps we conclude that x 7→ hx is

smooth and

dπm|Hm : H(Mβ)m → Tπ(m)Bβ

is an isometry. By this construction we have shown that

π : µ−1(β)→ µ−1(β)/Gβ

is a Riemannian submersion. �

Definition 4.4.2 An almost Hermitian manifold is an almost complex manifold

(M,J) with a chosen Riemannian structure gM such that

gM(JX, JY ) = gM(X, Y ),

for all X, Y ∈ TM.

Definition 4.4.3 Let (M,JM) and (N, JN) be almost Hermitian manifolds, a

map

Φ : M → N

is called almost complex if it commutes with almost complex structures, that is, if
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Φ∗ ◦ JM = JN ◦ Φ∗.

An almost complex mapping between almost Hermitian manifolds which is also

a Riemannian submersion is called a almost Hermitian submersion.

Proposition 4.4.1 Let Φ : M → N be an almost Hermitian submersion, then

the horizontal and the vertical distributions determined by Φ are JM -invariant.

That is
JM{V (M)} = V (M)

JM{H(M)} = H(M).

Proof. Let (M,JM , gM) and (N, JN , gN) be two almost Hermitian manifolds

and Φ : M → N an almost Hermitian submersion. Then Φ is an almost complex

mapping and we have

Φ∗ ◦ JM = JN ◦ Φ∗.

Let V be a vertical vector, then Φ∗V = 0 since V ∈ ker Φ∗. We now have

Φ∗(JMV ) = JN(Φ∗V ) = 0.

Thus Φ∗(JMV ) = 0 which shows that JMV is a vertical vector. If now X is a

horizontal vector, then for any vertical vector V, we have

gM(X, V ) = 0,

since they belong to orthogonal complement subspaces. We then have,

gM(JMX, V ) = gM(J2
MX, JMV )

= −gM(X, JMV )

= 0.

Thus, JMX is horizontal vector.() See [40, p. 151]). �

Definition 4.4.4 Let Φ : M → N be an almost Hermitian submersion. A hori-

zontal vector field X on M is called a basic vector field if there is a smooth vector

field denoted by X∗ on N such that X and X∗ are Φ-related.
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We shall first state the difficulties that may arise with regard to transformation

of the almost complex structure to the reduced space by the projection map.

Let the symplectic manifold (M,ω) be a real manifold and gM a Riemannian

structure on M such that

ω(·, ·) = gM(J ·, ·).

Let X be a vector field on M. Then

0 = ω(X,X) = gM(JX,X).

That is, gM(JX,X) = 0, and since gM is positive definite we conclude that JX

is orthogonal to X. Thus, if X is a horizontal vector field then JX belong to the

orthogonal complement which in this case is the vertical space. Therefore, even

if X is a basic vector field there is no guarantee that JX will be a basic vector

field.

Another difficulty arises from the push-forward of the almost complex structure.

Even when the kernel of the differential of πβ is preserved by J , there need not

be an almost complex structure on the image πβ(Mβ) which make dπβ complex

linear as the following example shows.

Consider the twistor fibration (see [13]).

π : CP 3 → HP 1 = S4

C · v 7→ H · v, v ∈ C4

which sends a complex line through the origin in C4 to its quaternionic span

in H2. For each point x ∈ HP 1, the inverse image π−1(x) are complex lines

in CP 3. Thus the fibers of π are holomorphic submanifolds of CP 3 which are

compact and connected. However, it has been proved that HP 1 does not admit

any almost complex structure. This shows that the push-forward of an almost

complex structure by a submersion does not necessarily yield an almost complex

structure on its image for which the differential of the map is complex linear.

(See [6, p. 8]) for the details of this example.

Another example of this phenomenon is found among covering maps of smooth

manifolds π : E → B where E has a complex structure. The immediate example
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is the covering map CP 1 → RP 2. It is immediate that RP 2 does not admit any

complex structure since it is not orientable. For the next theorem see also [9].

Theorem 4.4.2 Let (M,ω) be a symplectic manifold and G a Lie group of isome-

tries of M . Let Φ : G × M → M be a hamiltonian action of G on M with

Ad∗-equivariant momentum mapping

µ : M → g∗.

Let β ∈ g∗ be a regular value of µ and Gβ be the isotropy subgroup of β acting

freely and properly on µ−1(β). Given a compatible almost complex structure JM

on M and a Riemannian metric gM which satisfies the compatibility condition,

ω(X, Y ) = gM(JMX, Y ),

for all X, Y ∈ TM , let ωβ be the reduced symplectic form on the reduced symplectic

manifold µ−1(β)/Gβ. Then there exists an almost complex structure Jβ and a

Riemannian metric gβ on the reduced space µ−1(β)/Gβ which make

π : µ−1(β)→ µ−1(β)/Gβ

a Riemannian submersion and satisfies the condition

ωβ([u], [v]) = gβ(Jβ[u], [v])

for all [u], [v] ∈ T (µ−1(β)/Gβ) if and only if

π : µ−1(β)→ µ−1(β)/Gβ

is an almost complex mapping.

Proof. Let hβ be the Riemannan metric on µ−1(β)/Gβ as in theorem 4.4.1.

Since µ−1(β)/Gβ is a symplectic manifold, there is a almost complex structure

Jβ and a Riemannian metric gβ such that if [u], [v] ∈ T (µ−1(β)/Gβ) then
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ωβ([u], [v]) = gβ(Jβ[u], [v]), see Proposition 4.3.2.

It is sufficient to find a condition for which

hβ = gβ.

Let x ∈ µ−1(β)/Gβ, we have seen from theorem 4.4.1 that if m ∈ π−1(x), then

π−1(x) = {gm : g ∈ G}

is the fibre through m . The tangent space to the fibre Tm(π−1(x)) is the kernel

of the differential of π at m. That is,

ker dπm = Tm(π−1(x)).

We have classified this tangent space as the set of vertical vectors of the Rieman-

nian submersion π. We also have by the Symplectic Reduction Theorem (see [27,

p. 15]) that

(Tm(µ−1(β)))ω = Tm(G ·m).

But G ·m = {gm : g ∈ G} = π−1(x) is the fibre through m. So if X 6∈ Tm(π−1(x))

then there is a Y ∈ Tm(µ−1(β)) such that ω(X, Y ) 6= 0. That is,

ω(m)(X, Y ) = ωβ([m])([X], [Y ]) = gβ([m])(Jβ[X], [Y ]) 6= 0. (4.6)

But we also have that

ω(m)(X, Y ) = gM(m)(JMX, Y ) = hβ(π(m))(π∗(JMX), π∗Y ), (4.7)

by Theorem 4.4.1. In particular, if X and Y are basic vector fields, then equation

(4.6) and (4.7) imply that

gβ(π(m))(Jβ(π∗X), π∗Y ) = hβ(π(m))((JMX)∗, Y∗) ◦ π
= π∗hβ(m)(JX, Y )

= hβ(π(m)(π∗(JMX), π∗Y ).
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But this relation holds if and only if

Jβ(π∗X) = π∗(JMX),

if and only if

π∗ ◦ JM = Jβ ◦ π∗,

if and only if π is an almost complex mapping. This completes the proof of the

theorem. �
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5

Adjoint orbits and coadjoint Orbits

This chapter involves background ideas from representation theory. That is, the

adjoint and coadjoint representations as well as the actions of Lie groups giving

orbit spaces. We are more interested in those quotient spaces that result from

transitive actions, the homogeneous spaces. We mention flag and generalised flag

manifolds. These are an important class of homogeneous spaces which admit a

complex structure, a Kähler structure and a symplectic structure as mentioned

in [3]

5.1. Adjoint action

Definition 5.1.1 Let G be a Lie group and g ∼= TeG be its Lie algebra where e

is the identity element in G. Then the smooth action

Φ : G× g→ g; (g, ξ) 7→ Ad(g)ξ

is called the adjoint action of G on its Lie algebra g, which we denote by

Ad : G× g→ g.

Definition 5.1.2 Let Ad : G× g→ g be the adjoint action of a Lie group G on

its Lie algebra g and let ξ ∈ g. We define the adjoint orbit of ξ to be

Oξ = {Ad(g)ξ : g ∈ G} ⊂ g.

The stability group also called the isotropy group of ξ is given by

Gξ = {g ∈ G : Ad(g)ξ = ξ}.
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This is a closed subgroup of G (see [18, p 16]). If η ∈ Oξ then there is some g ∈ G
such that η = Ad(g)ξ.

We shall now show that an adjoint orbit can be represented as homogeneous

space. For a similar construction (see [10, pp 127-129]). Define a map

ρ : Oξ → G/Gξ

by

ρ(η) = gGξ,

for all η ∈ Oξ and g ∈ G such that

η = Ad(g)ξ.

The map ρ is well defined since if also ρ(η) = hGξ for some h ∈ G then

Ad(g)ξ = Ad(h)ξ,

which implies that

Ad(h−1) ◦ Ad(g)ξ = ξ.

This gives h−1g ∈ Gξ and

gGξ = hGξ.

The map ρ is injective. Let η = Ad(g)ξ, µ = Ad(h)ξ and suppose that gGξ = hGξ.

Then

h−1g ∈ Gξ,

so that

Ad(h−1g)ξ = Ad(h−1) ◦ Ad(g)ξ = ξ.
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This implies then that

η = Ad(g)ξ = Ad(h)ξ = µ.

Clearly ρ is surjective, since for g ∈ G and η = Ad(g)ξ ∈ Oξ gives ρ(η) = gGξ by

construction.

If η = Ad(h)ξ, for some h ∈ G, then Gη = Ad(h)GξAd(h−1). Thus, for all g ∈ G
we have

G/Gξ
∼= G/GAd(g)ξ.

This shows that the definition of G/Gξ does not depend on the choice of the

element ξ in its adjoint orbit. Thus,

G/Gξ
∼= Oξ.

