
  

DOWNSCALING GLOBAL CLIMATE MODELS STATISTICALLY AND 

GENERATING PROJECTIONS OF CHANGES IN PRECIPITATION AND 

TEMPERATURE AT METEOROLOGICAL STATIONS IN ZAMBIA 

 

 

 

 

BY 

 

MONDAY CHOTA 

 

 

A dissertation submitted to the University of Zambia in partial fulfilment of the 

requirements for the award of the degree of Master of Science in Statistics 

  

 

THE UNIVERSITY OF ZAMBIA 

LUSAKA 

2019



  

COPYRIGHT 

All rights reserved. No part of this dissertation may be reproduced, stored in any retrieval 

system, or transmitted in any form or by any means; electronic, mechanical, photocopying, 

recording or otherwise, without prior written permission from the copyright owner and/or 

the University of Zambia. 

© Monday Chota, 2019 



  

DECLARATION 

I, Monday Chota, declare that this dissertation is my own work and that it has not been 

submitted for the award of any degree at this or any other institution of learning or research. 

All other person‟s works have been acknowledged accordingly. 

 

Student‟s  Signature………………………………...Date…………………………………… 

 

Supervisor‟s Signature………………...……………Date……………………………………. 



  

APPROVAL 

This dissertation by Monday Chota has been approved as the partial fulfilment of the 

requirements for the award of the degree of Master of Science in Statistics of the University 

of Zambia. 

Examiner 1 

Name:……………………………………………. 

Signature:………………………………………… Date:……………………………….. 

Examiner 2 

Name:…………………………………………..... 

Signature:………………………………………… Date:……………………………….. 

Examiner 3 

Name:…………………………………………….  

Signature:………………………………………... Date:………………………………….. 

Chairperson Board of Examiners 

Name:……………………………………………... 

Signature:……………………………………….... Date:……………………………….. 

Supervisor 

Name:……………………………………………. 

Signature:………………………………………… Date:………………………..............



iv 

 

ABSTRACT 

Zambia has been experiencing adverse impacts of climate change. Generation of climate 

information about changes in future precipitation and temperature is useful in designing 

adaptive measures. Currently, global climate models (GCMs) are primary tools utilized to 

simulate the present and future climate under different greenhouse emission scenarios. 

Owing to their coarse resolution of approximately 100 – 300 km per grid box, GCMs 

outputs are not suitable for direct use in assessing climate change impacts and designing 

adaptation strategies at local-scale. In this study, a statistical downscaling approach has been 

used to downscale GCMs at meteorological station level in order to improve GCMs coarse 

resolution to match with local needs for impact assessment. Further, the study used the 

downscaled time series to generate projected changes in precipitation and temperature at 

meteorological stations of Zambia for the period 2020 – 2049 relative to 1971 – 2000. A 

non-parametric analogue method based on nearest neighbour was used to downscale daily 

precipitation, minimum temperature and maximum temperature over 19, 13 and 11 

meteorological stations, respectively, across Zambia from three GCMs: CanESM2, CNRM-

CM5 and MPI-ESM-MR under RCP4.5 and RCP8.5 emission scenarios. ERA-Interim 

reanalysis and station datasets for a common period 1981 – 2010 were used to train the 

downscaling model. Findings presented are based on the ensemble of models. The ensemble 

mean at each station and local variable was computed from at least two GCMs with the 

same sign of change.  Minimum and maximum temperatures are projected to increase at 

each meteorological station under both emission scenarios. The increase is higher towards 

the south of Zambia and for emission scenario RCP8.5 as compared to RCP4.5 scenario. 

Results also show decrease in precipitation over most stations in the Northern and Eastern 

parts of the country, increase in the western and Southern parts and exhibit a mixed signal 

for stations in the central part of the country. The downscaled precipitation and temperature 

scenarios can be used as inputs in climate impact models such as crop and hydrological 

models.  

Key words: CMIP5 models, Statistical downscaling, Temperature, Precipitation, Climate 

models, Representative concentration pathways 
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CHAPTER ONE: INTRODUCTION 

1.1. Overview 

This chapter presents the background to the study on statistical downscaling of precipitation 

and temperature for Zambia using simulations of global climate models (GCMs). It also 

highlights the statement of the problem, objectives of the study, hypothesis, and significance of 

the study, delimitation of the research, definitions of operational terms as well as the structure 

of the study. 