Now let M = G/Gξ
∼= Oξ. Then the Lie group G acts transitively on M so that

M is a homogeneous space. (See Example 2.2.0.2).

Let X ∈ g. The vector field on g corresponding to X, called the infinitesimal

generator of the action, is defined by

Xg(ξ) =
d

dt
(Ad(exp tX)ξ) |t=0 .

To determine the tangent space to the adjoint orbit Oξ at ξ, let X ∈ g and let

x(t) = exp tX be the curve in G which is tangent to X at t = 0, then

ξ(t) = Ad(exp tX)ξ

is the curve on Oξ such that ξ(0) = ξ. Let Y ∈ g, then

〈ξ(t), Y 〉 = 〈Ad(exp tX)ξ, Y 〉,

where 〈·, ·〉 is the natural pairing on g. Differentiating with respect to t at t = 0

we get
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〈ξ′(0), Y 〉 =
d

dt
〈Ad(exp tX)ξ, Y 〉 |t=0

= 〈 d
dt

(Ad(exp tX)ξ) |t=0, Y 〉

= 〈ad(X)ξ, Y 〉.

Thus ξ′(0) = ad(X)ξ. Therefore, the tangent space to the orbit Oξ at ξ is given

by

TξOξ = {ad(X)ξ : X ∈ g}

5.2. An example of adjoint orbits as flag manifolds

The examples of adjoint orbits that will be of interest to us are the generalized

flag manifolds. These orbits are known to hold a symplectic structure. General-

ized flag manifolds are homogeneous spaces which can be expressed in the form

G/C(S), where G is a compact Lie group and

C(S) = {g ∈ G : gx = xg, for all x ∈ S}

is the centraliser of a torus S in G.

Definition 5.2.1 Let Cn be an n−dimensional complex space. A flag is an in-

creasing sequence of complex subspaces ordered by inclusion

W = V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn

in the sense that each Vi is a proper subset of Vi+1 for i = 1, · · · , n− 1 and such

that dimVk = k for k = 1, · · · , n.

Remark 5.2.1 This definition holds for subspaces of a finite dimensional vector

space.
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Since Vn ' Kn, the example below deal with the flags in the canonical vector

space or field Kn.

Example 5.2.0.1 Let {e1, e2, · · · , en} be the canonical basis for the complex vec-

tor space Cn. Then the standard flag is given by

W0 = SpanC{e1} ⊂ SpanC{e1, e2} ⊂ · · · ⊂ SpanC{e1, · · · en} = Cn.

We shall now show that flag manifolds are homogeneous spaces.

Let Fn be the set of all flags in Cn and let W0 be the standard flag above. The

Lie group

U(n) = {A ∈ Gl(n,C) : ĀTA = I},

where ĀT denotes the transpose of the conjugate of A, will play a key role here.

First the action of the Lie group U(n) on Fn is transitive. To see this consider

an arbitrary flag

W = V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn.

Then U(n) acts on Fn by left multiplication. That is, if S ∈ U(n) then

SW = SV1 ⊂ SV2 ⊂ · · · ⊂ SVn = Cn.

Let v1 be a unit vector in V1 such that

V1 = SpanC{v1}.

Next choose a unit vector v2 in V2 orthogonal to V1 such that

V2 = SpanC{v1, v2}.

Having chosen unit vectors {v1, · · · , vk} with

Vk = SpanC{v1, · · · , vk},
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choose a unit vector vk+1 in Vk+1 orthogonal to Vk such that

Vk+1 = SpanC{v1, · · · , vk+1}.

Continuing this construction we obtain a set of orthonomal unit vectors {v1, · · · , vn−1}
such that

Vj = SpanC{v1, · · · , vj}.

Let vn be a unit vector in Vn orthogonal to Vn−1. The set {v1, v2, · · · , vn} is

another orthonormal basis for Cn. It is now a result of linear algebra that there

is n× n matrix S = (aij) such that

vi =
n∑
j=1

aijej.

Then S ∈ U(n) and SW0 = W . Thus U(n) acts transitively on Fn as earlier

claimed.

The isotropy subgroup of W is

{A ∈ U(n) : AVj = Vj}.

In particular, this is a set of matrices A ∈ U(n) such that

Avk = λkvk,

for some complex number λk with | λk |= 1 since A ∈ U(n). Thus

λk = eiθk ∈ U(1).

Since this must be true for each vj, j = 1, 2, · · · , n, the matrix A must be of the

form

A = diag(eiθ1 , · · · , eiθn).

Thus
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Fn = U(n)/U(1)× · · · × U(1).

The generalized flag manifold can now be constructed as follows:

Let {n1, · · · , nk} be a set of positive integers such that n1 +n2 + · · ·+nk = n. A

partial flag is an element

W = V1 ⊂ · · · ⊂ Vk,

with

dimVk = n1 + · · ·+ nk.

We can visualize this as a sum of vector spaces. For example, let Q1, Q2, · · · , Qn

be a set of subspaces of Cn with dimQ1 = n1 , dimQ2 = n2 · · · dimQn−1 = n−1.

Set

V1 = Q1

V2 = Q1 ⊕Q2

· · ·
Vn−1 = Q1 ⊕Q2 ⊕ · · · ⊕Qn−1.

Then V1 ⊂ · · · ⊂ Vn−1 and dimVj = n1 + · · ·+ nj. The flag

W = V1 ⊂ · · · ⊂ Vk,

with

dimVk = n1 + · · ·+ nk, k ≤ n,

is called a partial flag.

A generalized flag manifold is a set F (n1, · · · , nk) of all partial flags with n1+n2+

· · ·+nk = n. Generalized flag manifolds just like flag manifolds are homogeneous

spaces (see[3, p 70]).
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Throughout, the discussion that follow, the Lie group G will be compact and

connected.

Let

U(n) = {A ∈ GL(n,C) : ĀTA = I},

be the unitary group, where ĀT denotes the transpose of the conjugate of A.

Then

(i) U(n) is compact:

First notice that U(n) is a closed subgroup of GL(n,C) since

U(n) = det−1(S1) = det−1(U(1). Also, U(n) is bounded. For

let A = (αij) ∈ U(n). One has
∑

αij · βjk = δik, the Kronecker delta, with

βjk = ᾱkj. Hence, if k = i one has∑
αij · ᾱji = 1

which implies that
n∑
i=1

(
n∑
j=1

|αij|2
)

= n.

Now,

‖A‖ =

(
n∑

i,j=1

|αij|2
) 1

2

=
√
n <
√
n+ 1.

Thus,

A ∈ B(0,
√
n+ 1), where r =

√
n+ 1.

One concludes that A ∈ U(n) implies that A ∈ B(0, r) and U(n) ⊂ B(0, r),

where r =
√
n+ 1. Since this is true for each A ∈ U(n), then U(n) is also

bounded. Thus, U(n) is compact. (See [7]).

(ii) U(n) is connected since if we consider the action of U(n) on Cn given by

(A,X) 7→ AX,

for all A ∈ U(n) and X ∈ Cn, then
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‖AX‖2 = (AX)T (AX)

= X̄T ĀTAX

= X̄TX

= ‖X‖2.

Thus, this action takes sets of the form

{(z1, · · · , zn) :| z1 |2 + | z2 |2 + · · ·+ | zn |2= 1}

into sets of the same kind. In particular, the orbit of e1 under this action is

the unit sphere S2n−1. The stabilizer of the same element e1 are matrices

of the form

(
1 0

0 A1

)
,

where A1 ∈ U(n− 1). Thus

S2n−1 = U(n)/U(n− 1).

But S2n−1 is connected which implies that U(n) is connected if and only

if U(n − 1) is connected. Since U(1) = S1 is connected, we conclude by

induction on n that U(n) is connected.

The Lie algebra of U(n) is the space of all skew-Hermitian matrices

u(n) = {A ∈Matn×n(C) : A+ ĀT = 0}.

We now want to determine the orbits of adjoint representation of the Lie group

G = U(n) on its Lie algebra g = u(n).

Let Ad : G× g→ g be the action of G on its Lie algebra g. Let X ∈ g, then the

orbit of X is given by:

OX = {AdgX : g ∈ G}
= {Y ∈ g : Y = gXg−1, for some g ∈ G}
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This is a set of similar matrices since the action is by conjugation. Recall that

every skew Hermitian matrix is diagonalizable and that all the eigenvalues of a

skew Hermitian matrix are purely imaginary. This means that X is

U(n)− conjugate to a matrix of the form Xλ = diag(iλ1, iλ2, · · · , iλn) for

λj ∈ R, j = 1, · · · , n. Since similar matrices have same eigenvalues, without

loss of generality we can describe the adjoint orbit of X to be the set of all

skew Hermitian matrices with eigenvalues iλ1, iλ2, · · · , iλn. Denote this set of

eigenvalues by λ and the orbit determined by the corresponding eigenspaces by

H(λ). Note that H(λ) is a vector space since it is a closed subgroup of a linear

group GL(n,C).

Case 1 : All the n eigenvalues are distinct.

Let xj be the eigenvector corresponding to the eigenvalue iλj, then we have

gxj = iλjxj. This gives a 1-dimensional subspace Pj of Cn which is a line in the

complex plane passing through the origin.

Assuming λ1 < λ2 < · · · < λn. Note that the eigenvectors corresponding to dis-

tinct eigenvalues are orthogonal. Now each element in H(λ) has same eigenvalues

iλ1, · · · , iλn, however, it is only distinguished by its corresponding eigenspaces

P1, · · · , Pn. Thus for each n−tuple (P1, P2, · · · , Pn) of complex lines in Cn which

are pairwise orthogonal, there will be an associated element h ∈ H(λ) and each

element h ∈ H(λ) determines a family of eigenspaces (P1, P2, · · · , Pn).

Let (P1, · · · , Pn) 7→ P1 ⊂ P1⊕P2 ⊂ · · · ⊂ P1⊕P2⊕ · · ·⊕Pn = Cn and define the

vector space Vj by Vj = P1⊕· · ·⊕Pj. Then W = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn is a flag

we have already seen and the totality of such flags Fn = U(n)/U(1)× · · · ×U(n)

is the flag manifold described earlier. There is a bijection from H(λ) to Fn which

associates to each element h ∈ H(λ) the subspaces Vj = P1 ⊕ · · · ⊕ Pj where Pj

is the eigenspace of h corresponding to the eigenvalue iλj. This shows that the

adjoint orbits are diffeomorphic to flag manifolds.

Case 2: There are k < n distinct eigenvalues.

We again order the eigenvalues λ1 < · · · < λk. Let n1, n2, · · · , nk be their mul-

tiplicities respectively. Let Qj be the eigenspace corresponding to the eigenvalue

iλj. We assume that dimQi = ni, i = 1, · · · , k. Then the orbit of X is again de-

termined by the eigenspaces Q1, · · · , Qk. We form an increasing sequence ordered
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by inclusion as before

(Q1, Q2, · · · , Qk) 7→ Q1 ⊂ Q1 ⊕Q2 ⊂ · · · ⊂ Q1 ⊕ · · · ⊕Qk = Cn.

Let F (n1, n2, · · · , nk) be the set of all such sequences. Then the orbit of X is

diffeomorphic to the homogeneous space

F (n1, · · · , nk) = U(n)/(U(n1)× · · · × U(nk)) which as we have already seen is a

generalized flag manifold. (See also [5, proposition II.1.15]).

5.2.1 Killing form

Definition 5.2.2 Given any Lie algebra g, the Killing form of g denoted by B,

is a symmetric bilinear form B : g× g→ R given by

B(X, Y ) = tr(ad(X) ◦ ad(Y )), for all X, Y ∈ g

where tr is the trace of the composition.

We call B the Killing form of the Lie group G provided g is the Lie algebra of G.

Remark 5.2.2 If g is the Lie algebra of the Lie group G, then the Killing form

B is Ad-invariant. That is,

B(X, Y ) = B(Ad(g)X,Ad(g)Y )

for all g ∈ G and X, Y ∈ g.

(See [3, proposition 2.10]).

By Cartan’s criterion for semisimplicity, a finite dimensional Lie group G is said

to be semisimple if its Killing form is non-degenerate. (See [3, p. 34]).

Proposition 5.2.1 Let G be an n-dimensional semisimple Lie group. Then the

center of its Lie algebra is trivial, that is Z(g) = 0.

Proof. Let X ∈ Z(g), then for all Y ∈ g we have [X, Y ] = 0 since X commutes

with every element of g. Thus
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[X, Y ] = adX(Y ) = 0.

This shows that adX is a zero operator. But then we have

B(X,X) = tr(ad(X) ◦ ad(X)) = 0.

Since B is non-degenerate we must have X = 0. This completes the proof. �

For the following two theorems see ([3, pp. 34-35]).

Theorem 5.2.1 Let G be an n-dimensional semisimple Lie group. If G is com-

pact then its Killing form is negative definite.

Theorem 5.2.2 Let G be an n-dimensional connected Lie group. If the Killing

form of G is negative definite on g, then G is compact and semisimple.

5.3. Adjoint orbits as symplectic manifolds

We have seen that the adjoint orbits of flag manifolds are determined by the

eigenspaces corresponding to a set of eigenvalues iλ1, · · · , iλk. Denote this set of

eigenvalues by λ and the orbit determined by the corresponding eigenspaces by

H(λ). Let G = U(n) be a Lie group and g = u(n) its Lie algebra. First note that

the dimension of orbit H(λ) is n2 − n which is even.

For X ∈ g we have seen that if x(t) = exp tX is a curve in G tangent to X

at t = 0, then ξ(t) = Adx(t)ξ = Adexp tXξ is a curve in H(λ) passing through

ξ ∈ u(n). Then the tangent vector to this curve at t = 0 is given by

ξ′(t) = d
dt
Adexp tXξ |t=0,

or

ξ′(0) = ad(X)ξ = [ξ,X].
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We shall now construct a symplectic 2-form on the orbit H(λ). Let h be an

element of u(n). Define a map

ωh : g× g→ R

by

ωh(X, Y ) = B(h, [X, Y ]),

where B is the Killing form of g, the Lie algebra of G.

Proposition 5.3.1 Let ωh be as defined above. Then

(i) ωh is skew symmetric bilinear form on g = u(n);

(ii) kerωh = {X ∈ u(n) : [h,X] = 0};

(iii) ωh is G-invariant. That is, for each g ∈ G we have

ωAd(g)(h)(AdgX,AdgY ) = ωh(X, Y ).

Proof. Part (i) follows from the properties of the Lie bracket.

For part (ii) (see [2, p 19]). We prove part (iii).

ωAd(g)(h)(AdgX,AdgY ) = B(Adgh, [AdgX,AdgY ])

= B(Adgh, [gXg
−1, gY g−1])

= B(Adgh, {gXY g−1 − gY Xg−1})
= B(Adgh, g[X, Y ]g−1)

= B(Adgh,Adg[X, Y ])

= B(h, [X, Y ])

= ωh(X, Y ). �

Now for h ∈ u(n), we consider the orbit map

Φh : U(n)→ u(n)

g 7→ ghg−1.

That is

Φh : U(n)→ H(λ) ⊂ u(n).
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Then we have:

TIΦh : u(n)→ ThH(λ).

But the tangent space on the orbit is generated by the vector field

ad(X)ξ = [X, ξ],

where X, ξ ∈ g. Define a 2-form Ωh on ThH(λ) by the formula

Ωh([h,X], [h, Y ]) = ωh(X, Y ), for X, Y ∈ u(n)

Proposition 5.3.2 The Ωh defined above is a closed and nondegenerate 2-form

on the orbit H(λ).

Proof. First note that Ωh does not depend on the choice of X, Y ∈ u(n) since if

Z ∈ kerωh then we have:

Ωh([h,X + Z], [h, Y + Z]) = ωh(X + Z, Y + Z) = B(h, [X + Z, Y + Z])

= B(h, [X, Y ] + [X,Z] + [Z, (Y + Z)])

= B(h, [X, Y ]) +B(h, [X,Z]) +B(h, [Z, (Y + Z)])

= ωh(X, Y ) + ωh(X,Z) + ωh(Z, (Y + Z))

= ωh(X, Y )

= Ωh([h,X], [h, Y ]).

Thus Ωh is well defined. It is skew-symmetric bilinear form and G−invariant by

the construction so it is smooth. Since the Killing form B is non-degenerate, Ωh

is non-degenerate. We only have to show that it is closed.

Let X, Y, Z ∈ u(n). Then,

dΩh([h,X], [h, Y ], [h, Z]) = dωh(X, Y, Z)

= {LXωh(Y, Z)− LY ωh(X,Z) + LZωh(X, Y )}
+ {ωh(X, [Y, Z])− ωh(Y, [X,Z]) + ωh(Z, [X, Y ])}.

We now apply the Jacobi identity to each bracket given by the braces. The second

bracket gives:
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ωh(X, [Y, Z]) − ωh(Y, [X,Z]) + ωh(Z, [X, Y ])

= B(h, [X, [Y, Z]])−B(h, [Y, [X,Z]]) +B(h, [Z, [X, Y ]])

= B(h, [X, [Y, Z]]− [Y, [X,Z]] + [Z, [X, Y ]]),

and the term in the bracket is zero by the Jacobi identity since u(n) is the Lie

algebra of U(n). To deal with the first bracket we have:

LXωh(Y, Z) = ωh(Z, [X, Y ])− ωh(Y, [X,Z])

LY ωh(X,Z) = ωh(Z, [Y,X])− ωh(X, [Y, Z])

LZωh(X, Y ) = ωh(Y, [Z,X])− ωh(X, [Z, Y ]).

Substituting into the first bracket and simplifying gives:

LXωh(Y, Z) − LY ωh(X,Z) + LZωh(X, Y )

= 2 (ωh(X, [Y, Z]) + ωh(Y, [Z,X]) + ωh(Z, [X, Y ])) ,

which again vanishes by Jacobi identity.

Thus, dΩh = 0 proving that Ωh is indeed closed on the orbits of the adjoint action

of the Lie group G on its Lie algebra g. �

5.4. Coadjoint orbits

We now describe briefly the orbits of the coadjoint action of a Lie group G on

the dual of its Lie algebra. There are many references to this section such as [1]

as well as [38].

Consider the Lie group G acting on itself by left translation Lg : G→ G , h 7→ gh,

for g ∈ G. This map is a diffeomorphism so by lifting of diffeomorphisms induces

a symplectic action on its cotangent bundle

Φ : G× T ∗G→ T ∗G

(g, αh) 7→ Φ(g, αh) = L∗g−1(αh).

This action has a momentum mapping which is equivariant with the coadjoint
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action. The momentum mapping of this action is given by

µ : T ∗G→ g∗

µ(αg)ξ = αg(ξG(g)) = αg(Rg)∗eξ = (R∗gαg)ξ,

for all ξ ∈ g.

That is, µ(αg) = R∗gαg. Every point β ∈ g∗ is a regular value of the momentum

mapping µ (see [38, p 282]). So we have for each β ∈ g∗

µ−1(β) = {αg ∈ T ∗G : µ(αg) = β}
= {αg ∈ T ∗G : R∗gαgξ = β · ξ for all ξ ∈ g}.

In particular, R∗eαeξ = β · ξ implying that αe = β. Denote this 1-form by αβ so

that

αβ(e) = β. (5.1)

For g ∈ G, applying the right translation R∗g−1 to Equation (5.1) gives a right-

invariant 1-form on G

αβ(g) = R∗g−1β. (5.2)

But now for all g ∈ G we have

µ(αβ(g)) = µ(αg)

= R∗gR
∗
g−1β = β.