1.2. Background  

1.2.1. Climate Change 

Unprecedented changes have been observed in the climate of the earth since 1950s. Experts in 

climate science have established that our climate is changing and there is strong evidence that 

this change can be largely attributed to human interference (IPCC, 2013). Climate change 

refers to a shift in the long-term (at least 30 years) mean climate. The United Nations 

Framework Convention on Climate Change (UNFCCC) distinguishes between human induced 

climate change and natural variability attributable to natural causes. UNFCCC (1992) defines 

climate change as a shift in climate observed over extended period and caused directly or 

indirectly by human interference to the climate system. Indicators of climate change at global 

level includes warming of the atmosphere and oceans, diminishing of snow and ice, and rise in 

sea levels (IPCC, 2013). At regional and national levels, climate change manifests as more 

frequent extreme weather events such as heat waves, droughts, seasonal and flush floods and 

dry spells occur. These events often lead to poor crop yields, loss of terrestrial and inland water 

ecosystems and biodiversity (IPCC, 2014). 

1.2.2. Climate Models 

In order to assess the response of the climate system to the increasing human activities, the 

scientific community has developed climate models (Hanssen-Bauer et al., 2005). The climate 

system of the Earth consists of the atmosphere, hydrosphere, biosphere, land surface and 

cryosphere. Interactions of these components determine the climate of the Earth. A climate 

model is a mathematical representation of the climate system based on physical, biological and 

chemical principles. The equations derived from these principles are very complex and solved 

numerically using computers (Curry, 2017). To solve these equations, GCMs use a three-
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dimensional grid system by dividing the atmosphere, oceans and land into grids consisting of a 

number of cells (Figure 1). The number of cells in a grid system determines the spatial 

resolution of the model. For each time step making up the simulation period, these equations 

are computed for each cell in the grid (Curry, 2017). Presently, GCMs are primary tools which 

are used to understand present climate and future climate scenarios under increased GHGs 

concentrations (Wibig et al., 2015). 

 

Figure 1: Schematic diagram of a Global Climate Model (Source: Curry, 2017) 

1.2.3. Meaning and Motivation of Climate Downscaling 

Climate downscaling is the process of obtaining local to regional-scale (10 to 100 km) climate 

information from the coarser spatial resolution (100 to 300 km) of GCMs (Trzaska and 

Schnarr, 2014) (Figure 2). Downscaling involves linking large-scale climate variables such as 

temperature, circulation, and moisture with local-scale surface variables such as temperature 

and precipitation (Wilby et al., 2004; Maraun et al., 2010; Wibig et al., 2015). Downscaling 

GCM simulations bridges the gap between what is provided by global climate modelers and 

what is needed for impact assessment at local level where impacts are most felt. Through 

downscaling, spatial resolution in the region of interest is increased, thereby improving 

essential aspects of the local/regional climate information. The increasing reliance on finer 
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resolution climate information for impact studies and policy formulation regarding adaptation 

justify the need for downscaling GCM simulated outputs. 

 

Figure 2: Climate downscaling from global to regional and local scales  

Source: https://www.earthsystemcog.org/projects/downscaling-2013 

           (retrieved on 19/02/2018) 

Although GCMs are capable of simulating climate variables at global and continental scales, 

they cannot account for regional to local climate changes that are needed for impact studies 

(Wilby and Wigley, 2000; Maraun et al., 2010; Trzaska and Schnarr, 2014; Benestad, 2016; 

Grouillet et al., 2016). This is attributed to their low spatial resolution of about 100km to 

300km grid box (Luo et al., 2013; Benestad, 2016). This leads to a consensus among climate 

scientists that current GCMs cannot resolve important processes such as cloud and topographic 

effects that occur at local level and are of great importance to impact studies (Hewitson and 

Crane, 1996; von Storch et al., 2000; Wilby et al., 2004;  Maraun et al., 2010; Gutiérrez et al., 

2013). 

In view of GCMs failure to simulate local characteristics of the region of interest, they cannot 

be used to describe local climate realistically (Gutiérrez et al., 2013). As a way of 

circumventing this weakness of GCMs and making them more applicable, downscaling is 

inevitable. Two major techniques of downscaling have been developed, namely; Dynamical 

and Statistical (Hewitson and Crane, 1996; Maraun et al., 2010).  

https://www.earthsystemcog.org/projects/downscaling-2013
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In dynamical downscaling high resolution climate information is obtained by nesting a regional 

climate model (RCM) into a low GCM, which provides initial boundary conditions (Maraun et 

al., 2010). The RCMs and the driving GCM have similar representation of physical and 

atmospheric dynamical processes. Therefore, it is expensive to implement dynamical 

downscaling since it requires huge computing resources and high skilled human resource like 

that of GCMs (Hewitson and Crane, 1996; Maraun et al., 2010; Trzaska and Schnarr, 2014).  