Thus, Equation (5.2) defines all and only points of µ−1(β). Since the action is

defined by

Φ(g, αh) = L∗g−1(αh),

the isotropy subgroup of β is

Gβ = {g ∈ G : L∗g−1(αβ) = β}.

From the map

L∗g−1 : (h, αβ(h)) −→ (gh, αβ(gh))
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we see that Gβ acts on µ−1(β) by left translation on the base points. This action

is proper (see [38, p 283]). Since β is also a regular value of the momentum

mapping µ, then µ−1(β)/Gβ is a symplectic manifold. There is a diffeomorphism

µ−1(β)/Gβ ' G · β = {Ad∗g−1β : g ∈ G} ⊂ g∗ (see [38, p 284]),

of the reduced space µ−1(β)/Gβ onto the coadjoint orbit of β ∈ g∗. Thus the

coadjoint orbit G · β is a symplectic manifold. The symplectic 2-form is given by

the Kirillov-Kostant-Souriau form

ωβ(ν)(ξg∗(ν), ηg∗(ν)) = −ν · [ξ, η] (see [1, pp 302-303]),

where ξ, η ∈ g and ν ∈ g∗.

If G is semisimple, it is known that in this case, H1(g,R) = 0. (see [2, p 19]).

Thus if ω is closed then it is exact. So, there is a 1-form α ∈ g∗ such that

dα = ω where g∗ is the dual to the Lie algebra of G. The 1-form α satisfies

dα(X, Y ) = α([X, Y ]).

Thus if the Lie group G is semisimple, compact and connected, then we have the

relation:

α([X, Y ]) = dα(X, Y ) = ω(X, Y ) = B([ξ,X], Y ) = B(ξ, [X, Y ]), (5.3)

where α ∈ g∗,ω a 2-form on the homogeneous space G/H, B the Killing form on

G/H and ξ,X, Y ∈ g, the Lie algebra of G. Note that the first term in equation

(5.3), is the 2-form on the coadjoint orbit while the last term is the 2-form on the

adjoint orbit.

5.5. Adjoint and coadjoint orbits are symplectomorphic

homogeneous spaces

We shall now show that the adjoint orbit is diffeomorphic to the coadjoint orbit

and that the diffeomorphim between them is actually a symplectic morphism. As

such, we can use this map to pull back the symplectic structure on the coadjoint

orbit to the adjoint orbit. This will provide another proof that the adjoint orbit

is a symplectic homogeneous space. (See also [8]).
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In this section we make a general assumption that the Lie group G acts transi-

tively on its Lie algebra g by the adjoint action, and also acts transitively on the

dual g∗ by the coadjoint action.

Theorem 5.5.1 Let Ad : G × g → g be an adjoint action of an n-dimensional

semisimple, compact, connected Lie group G on its Lie algebra g ∼= TeG. Let g∗

be the dual of g.Then there is an Ad∗-equivariant isomorphism B[ : g→ g∗.

Proof. Let

B[ : g→ g∗; (X 7→ B[(X) : g→ R) such that Y 7→ B[(X)Y := B(X, Y ),

where B is the Killing form. Then B[ is linear since of for all X, Y, Z ∈ g and

using the fact that the Killing form B is bilinear, we have:

B[(aX + bY )Z = B(aX + bY, Z)

= aB(X,Z) + bB(Y, Z)

= aB[(X)Z + bB[(Y )Z

= (aB[(X) + bB[(Y ))Z.

Thus

B[(aX + bY ) = aB[(X) + bB[(Y ).

To see that B[ is injective let B[(X) = B[(Y ). Then for all Z ∈ g,

B[(X)Z = B[(Y )Z ⇒ B(X,Z) = B(Y, Z)⇒ B(X − Y, Z) = 0,

and since the Killing form is non degenerate, we get

X = Y.

To see that the map is surjective first note that G is finite dimensional Lie group,

we have dim g∗ ≤ dimG = dim g. But B[ is injective so that

dim g ≤ dim g∗. We have kerB[ = {0} implying that dim kerB[ = 0. But

dim kerB[ + RankB[ = dim g, so we must have

dim g∗ = dim ImB[ = RankB[ = dim g. This shows that the map B[ is surjective.
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To show that B[ : g → g∗ is equivariant with respect to the adjoint action of G

on g and the coadjoint action of G on g∗ define a map

u : G× g→ G× g∗; (g,X) 7→ (g,B[X), for all X ∈ g and g ∈ G,

where the map u is defined by

u := IdG ×B[.

We must then show that the following diagram commutes:

G× g

Adg

��

u // G× g∗

Ad∗

��
g

B[ // g∗

In effect let (g,X) ∈ G× g, then for all Y ∈ g, and using the natural pairing we

have

B[(AdgX)Y = B(AdgX, Y )

= B(Adg−1 ◦ AdgX,Adg−1Y )

= B(X,Adg−1Y )

= B[(X)(Adg−1Y )

= Ad∗gB
[(X)(Y ).

The second and the third equalities is because the Killing form B is Ad-invariant.

The last equality is by definition of Ad∗, see definition 2.1.15.

That is,

B[(AdgX) = Ad∗gB
[X,

and the above diagram commute as we required.

This gives the equivariance relation

B[ ◦ Adg = Ad∗g ◦B[. (5.4)
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This completes the proof of the theorem. �

Let

πg : g→ g/G

and

πg∗ : g∗ → g∗/G,

be the projection maps into the respective orbit spaces. Then, (see [32, p 10])

and theorem 2.1.3, there is at most one manifold structure on g/G respectively on

(g∗/G) such that πg respectively (πg∗) are submersions. In fact note for example

that the rank of dπg is equal to the dimension of its image and since dim g/G ≤
dim g then πg is a submersion. Since

B[ : g→ g∗

is equivariant, and πg and πg∗ are submersions, the criterion of passage to quo-

tients (see [1, p 264]) implies that there is an induced unique map

B̂[ : g/G→ g∗/G,

B̂[[X] = [α] := [B[(X)],

where [X] is adjoint orbit through X and [α] := [B[(X)] the corresponding coad-

joint orbit through B[(X) = α. This gives the following commutative diagram:

G× g

Adg

��

u // G× g∗

Ad∗

��
g

πg

��

B[ // g∗

πg∗

��
g/G

B̂[ // g∗/G

µ := (IdG ×B[).
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Theorem 5.5.2 Let G be a compact, connected semisimple Lie group. Let g be

its Lie algebra and g∗ the dual of g. Assume further that G acts transitively on

g by the adjoint action and transitively on g∗ by the coadjoint action. Let B[ be

as in theorem 5.5.1 and let B̂[ : g/G → g∗/G be the map induced by passage to

quotients as described above between adjoint and coadjoint orbit spaces. Then,

the map B̂[ is a symplectic diffeomorphism.

Proof. The map B̂[ is well defined because of [37, proposition 1.3.5]. To show

that B̂[ is injective note first that the following diagram commute:

g

πg

��

B[ // g∗

πg∗

��
g/G

B̂[ // g∗/G

The commuting of this diagram is now a consequence of the fact that B[ is both

an isomorphism and is equivariant with respect to the adjoint action and the

coadjoint action. That is,

B[ ◦ Adg(X) = Ad∗g ◦B[(X),

for all X ∈ g and for all g ∈ G. If we fix X ∈ g and let g run through all

the elements of G then on the left we get all the elements in the orbit through

X while on the right we get all the elements in the orbit through B[(X) = α.

Consequently, we must have

B̂[ ◦ πg(X) = πg∗ ◦B[(X),

for all X ∈ g.

We can now show that B̂[ is injective. The commuting of the above diagram says

that

B̂[ ◦ πg = πg∗ ◦B[. (5.5)

Suppose
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B̂[([X]) = B̂[([Y ]),

then

πg∗ ◦B[(X) = πg∗ ◦B[(Y ),

so that

[B[(X)] = [B[(Y )].

This implies that B[(Y ) ∈ [B[(X)]. Thus

B[(Y ) = Ad∗gB
[(X),

for some g ∈ G, so that

B[(Y ) = B[(Adg(X)),

by equivariance of B[. But B[ is an isomorphism, so we must have

Y = Adg(X),

and it follows that

Y ∈ [X].

But this means that

Y ∈ [X] ∩ [Y ].

Since equivalence classes are disjoint, we must have

[X] = [Y ],
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and B̂[ is injective. From the relation B̂[ ◦ πg = πg∗ ◦B[, the right hand side is a

composition of smooth map and on the left πg is smooth, this then implies that

B̂[ must be a smooth map.

To show that B̂[ is a surjective map consider the following commutative diagram:

g

πg

��

ϕ

""

B[ // g∗

πg∗

��
g/G B̂[ // g∗/G

We have ϕ = πg∗ ◦ B[. But the right hand side is surjective since B[ is an

isomorphism hence bijective and πg∗ is the projection which is surjective, this

shows that

ϕ : g→ g∗/G, X 7→ [B[(X)],

is surjective. But B̂[ is the factorization of ϕ through g/G,(see also [37, pp 15-

16]), that is, ϕ = B̂[ ◦ πg. Therefore, for any [B[(X)] ∈ g∗/G there is X ∈ g such

that

ϕ(X) = [B[(X)].

This gives

ϕ(X) = B̂[(πg(X)) = B̂[([X]) = [B[(X)].

Thus, for each [B[(X)] ∈ g∗/G there is [X] ∈ g/G such that

B̂[([X]) = [B[(X)],

which shows that B̂[ is bijective so that its inverse (B̂[)−1 exists. We must show

that the inverse is smooth. But now

(B̂[)−1 ◦ πg∗ ◦B[ = πg,
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and since πg is smooth and the other two maps on the left are smooth, this forces

(B̂[)−1 to be smooth. Therefore, B̂[ is a diffeomorphism. Denote by OX the orbit

[X] and by OB[(X) the orbit [B[(X)].

Let OX be the adjoint orbit through X ∈ g. First notice that each element in OX

is of the form gX for some g ∈ G. Now, for any two points y = hX and z = gX

in OX , define a set map fX on OX , as follows:

fX : OX → OX ; y 7→ fX(y) = (gh−1)y = z.

Then, fX maps all points of OX into points of OX . Since G is a Lie group and

gh−1 is smooth for all g, h ∈ G, the map fX is smooth with smooth inverse

f−1
X = hg−1.

In a similar way, define a set map kα on the coadjoint orbit OB[(X) = Oα corre-

sponding to the adjoint orbit OX . That is,

kα : Oα → Oα; β 7→ kα(β) = (rs−1)β = γ,

where α = B[(X), β = sα, γ = rα and r, s ∈ G. Let B̂[
X be the restriction of B̂[

to a small neighborhood of the point OX . Then,

kα ◦ B̂[
X ◦ f

−1
X : OX → OB[(X) = Oα, (5.6)

maps points of OX into points of OB[(X) = Oα and it is smooth since it is a

composition of smooth maps. It is known that coadjoint orbits are symplectic

manifolds with the two form ω̂, called the Kirillov-Kostant-Souriau (KKS) form.

Notice that the orbit OB[(X) = Oα is symplectic since it is a coadjoint orbit. Let

the KKS form be the two form on OB[(X) = Oα, then for all Y, Z ∈ g and r, s ∈ G
we have:

k∗αω̂(Y, Z) = ω̂(kα∗Y, kα∗Z)

= ω̂ ((rs−1)∗Y, (rs
−1)∗Z)

= ω̂ (r∗(s
−1
∗ Y ), r∗(s

−1
∗ Z))

= ω̂(r∗Y, r∗Z)

= ω̂(Y, Z),

since Y, Z ∈ g are left invariant. Thus, k∗αω̂ = ω̂. By similar calculations, for any

2-form Ω̂ on the adjoint orbit OX we must have f ∗XΩ̂ = Ω̂.
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Consider now the pull back of the form ω̂ by the map in equation (5.6),

(
kα ◦ B̂[

X ◦ f
−1
X

)∗
ω̂.

We have (
kα ◦ B̂[

X ◦ f
−1
X

)∗
ω̂ = (f−1

X )∗ ◦ (B̂[
X)∗ ◦ k∗αω̂

= (f−1
X )∗ ◦ (B̂[

X)∗ω̂.

We now consider the 2-form (B̂[
X)∗ω̂ induced by the map B̂[

X . We check if the

form (B̂[
X)∗ω̂ is symplectic. First we have

dB̂[∗
X ω̂ = (B̂[

X)∗dω̂ = 0,

since ω̂ is closed. Thus, the 2-form (B̂[
X)∗ω̂ is closed. To show non degeneracy,

let

(B̂[
X)∗ω̂(Y, Z) = 0, for all Z ∈ g,

then

ω̂(dB̂[
X(Y ), dB̂[

X(Z)) = 0, for all Z ∈ g.

But now since ω̂ is symplectic, ω̂(dB̂[
X(Y ), dB̂[

X(Z)) = 0, for all Z ∈ g implies

that

dB̂[
X(Y ) = 0.

Thus, since dB̂[ is a linear isomorphism,

dB̂[
X(Y ) = 0⇒ Y ∈ ker dB̂[ = {0},

which gives

Y = 0.

103



Thus, (B̂[
X)∗ω̂(Y, Z) = 0, for all Z ∈ g implies that Y = 0 and (B̂[)∗X ω̂ is non

degenerate.

But now the orbit space g/G is a single orbit OX since the action of G on g is

transitive, and the orbit space g∗/G consists of a single orbit Oα since the action

of G on g∗ is transitive. Thus B̂[
X

∗
ω̂ = B̂[

∗
ω̂ is a symplectic form on OX . This

proves that B̂[ is a symplectic map. �

The existence of adjoint orbits that support a symplectic structure is now not in

question. For a connected compact and semi simple Lie groupG and a stabilizer of

an element h0 ∈ g, the Lie algebra of G, Alekseevsky have described homogeneous

spaces G/K which admit an invariant symplectic structure ω. (See [2, p 19]).
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6

Applications to Hamiltonian

mechanics

We now turn to the discussion of Hamiltonian mechanics which centers mainly

around a real valued function, usually denoted by H and called the Hamiltonian

function, or the energy function. The smooth real valued function H can be

used to define a Hamiltonian system on a symplectic manifold (M,ω). Because

the Hamiltonian functions play a fundamental role in Hamiltonian mechanics,

we shall introduce a more general structure than the symplectic structure, the

Poisson structure. The Poisson structure gives a Lie algebra structure to vector

space of smooth functions on the manifold.

6.1. Poisson algebra on a symplectic manifold

There are several ways to introduce a Poisson structure. However, we will be more

concerned about the Poisson structure which is induced by the symplectic struc-

ture. For this reason, we will fix a symplectic manifold (M,ω) and then introduce

the Poisson bracket of 1-forms first before we introduce the Poisson bracket of

smooth functions. We will extend the discussion of Hamiltonian systems using a

deformed Poisson bracket.

Let (M,ω) be a symplectic manifold, X ∈ X(M) and ω ∈ Ω2(M). We define the

inner (interior) product of X and ω by iXω(Y ) = ω(X, Y ) for all Y ∈ X(M).

Other notation for iXω is ω[(X). That is, iXω(Y ) = ω[(X)Y = ω(X, Y ). Since

iXω : X(M) → R, we see that iXω = ω[(X) ∈ Ω1(M). First note that ω[ is
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linear. That is, if X, Y, Z ∈ X(M), then

iX+Y ω(Z) = ω(X + Y, Z)

= ω(X,Z) + ω(Y, Z)

= iXω(Z) + iY ω(Z).

We also have that if (M,ω) is a symplectic manifold with ω given in symplectic

coordinates by ω = dx ∧ dy, then for a vector field X ∈ X(M), the interior

product of a 2-form ω by X is given by

iXω = (iXdx) ∧ dy − dx ∧ (iXdy).

Secondly, since ω is non degenerate, the map ω[ : X(M) → Ω1(M) is injective

and it is also surjective by Proposition (3.2.1), hence

ω[ : X(M)→ Ω1(M)

X 7→ iXω = α,

is an isomorphism [1, p 162], with the inverse

(ω[)−1 : Ω1(M)→ X(M)

α 7→ (ω[)−1(α) = Xα.

6.1.1 Poisson algebra of 1-forms

Definition 6.1.1 Let α, β ∈ Ω1(M). Then, the Poisson bracket of α and β is a

1-form on M given by

{α, β} = −i[Xα,Yβ ]ω,

where [Xα, Yβ] = lim
t→0

1

t
(Yβ − dΦt(Yβ)) is the Lie bracket, and {Φt} is the flow of

Xα satisfying the property;

L[X,Y ] = LXLY − LYLX .

So the module of forms Ω1(M) provided with the Poisson bracket {·, ·}, is a Lie

algebra on R by the structure induced by that of (X(M), [, ]), the Lie algebra of

vector fields. It is denoted by (Ω1(M), {·, ·}).
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Proposition 6.1.1 Let α, β ∈ Ω1(M). Then

(i) {α, β} = −LXα(β) + LXβ(α) + d(iXα ◦ iXβω)

(ii) If α and β are closed, then {α, β} is exact. This leads to the conclusion that

the set of all closed 1-forms on M is a Lie subalgebra of the Lie algebra

Ω1(M).

Proof. See [11, Theorem 3.11 p 79].

Proposition 6.1.2 ω[ : (X(M), [, ])→ (Ω1(M), {·, ·}) is

antimorphism of Lie algebras. That is, ω[([X, Y ]) = −{ω[(X), ω[(Y )}

Proof. See [11, Definition 3.10 p 79].

6.1.2 Poisson algebra of smooth functions

Let f, g ∈ C∞(M) ≡ Ω0(M), then df, dg ∈ Ω1(M). It follows from (ω[)−1 above

that there are vector fields Xf and Xg such that df 7→ Xf and dg 7→ Xg. Then

by ω[ : X(M)→ Ω1(M), Xf 7→ df = iXfω and Xg 7→ dg = iXgω.

Definition 6.1.2 Let f and g be smooth functions on a Poisson manifold M ,

then, the Poisson bracket of the functions f and g is defined by

{f, g} = −iXf ◦ iXgω ∈ Ω0(M).

Note that we have {f, g} = −iXf ◦ iXgω = iXg ◦ iXfω.

Proposition 6.1.3 (i) {f, g} = −LXf (g) = LXg(f);

(ii) d{f, g} = {df, dg};

(iii) X{f,g} = −[Xf , Xg].

Proof. See [11, pp 80-83].
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Proposition 6.1.4 In a local symplectic chart (U,ϕ) with local coordinates

(x1, · · · , xn, y1, · · · , yn), the Poisson bracket of functions f and g is given by

{f, g} =
n∑
i=1

(
∂f

∂xi
∂g

∂yi
− ∂f

∂yi
∂g

∂xi

)

Proof. We have {f, g} = −iXf ◦ iXgω where ω|U =
n∑
i=1

dxi ∧ dyi

by Darboux theorem, see theorem 3.2.1.

We also have that Xf =
n∑
i=1

(
X i ∂

∂xi
+ Y i ∂

∂yi

)
. We shall find the X i and Y i

according to f which distinguishes it from Xg.

Now iXfω = ω[(Xf ) = df so that first we have

iXfω = i n∑
i=1

(
X i ∂

∂xi
+ Y i ∂

∂yi

) n∑
i=1

dxi ∧ dyi, (6.1)

but we also have

df =
n∑
i=1

(
∂f

∂xi
dxi +

∂f

∂yi
dyi
)
. (6.2)

A typical term in equation (6.1) is given by

iXi ∂

∂xi
+Y i ∂

∂yi
dxi ∧ dyi. (6.3)

Simplifying expression (6.3) we get

iXi ∂

∂xi
+Y i ∂

∂yi
dxi ∧ dyi = iXi ∂

∂xi
dxi ∧ dyi + iY i ∂

∂yi
dxi ∧ dyi

= X idxi
(
∂
∂xi

)
∧ dyi − dxi ∧X idyi

(
∂
∂xi

)
+Y idxi

(
∂
∂yi

)
∧ dyi − dxi ∧ Y idyi

(
∂
∂yi

)
= X idyi − Y idxi.