In statistical downscaling, empirical relationships linking some large-scale atmospheric 

predictor variables to local climate variables of interest are established (Ribalaygua et al., 

2013; Trzaska and Schnarr, 2014; von Storch et. al., 2000; Wilby et al., 2004). Statistical 

downscaling is capable of extracting point-scale climate information from a GCM simulation. 

The major assumption underlying statistical downscaling methods is that statistical 

relationships remain unchanged in a changed future climate (von Storch et. al., 2000; Wilby et 

al., 2004). Based on this assumption, these relationships are then applied to large scale 

variables simulated by the GCMs to produce local climate change information under different 

GHG emission scenarios (von Storch et al.2000; Wilby et al., 2004; Evans, 2011; Hewitson et 

al., 2014).  

In climate simulations, the GCMs and GHGs emission scenarios are updated from time to time. 

The Fifth Phase of the Coupled Models Intercomparison Project (CMIP5) (Taylor et al,. 2012) 

is the most recent archive of GCMs after the earlier archive CMIP3. Similarly, Representative 

Concentration Pathways (RCPs) (Moss et al., 2010; Vuuren et al., 2011) are the most recent 

GHG emission scenarios developed after the Special Report on Emission Scenarios (SRES) 

(Nakicenovic et al., 2000) 

1.2.4. The Coupled Model Intercomparison Project (CMIP) 

CMIP was started in 1994 by the Climate Variability and Predictability (CLIVAR) Numerical 

Experimentation Group2 (Meehl et al., 2000). The objective of CMIP, as noted by (Eyring et 

al., 2016), was to advance the scientific understanding of the Earth system by assessing the 

performance of various climate models and better understand past, present, and future climate 

changes arising from natural, unforced variability or in response to changes in radiative forcing 

in a multi-model context. Since its inception, CMIP has evolved over five phases into a major 

international multi-model research activity and formed a central element of climate change 

assessment at different spatial and temporal scales. The current fifth project dubbed CMIP5 
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was aimed at understanding factors responsible for differences in model projections, evaluating 

how realistic models are in simulating recent climate and provide projections for future climate 

change on near term and long term bases (Taylor et al., 2012; Eyring et al., 2016; Emori et al., 

2016). 

1.2.5. Emission Scenarios 

The IPCC‟s emission scenarios have evolved in terms of description, structure, development 

process and context (Girod et al., 2009) since the First Assessment Report in 1990. The latest 

generation of emission scenarios, Representative Concentration Pathways (RCPs) (Moss et al., 

2010), were used in the latest IPCC report, Fifth Assessment Report which was completed in 

2014. Table 1 shows the four independently developed RCPs emission scenarios. 

Table 1: The Four Representative Concentration Pathways  

Name Description Concentration 

RCP2.6 Peak in radiative forcing at approximately 3 W/   

before 2100 and then decline. 

 490 ppm     equivalent 

RCP4.5 Stabilization without overshoot pathway to 

approximately 4.5 W/   at stabilization after 2100. 

 650 ppm     equivalent 

RCP6.0 Stabilization without overshoot pathway to 

approximately 6 W/   at stabilization after 2100. 

 850 ppm     equivalent 

RCP8.5 Rising radiative forcing pathway leading to 8.5 W/   

By 2100. 

 1370 ppm    equivalent 

Source: Adapted from Moss et al. (2010) and Vuuren et al. (2011). 

RCPs differ from the previous emission scenarios in two major ways. First, RCPs are not 

associated with fixed set of assumptions unlike the previous scenarios. Second, RCPs provide 

spatial and temporal information about different emissions and land use changes at a better 

resolution compared to its predecessors(Wayne, 2013). 

1.2.6. Use of Climate Model Simulations in Studies on Climate Change Impacts 

Assessment for Zambia 

Some earlier studies assessing impacts of climate change in Zambia on energy generation 

utilized GCM simulations. A study by (Yamba et al., 2011) assessed climate change 

implications on hydroelectricity generation in the Zambezi River Basin for the period 2010 to 

2070 relative to the baseline period 1970 to 2000. The study used simulations of three CMIP3 

GCMs to generate monthly precipitation for stations in the Zambezi river basin. The study 
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projected decrease in hydroelectricity power potential for Zambezi river basin during the 

period 2010 – 2070. This was attributed to projected frequent dry years, floods and increasing 

water demand. Another study undertaken by Stenek et al. (2011) evaluated climate change 

impacts on the Kafue Gorge Lower River Power Project using six CMIP3 GCMs Projections 

of precipitation and temperature were done for three time periods 2010 – 2039 (early century), 

2040 – 2069 (mid-century) and 2070 – 2099 (late-century) with reference to baseline period 

1975 – 2005. The study projected insignificant changes in mean annual precipitation but large 

increases in temperature. 