Thus

iXfω =
n∑
i=1

X idyi − Y idxi. (6.4)
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Equating equation(6.2) to equation(6.4) we get

X i = ∂f
∂yi

and Y i = − ∂f
∂xi
.

This gives the vector field Xf in terms of f as

Xf =
n∑
i=1

(
∂f

∂yi
∂

∂xi
− ∂f

∂xi
∂

∂yi

)
. (6.5)

Similarly,

Xg =
n∑
i=1

(
∂g

∂yi
∂

∂xi
− ∂g

∂xi
∂

∂yi

)
. (6.6)

But {f, g} = −iXf ◦ iXgω. Computing the right hand side and using equation 6.5

and equation 6.6 we have;

−iXf iXgω = −iXf
(
i ∂g
∂yi

∂

∂xi
− ∂g

∂xi
∂

∂yi
dxi ∧ dyi

)
= −iXf

(
i ∂g
∂yi

∂

∂xi
dxi ∧ dyi − i ∂g

∂xi
∂

∂yi
dxi ∧ dyi

)
= −iXf

(
∂g

∂yi
dyi +

∂g

∂xi
dxi
)

= −i ∂f
∂yi

∂

∂xi
− ∂f

∂xi
∂

∂yi

(
∂g

∂yi
dyi +

∂g

∂xi
dxi
)

= −
(
i ∂f
∂yi

∂

∂xi

(
∂g

∂yi
dyi +

∂g

∂xi
dxi
)
− i ∂f

∂xi
∂

∂yi

(
∂g

∂yi
dyi +

∂g

∂xi
dxi
))

= −
(
∂f

∂yi
∂g

∂xi
− ∂f

∂xi
∂g

∂yi

)
=

∂f

∂xi
∂g

∂yi
− ∂f

∂yi
∂g

∂xi
,

where summation is understood in the above calculations.

Therefore, the Poisson bracket is given by

{f, g} =
n∑
i=1

(
∂f

∂xi
∂g

∂yi
− ∂f

∂yi
∂g

∂xi

)
. (6.7)

This proves the theorem. �

Definition 6.1.3 Let M be a finite dimensional C∞-manifold. We define a C∞

Poisson structure on M to be an R-bilinear skew-symmetric map
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C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ {f, g}

on the space of smooth functions on M which satisfies the following two identities:

(i) {fg, h} = {f, h}g + f{g, h}, the Leibniz identity;

(ii) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, the Jacobi identity,

for all f, g, h ∈ C∞(M).

The bracket {·, ·} is called the Poisson bracket. The space of smooth functions

on M , C∞(M) equipped with the Poisson bracket {·, ·}, is a Lie algebra which

satisfies the Leibniz identity. The manifold M equipped with the Poisson bracket

{·, ·} is called a Poisson manifold, and is denoted by (M, {·, ·}). For the reasons

that will appear in the next section, this bracket will be called the canonical or

standard Poisson bracket.

6.2. Hamiltonian systems with deformed Poisson bracket

In our discussion of results on conservation laws, we would like to extend such

results using a deformed Poisson bracket which looks more general than the

canonical Poisson bracket.

The philosophy of deformations on algebras of functions over a Poisson manifold

with Poisson bracket is largely attributed to Flato in the 70’s ([21, p3]). Motivated

by the potential of having a large number of applications in mathematical physics,

he looked at deformations of infinite-dimensional Lie algebras of functions with

Poisson bracket on symplectic manifolds. The theory of deformations inspired

deformation quantization in physics. It was suggested that quantization should

be understood as a deformation of the structure of algebra of classical observables

rather than a radical change in the nature of observables ([36, p3]).

According to Flato, a formal deformation of the Lie algebra of smooth functions

on a Poisson manifold M , is a new Lie algebra law

[f, g]λ =
∞∑
r=0

λrCr(f, g)
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where Cr(f, g) are 2-cochains on C∞(M,R) with C0(f, g) = {f, g} ([19]).

For more readings on the genesis of deformation theory, (see [21] and [19]).

Deformation of Poisson bracket has also come about as classical limit of de-

formed Heisenberg algebras.(See [16]). It is used in performing transition from

the phase space of classical observables, such as functions depending on positions

and momentums to the Hilbert space of physically well-defined Hermitian opera-

tor, ([22]). For applications to a Hamiltonian operator for the harmonic oscillator

system see ([22]).

We have taken a general form of a deformed Poisson bracket on a symplectic

manifold with canonical coordinates q and p to give the mathematical formalism

of the deformed Poisson bracket.

Definition 6.2.1 Let f and g be smooth functions on a 2n-dimensional symplec-

tic manifold M . Let (qj, pj), j = 1, · · · , n be the canonical coordinates and let

k(p) be smooth a function of the momentum variable p. We define a generalized

deformed bracket of f and g by

{f, g}p = {f, g}+ k(p){f, g}, (6.8)

where f, g ∈ C∞(M) and {f, g} is the canonical Poisson bracket defined by

{f, g} =
n∑
j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
. (6.9)

We shall write this bracket in short by

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
,

since operations on the right of equation (6.9) can be done term by term. We

shall then write the bracket of the deformed Poisson bracket as

{f, g}p =

(
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

)
p

. (6.10)
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Proposition 6.2.1 Let M be a smooth manifold with the Poisson bracket defined

by the equation 6.10, then for all f, g, h ∈ C∞(M) we have;

(a) {f, g}p is bilinear in f and g;

(b) {f, g}p = - {g, f}p;

(c) {fg, h}p = f{g, h}p + {f, h}pg;

(d) {{f, g}p, h}p + {{h, f}p, g}p + {{g, h}p, f}p = 0.

Proof. The proof of (a) and (b) is straight forward from the definition (6.2.1).

We shall prove (c), the Leibniz identity and (d) the Jacobi identity.

(c) To show that {fg, h}p = f{g, h}p + {f, h}pg. We have

{fg, h}p = {fg, h}+ k(p){fg, h}.

The right hand side consists of canonical Poisson brackets which satisfies the

Leibniz rule. This proves (c).

(d) We now prove the Jacobi identity

{{f, g}p, h}p + {{h, f}p, g}p + {{g, h}p, f}p = 0.

First note that

{f, {g, h}p}p = {f, {g, h}p}+ k(p){f, {g, h}p}
= {f, ({g, h}+ k(p){g, h})}+ k(p){f, ({g, h}+ k(p){g, h})}
= {f, {g, h}}+ {f, k(p){g, h}}+ k(p)[{f, {g, h}}+ {f, k(p){g, h}}].

Similarly,

{g, {h, f}p}p = {g, {h, f}}+ {g, k(p){h, f}}+ k(p)[{g, {h, f}}+ {g, k(p){h, f}}],

and

{h, {f, g}p}p = {h, {f, g}}+ {h, k(p){f, g}}+ k(p)[{h, {f, g}}+ {h, k(p){f, g}}].

Now, since the canonical Poisson bracket satisfies the Jacobi identity as proved

by Hounkonnou M. N. in ([4, pp 7-9]), we only need to show that

{f, k(p){g, h}}+ {g, k(p){h, f}}+ {h, k(p){f, g}} = 0.
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Now,

{f, k(p){g, h}} = ∂f
∂q

∂(k(p){g,h})
∂p

− ∂f
∂p

∂(k(p){g,h})
∂q

= ∂f
∂q

[k′(p){g, h}+ k(p)∂{g,h}
∂p

]− k(p)∂f
∂p

∂{g,h}
∂q

= ∂f
∂q

(k′(p){g, h}) + k(p)∂f
∂q

∂{g,h}
∂p
− k(p)∂f

∂p
∂{g,h}
∂q

= ∂f
∂q

(k′(p){g, h}) + k(p){f, {g, h}}.

Thus,

{f, k(p){g, h}} =
∂f

∂q
(k′(p){g, h}) + k(p){f, {g, h}}. (6.11)

Similarly,

{g, k(p){h, f}} =
∂g

∂q
(k′(p){h, f}) + k(p){g, {h, f}, } (6.12)

and

{h, k(p){f, g}} =
∂h

∂q
(k′(p){f, g}) + k(p){h, {f, g}}. (6.13)

Adding equation (6.11), equation (6.12) and equation (6.13), we get

{f, k(p){g, h}}+ {g, k(p){h, f}}+ {h, k(p){f, g}}
= ∂f

∂q
(k′(p){g, h}) + ∂g

∂q
(k′(p){h, f}) + ∂h

∂q
(k′(p){f, g})

+k(p)[{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}].

The last sum in square brackets disappears since it is the Jacobi identity of the

canonical Poisson bracket. So, we have

{f, k(p){g, h}}+ {g, k(p){h, f}}
+ {h, k(p){f, g}}
= k′(p)[∂f

∂q
{g, h}+ ∂g

∂q
{h, f}+ ∂h

∂q
{f, g}]

= k′(p)[∂f
∂q

(∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

)

+ ∂g
∂q

(∂h
∂q

∂f
∂p
− ∂h

∂p
∂f
∂q

)

+ ∂h
∂q

(∂f
∂q

∂g
∂p
− ∂f

∂p
∂g
∂q

)].

This term is zero by equality of mixed partials.

113



This proves the Jacobi identity for the deformed Poisson bracket

{f, g}p = {f, g}+ k(p){f, g}.

Proposition 6.2.2 Let M be a smooth manifold. Then M endowed with the

bracket {·, ·}p on C∞(M) is a Poisson manifold, and is denoted by (M, {·, ·}p).