Libanda et al. (2016) employed a non-parametric analogue method in a study involving 

assessment of predictors associated with statistical downscaling of precipitation over Zambia. 

Two CMIP5 GCMs were used in this study which was confined to predictor selection and 

downscaling of GCM projections was not conducted. A recent study by (Chisanga et al., 

2017a) evaluated the suitability of Long Ashton Research Station Weather Generator (LARS-

WG) in Zambia. The study used Mt. Makulu agriculture research station as a study site where 

three weather parameters (precipitation, minimum and maximum temperatures) were simulated 

using LARS-WG.  

It is apparent that there is scanty literature involving statistical downscaling of climate over 

Zambia. This view is also reflected in other studies (Libanda et al., 2016; Chisanga et al. 

2017b). Reviewed studies reveal that CMIP5 GCMs projections over Zambia have not been 

downscaled. Hence in all these studies, climate projections are generated at a coarse spatial 

resolution of about 100 to 300km. Moreover, studies in which future climate scenarios were 

downscaled relied on CMIP3 models. The current study sought to generate future climate 

information for Zambia at meteorological station level for the period 2020 to 2049 using 

Zambia Meteorological Department‟s (ZMD) observation dataset for the period 1981 to 2010 

for both model calibration and validation. This was done through statistical downscaling of 

precipitation, maximum and minimum temperatures using a combination of two RCPs 

scenarios: RCP4.5 and RCP8.5 and three climate models from the CMIP5 archive. The use of 

multiple scenarios and GCMs allow better quantification of uncertainties associated with 

projected climate. 
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1.3. Statement of the Problem  

The Intergovernmental Panel on Climate Change (IPCC) has established that climate change is 

real as unprecedented changes in the climate have been observed over decades to millennia 

(IPCC, 2014). Since the 1980s, Zambia has experienced an increase in frequency and intensity 

of heat waves, droughts and floods which are continuously posing long term threats to the 

sustainable development of the country. The high variability in temperature and precipitation 

are adversely impacting many sectors of Zambian economy including agriculture, food 

security, health and construction among others (National Adaptation Programme of Action on 

Climate Change - (NAPA, 2007). Therefore, the nation needs to plan and adapt to changing 

climate to achieve sustainable development. The planning and adaptation process requires 

future climate change information which is currently available at coarse spatial resolution of 

GCMs (Arslan et al., 2015). Literature reviewed (Stenek et al., 2011; Yamba et al., 2011; 

Libanda et al., 2016; Chisanga et al., 2017) showed inadequate information about downscaled 

future changes in precipitation and temperature at meteorological station level across Zambia. 

Thus, adequate scientific climate change information is lacking at finer spatial resolution to 

empower the decision makers in formulating national policies to reduce harmful impacts of 

climate change at district and community level. Therefore, this study sought to contribute to 

closing this gap by projecting changes in precipitation and temperature downscaling of Zambia 

at meteorological station level for the period 2020 to 2049 relative to the reference period 1971 

to 2000 using simulations of Global Climate Models.  

1.4. Objectives 

1.4.1 Main Objective 

The overall objective of this study was to generate mean precipitation and temperature at 

meteorological stations in Zambia for the period 2020 – 2049. 

1.4.2. Specific Objectives.  

1. To investigate large scale atmospheric variables which are optimal predictors for 

temperature and precipitation at weather station level in Zambia. 

2. To determine long-term mean precipitation and temperature at meteorological station for 

periods 1971 – 2000 and 2020 – 2049. 
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3. To determine the changes in mean precipitation and temperature for the period 2020 to 2049 

relative to the reference period 1971 to 2000. 

1.5. Hypothesis 

Mean temperature and precipitation at the meteorological stations in Zambia would change 

during 2020 – 2049 with respect to the corresponding means for the baseline period 1971 – 

2000. 