Given a function H ∈ C∞(M) on a symplectic manifold (M,ω), a vector field

XH such that iXHω = dH is called a Hamiltonian vector field. This vector field

is given in local coordinates by XH =
n∑
i=1

(
∂H

∂yi

∂

∂xi
− ∂H

∂xi

∂

∂yi

)
.

In terms of the deformed Poisson bracket, and using the canonical coordinates,

we shall write this vector field as

Xp
H =

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
p

. (6.14)

Thus, given any smooth function f ∈ C∞(M) on M , we have

Xp
H(f) =

(
∂H
∂p

∂
∂q
− ∂H

∂q
∂
∂p

)
p

(f)

=
(
∂H
∂p

∂f
∂q
− ∂H

∂q
∂f
∂p

)
p

= {H, f}p.

We have proved the following proposition.

Proposition 6.2.3 Let (M, {·, ·}p) be a Poisson manifold and H ∈ C∞(M).

Then there is a unique vector field XH on M such that

Xp
H(f) = {H, f}p,

for all f ∈ C∞(M).

We call Xp
H(f) the derivative of f in the direction of Xp

H .

Clearly Xp
g (f) = {g, f}p = −{f, g}p = −Xp

f (g).
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Theorem 6.2.1 Let (M, {·, ·}p) be a Poisson manifold with a deformed Poisson

structure. If Xp
f and Xp

g are Hamilotnian vector fields with corresponding Hamil-

tonian functions f and g respectively, then their bracket [Xp
f , X

p
g ] is a Hamiltonian

vector field with the Hamiltonian function {f, g}p. That is,

[Xp
f , X

p
g ] = Xp

{f,g}p .

Proof. Let h ∈ C∞(M) be an arbitrary function, then we have:

[Xp
f , X

p
g ](h) = Xp

f (Xp
g (h))−Xp

g (Xp
f (h))

= Xp
f ({g, h}p)−Xp

g ({f, h}p)
= {f, {g, h}p}p − {g, {f, h}p}p
= {f, {g, h}p}p + {g, {h, f}p}p
= −{h, {f, g}p}p
= {{f, g}p, h}p
= Xp

{f,g}(h). �

Definition 6.2.2 Let (M, {·, ·}p) be a Poisson manifold. Let X ∈ X(M) be a

Hamiltonian vector field corresponding to a Hamiltonian function H, a function

f ∈ C∞(M) is called a first integral of Xp
H if

Xp
H(f) = {H, f}p = 0.

The following theorem is called the Law of conservation of energy.

Theorem 6.2.2 Let (M, {·, ·}p) be a Poisson manifold and Xp
H ∈ X(M) a Hamil-

tonian vector field corresponding to a Hamiltonian function H, then H is a first

integral of the flow of Xp
H .

Proof. We have

Xp
H(H) =

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
p

(H)

=

(
∂H

∂p

∂H

∂q
− ∂H

∂q

∂H

∂p

)
p

= 0.

Thus, Xp
H(H) = {H,H}p = 0. �
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Theorem 6.2.3 Let (M, {·, ·}p) be a Poisson manifold and Xp
H ∈ X(M) a Hamil-

tonian vector field corresponding to a Hamiltonian function H. If f, g ∈ C∞(M)

are first integrals of Xp
H , then their bracket, {f, g}p is also a first integral.

Proof. We have

{H, f}p = 0,

and

{H, g}p = 0.

We must show that {H, {f, g}p}p = 0. But Jacobi identity gives

{H, {f, g}p}p + {f, {H, g}p}p + {g, {H, f}p}p = 0.

The second term and the third term are zero since f and g are first integrals.

This then gives

{H, {f, g}p}p = 0

as required. �

In the next section we shall write the Hamiltonian equations of mechanics using

the deformed Poisson bracket.

6.3. Hamiltonian systems on a symplectic manifold

Definition 6.3.1 Let (M,ω) be a symplectic manifold and let H : M → R be a

smooth function on M . A vector field X ∈ X(M) such that

iXω = dH,

is called a Hamiltonian vector field. The corresponding function H is called the

Hamiltonian function or the energy function. We denote this vector field by XH .

That is, XH is a Hamiltonian vector field if

iXHω = dH, (6.15)
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for some function H ∈ C∞(M).

We call (M,ω,XH) a Hamiltonian system on M .

Definition 6.3.2 Let M be a smooth manifold and X ∈ X(M) a smooth vector

field on M . Let I be an open and connected subset of R such that 0 ∈ I. An

integral curve of X through a point p ∈M is a curve

γp : I →M

such that

(i) γp(0) = p,

(ii) γ̇p(t) = d
ds
|s=tγp(s) = Xγp(t).

Let H : M → R be a smooth function on a symplectic manifold M . Then on a lo-

cal symplectic chart (U, (q1, · · · , qn, p1, · · · , pn)) we haveH = H(q1, · · · , qn, p1, · · · , pn),

so that

dH =
n∑
i=1

(
∂H

∂qi
dqi +

∂H

∂pi
dpi
)
.

Let XH =
n∑
i=1

(
Ai

∂

∂qi
+Bi

∂

∂pi

)
be a Hamiltonian vector field corresponding to

the function H. From equation (6.4), we have

iXHω =
n∑
i=1

(
qidpi − pidqi

)
.

Then, iXHω = dH gives

Ai =
∂H

∂pi

Bi = −∂H
∂qi

.

Thus,
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XH =
n∑
i=1

(
∂H

∂pi
∂

∂qi
− ∂H

∂qi
∂

∂pi

)
. (6.16)

Now let γ(t) = (q(t), p(t)), t ∈ I be an integral curve of XH . Then, we have

γ̇(t) = (q̇(t), ṗ(t)) =
n∑
i=1

(
q̇i(t)

∂

∂qi
+ ṗi(t)

∂

∂pi

)
.

But, we also have

(XH)γ(t) =
n∑
i=1

(
∂H

∂pi
∂

∂qi
|γ(t) −

∂H

∂qi
∂

∂pi
|γ(t)

)
.

Thus, the equation γ̇(t) = (XH)γ(t) gives the Hamiltonian equations of the

mechanics with the Hamiltonian function H as follows;

∂H

∂pi
= q̇i(t)

∂H

∂qi
= −ṗi(t).

We shall now write these equations of Hamiltonian mechanics using the deformed

Poisson bracket.

From equation (6.14), we have, {H, qi}p = Xp
H(qi) =

∂H

∂pi
and {H, pi}p = Xp

H(pi) =

−∂H
∂qi

Thus,

q̇i(t) = {H, qi}(1 + k(p))

ṗi(t) = {H, pi}(1 + k(p)).

Clearly, these equations are not independent of the deformation factor.

Remark 6.3.1 Let h : M → N be a diffeomorphism of manifolds, X a C∞

vector field on M . Then the map h maps integral curves of X into integral curves

of h∗X
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Proof. Let γp : (−ε, ε) → M be an integral curve of X through p ∈ M . Then

we have γp(0) = p and

(γp)∗
d
dt
|t0 = Xγp(t0), for all t0 ∈ (−ε, ε).

The map h ◦ γp : (−ε.ε) → N is smooth as a composition of smooth maps and

(h ◦ γp)(0) = h(p). Then we have

(h ◦ γp)∗( ddt |t0) = (h∗)γp(t0) ◦ (γp)∗(t0))( d
dt
|t0)

= (h∗)γp(t0)((γp)∗(t0) d
dt
|t0)

= h∗(Xγp(t0)).

Thus, h ◦ γp is the integral curve of h∗(X) passing through h(p). �

Recall that if F : N →M is a diffeomorphism of smooth manifolds, then for each

n ∈ N , the map

TnF : TnN → TF (n)M

is an isomorphism. Thus, if Y ∈ X(N) there is X ∈ X(M) such that

(TF )−1X = Y. (6.17)

Proposition 6.3.1 Let F : N → M be a diffeomorphism of smooth manifolds

and ω ∈ Ωp(M). If X ∈ X(M), then

iF ∗XF
∗ω = F ∗iXω.

Proof. Let X ∈ X(M), n ∈ N and m = F (n). Given the vector

u1, · · · , up−1 ∈ TnN , we have

iF ∗XF
∗ω(n)(u1, · · · , up−1) = F ∗ω(n)(F ∗X(n), u1, · · · , up−1)

= F ∗ω(n)(Y (n), u1, · · · , up−1), where (TF )Y (n) = X(m)

= F ∗ω(n)((TF )−1X(m), u1, · · · , up−1)

= ω(F (n))(TF ◦ (TF )−1X(m), (TF )u1, · · · , (TF )up−1)

= ω(m)(X(m), (TF )u1, · · · , (TF )up−1)

= iXω(m)((TF )u1, · · · , (TF )up−1)

= F ∗iXω(n)(u1, · · · , up−1).
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Thus, iF ∗XF
∗ω = F ∗iXω as required. �

Example 6.3.0.1 We have shown in the previous chapter in theorem 5.5.2 that

the map B̂[ : g/G → g∗/G is symplectic. Further we assume that the action of

G on its Lie algebra g, and on the dual g∗ are both transitive actions. Since the

coadjoint orbit g∗/G is a symplectic manifold , let ωg∗ be the symplectic 2-form

on g∗/G. This allows us to define Hamiltonian systems on the adjoint orbit g/G

as follows:

Let Xh be a Hamiltonian vector field on g∗/G with the corresponding energy

function h : g∗/G→ R. Then

h ◦ B̂[ : g/G→ R

is a smooth function on g/G. We then have

d(h ◦ B̂[) = d((B̂[)∗h)

= (B̂[)∗dh

= (B̂[)∗iXhωg∗

= i(B̂[)∗Xh(B̂[)∗ωg∗

= iX
h◦B̂[

(B̂[)∗ωg∗ by Proposition 6.3.1.

But B̂[ is symplectic so that (B̂[)∗ωg∗ is a 2-form on g/G. This gives that Xh◦B̂[ is

a Hamiltonian vector field with the energy function h◦B̂[. Thus (g/G, (B̂[)∗ωg∗ , Xh◦B̂[)

is a Hamiltonian system on the space g/G.

In fact we have the following:

Remark 6.3.2 The vector fields Xh◦B̂[ ∈ X(g/G) and Xh ∈ X(g∗/G) are B̂[

related.

Proof. Let v ∈ X(g/G) be a vector field on g/G, then we have

iX
h◦B̂[

(B̂[)∗ωg∗(v) = d(h ◦ B̂[)(v)

= dh ◦ (dB̂[ · v)

= iXhωg∗(dB̂
[ · v).
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Thus

(B̂[)∗ωg∗(Xh◦B̂[ , v) = ωg∗(Xh, dB̂
[ · v),

or

ωg∗(dB̂
[ ·Xh◦B̂[ , dB̂

[ · v) = ωg∗(Xh, dB̂
[ · v).

Since v ∈ X(g/G) was arbitrary, we have that

dB̂[ ·Xh◦B̂[ = Xh.

Theorem 6.3.1 Let (M,ω) be a symplectic manifold and XH be a Hamiltonian

vector field on M with the Hamiltonian function H. Then, XH induces a Hamil-

tonian vector field XT ∗M on the cotangent bundle T ∗M , whose flow is the lift of

the flow of XH .

Proof. Let X = XH be the Hamiltonian vector field on M . Assume that M

is compact, or XH has compact support, then XH is complete. It generates a

one-parameter group of diffeomorphisms on M . Denote this group by G̃. Then

G̃ is a Lie group (see [20, p 63]), and its Lie algebra is as a vector space, the space

of vector fields on M . (see [1, p 274 Exercise 4.1G]).

Let Φ : G̃ ×M → M , (h, q) 7→ Φh(q), h ∈ G̃, q ∈ M , be the action of the group

G̃ on M . We lift this action to the action of G̃ on the cotangent bundle T ∗M ,

ΦT ∗ : G̃ × T ∗M → T ∗M , (h, αq) 7→ ΦT ∗

h (αq) = T ∗Φh−1(αq), h ∈ G̃, αq ∈ T ∗qM .

The infinitesimal generator of X ∈ X(M) on T ∗M is given by

XT ∗M(αq) =
d

dt
T ∗Φexp−tX(αq)|t=0, (6.18)

where exp tX is the flow of X.

Let σM : T ∗M → M be the canonical projection. Then σM is equivariant wth

respect to the action on T ∗M and the action on M . That is, the following

diagram,
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T ∗M

σM

��

T ∗Φh−1 // T ∗M

σM

��
M

Φh //M

commutes. We have

σM ◦ T ∗Φh−1 = Φh ◦ σM .

Differentiating this relation with respect to t at t = 0 we get

d

dt
σM ◦ T ∗Φexp−tX |t=0 =

d

dt
Φexp tX ◦ σM |t=0.

This gives

dσM ·XT ∗M = XM · σM . (6.19)

Since T ∗Φh−1 is symplectic, it preserves the canonical 1-form θ on T ∗M , so that

LXT∗M θ = 0.(See [25, Proposition 13.18 p 343]). Thus, by Cartan’s identity we

have

0 = LXT∗M θ = diXT∗M θ + iXT∗Mdθ.

This gives

iXT∗Mdθ = −diXT∗M θ. (6.20)

But now using the definition of canonical one-form we have the following

iXT∗M θ(αq) = θαq(XT ∗M(αq))

= αqdσM(XT ∗M(αq))

= αq(XM ◦ σM(αq))

= αq(XM(q))

= F (X)(αq).

For some function F (X) : T ∗M → R.
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Let ω̃ be the canonical 2-form on T ∗M defined by ω̃ = −dθ. Then since

iXT∗M θ = F (X), differentiating both sides gives diXT∗M θ = dF (X). Equation(6.20)

now gives

−iXT∗Mdθ = dF (X),

or

iXT∗M ω̃ = dF (X).

This implies that

XT ∗M = XF (X). (6.21)

This shows that XT ∗M is a Hamiltonian vector field whose Hamiltonian function

is

F (X) = iXT∗M θ,

where θ is the canonical 1-form on the cotangent bundle T ∗M . �

To continue with the Example 6.3.0.1 above, we shall use this proposition to

study the Hamiltonian dynamics on the cotangent bundles by the lifting

T ∗B̂[ : T ∗(g∗/G)→ T ∗(g/G) of the map B̂[ : g/G→ g∗/G. It is known that the

map T ∗B̂[ is symplectic and each cotangent bundle has a natural symplectic

2-form arising from the canonical one-form, (see [28, Def 6.3.1 and Prop 6.3.2, p 170]).

Let

σg∗ : T ∗(g∗/G)→ g∗/G

be the projection from the cotangent bundle T ∗(g∗/G) onto the coadjoint orbit

g∗/G, and let

σg : T ∗(g/G)→ g/G,

be the projection from the cotangent bundle T ∗(g/G) onto the adjoint orbit g/G,
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then the following diagram commutes:

A

B

C

D

σg

B̂[

T ∗B̂[

σg
∗

where,

A = T ∗(g/G);

B = g/G;

C = T ∗(g∗/G);

D = g∗/G.

We have that

B̂[ ◦ σg ◦ T ∗B̂[ = σg∗ . (6.22)

Now let Xh be the Hamiltonian vector field on g∗/G and Xh◦B̂[ the corresponding

Hamiltonian vector field on g/G as in example 6.3.0.1. Let X
T ∗(g∗/G)
h be the

induced Hamiltonian vector field on T ∗(g∗/G) of proposition 6.3.1. Then equation

(6.22) gives

d(B̂[ ◦ σg ◦ T ∗B̂[)(X
T ∗(g∗/G)
h ) = dσg∗(X

T ∗(g∗/G)
h )

= Xh · σg∗ , by equation (6.19).

Thus,

dB̂[ ◦ d(σg ◦ T ∗B̂[)(X
T ∗(g∗/G)
h ) = Xh · σg∗ .

The Remark 6.3.2 now implies that

d(σg ◦ T ∗B̂[)(X
T ∗(g∗/G)
h ) = Xh◦B̂[ ,

or

dσg ◦ dT ∗B̂[ ·XT ∗(g∗/G)
h = Xh◦B̂[ · σg,
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by the Proposition 6.3.1. The same proposition now implies that

dT ∗B̂[ ·XT ∗(g∗/G)
h = X

T ∗(g/G)

h◦B̂[

is the induced Hamiltonian vector field byXh◦B̂[ on the cotangent bundle T ∗(g/G).

We have shown that while the symplectic diffeomorphism B̂[ : g/G → g∗/G

pushes forward Hamiltonian vector fields from g/G to g∗/G, the lift of this diffeo-

morphism pushes Hamiltonian vector fields from the cotangent bundle T ∗(g∗/G)

to the cotangent bundle T ∗(g/G).
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7

Conclusion

Our contribution in this thesis has been mainly to symplectic geometry. We have

investigated the effects of a Lie group G acting transitively on a smooth manifold

M and another parallel action Ad∗ of G on the dual g∗ of its Lie algebra g,

called the coadjoint representation. In a number of cases, when the action Φ of

G on M is Hamiltonian, it turns out that the momentum mapping µ : M → g∗

is equivariant with respect to the action Ad∗. Comparisons can then be made

between the manifold M and the coadjoint orbits of Ad∗ action of G on g∗.

However, there are cases when the momentum mapping fails to be equivariant.

We have shown that in this case it is possible to redefine the action of G on

g∗ through a one-coycle σ in such a way that, with this action, the momentum

mapping becomes equivariant with respect to the new affine action and the result

is that investigations that can be done with an equivariant momentum mapping

can now be done with the momentum with one-cocycle.

Actions of Lie groups on smooth manifolds have led to constructions of new

spaces. Some of the new spaces are the quotient spaces. In particular, when the

action of a Lie group G on a symplectic manifold (M,ω) is Hamiltonian, a new

space called the reduced space can be constructed. However, this space may not

be symplectic itself due to a number of reasons such as, the dimension of the new

space may not even be even. We have worked with the known reduced space,

the Marsden-Mayer-Weinstein reduced space, which is known to be symplectic,

to investigate the transfer of Riemannian structure from the original manifold M

to the reduced space. Our investigations have shown that when the Lie group G

is compact, there are some Riemannian submersions that make, under suitable

conditions, the reduced space inherit an induced Riemannian structure from the

original manifold. Our investigations in this case have involved another structure,

the almost complex structure.

Finally, we have substituted the action Φ of a Lie group G on an arbitrary sym-

126



plectic manifold M with the action Ad of G on its Lie algebra g, called the adjoint

representation while maintaining the parallel action Ad∗ of G on the dual g∗, of

its Lie algebra g. When the Lie group G is semi-simple, compact and connected,

we have used the Killing form to show that in this case there is a symplectic

diffeomorphism between g/G and g∗/G if and only if the actions of G on its Lie

algebra g and on the dual g∗ of its Lie algebra, are both transitive actions. Note

that these findings cannot immediately be extended to a case when the action of

G is not transitive. The difficult here is that the spaces g/G and g∗/G are both

disjoint unions of orbits and it is not yet known if in this case these spaces are

manifolds. It would therefore be interesting to investigate further the case when

the action of G is not transitive.

In the last chapter we have extended the application of Hamiltonian mechanics to

deformed Poisson bracket. We have noted that many properties of Hamiltonian

systems which hold with the standard Poisson bracket also hold with the deformed

Poisson bracket. We have used the spaces g/G and g∗/G as homogeneous spaces,

to investigate some Hamiltonian formalisms on the cotangent bundle through the

lifting of the integral curves of Hamiltonian vector fields on these spaces. The

result is that Hamiltonian vector fields are lifted to Hamiltonian vector fields on

the cotangent bundle. However, more investigations on the lifting of Hamiltonian

systems to the cotangent space are needed in the future to generalise the findings.
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