1.6. Significance of the Study 

Findings of this study were envisaged to contribute to the understanding of the plausible 

climate change in Zambia during the period 2020 to 2049. It endeavoured to provide detailed 

future climate change projections at smaller spatial scale to enable decision makers to 

formulate responsive strategies in a quest to mitigate and adapt to adverse impacts of climate 

change. It was anticipated that this study would provide inputs in the Impacts, Adaptation and 

Vulnerability assessment models specific to sectors such as agriculture, hydrology, health, 

insurance, infrastructure, wildlife, forestry and energy of the Zambian economy at smaller 

spatial resolution. 

1.7. Delimitation of the Study 

The study was confined to statistical downscaling of daily precipitation and temperature 

(maximum and minimum) for Zambia, using GCMs from the CMIP5 archive forced by two 

RCPs (RCP4.5 and RCP8.5). This study relied on three GCMs that cover Zambia and the 

surrounding region since GCMs use various grid systems. For the period 1981 – 2010, only 11, 

13 and 19 stations had continuous data for maximum temperature, minimum temperature and 

precipitation respectively. Therefore, not all meteorological stations maintained by ZMD were 

analysed in the study. Predictors for downscaling were supplied by the European Reanalysis 

(ERA) Interim data, henceforth known as ERA-interim reanalysis data. Simulations from three 

CMIP5 GCMs were downscaled for the period 2020 to 2049. 

1.8. Structure of the Dissertation 

This dissertation is organised in six chapters. Chapter One has presented background to the 

study, statement of the problem, objectives, significance of the study and the operational 
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definitions. In Chapter Two, theoretical framework and review of related literature, which is 

organised thematically, are presented. A brief description of the study area will be given in the 

Third Chapter. Datasets and methodology used are presented in Chapter Four. Results are 

presented and discussed in Chapter Five. In Chapter Six conclusions and recommendations 

are presented.  

1.9. Chapter Summary 

In this chapter, background on statistical downscaling of GCM simulation outputs in Zambia 

has been presented. Furthermore, statement of the problem, purpose of the study, research 

objectives and hypothesis, significance of the study, limitations as well as delimitations of the 

study, conceptual and theoretical frameworks have been highlighted. The chapter has also 

presented definitions of operational terms used in the study. Lastly, organisation of the study 

has been given. In the next chapter literature deemed relevant to the study is reviewed so as to 

put it within the context of similar previous works 



 

10 

 

CHAPTER TWO: LITERATURE REVIEW 

2.1. Overview 

In this chapter, literature essential to the study is reviewed. The chapter begins by discussing 

the theoretical framework guiding the study. A review of literature on the meaning and 

motivation for downscaling of GCM outputs, approaches to statistical downscaling, predictor 

variables commonly used in downscaling temperature and precipitation are also presented. 

Apart from the discussion on the selection of GCMs for downscaling, observed and projected 

changes in precipitation and temperature at global, regional and national levels are presented. 

2.2. Theoretical Framework 

The study was guided by Anthropogenic (human induced) Global Warming (AGW) and the 

principle of uncertainty in the Earth‟s climate. 

 2.2.1. The Anthropogenic Global Warming (AGW)  

Proponents of AGW theory assert that a rise in global temperature is predominantly caused by 

increased human emissions of greenhouse gases (GHGs) (Bast, 2010; Collins et al., 2013; 

IPCC, 2013) since the pre-industrial times. The major GHGs are water vapour, carbon dioxide, 

nitrous oxide and methane. Human activities such as deforestation, burning wood and fossil 

fuels contribute to increased concentration of GHGs, especially carbon dioxide, in the 

atmosphere. It is scientifically established that if emissions do not correspond to natural sinks 

of carbon dioxide, deforestation and burning of fossil fuels would double the amount of carbon 

dioxide in the atmosphere. According to the AGW theory, the influence of other external 

forcings such as variations in solar radiation cannot explain the increase in global temperature 

(Bast, 2010).  

This theory was deemed appropriate for the study based on two reasons. The first reason was 

that GCMs incorporate response of the climate system to concentration of GHGs and aerosols 

in the atmosphere. In this case, the increase in human activities would lead to more warming 

owing to the enhanced emission and concentration of GHGs in the atmosphere. In addition, the 

theory is strongly supported by the IPCC as evidenced in its reports. 
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2.2.2. Principle of Uncertainty in Future Climate  

Curry and Webster (2011) argued that science is characterised by varying degree of certainty, 

ranging from nearly true to absolute uncertain. Similarly, climate science is associated with 

uncertainties. The fact that the future is not known, coupled with complexity of the climate 

system, makes projections of future climate uncertainty. Uncertainty in climate projections 

arise from various sources including climate models, emission scenarios, and internal 

variability to forcing and boundary conditions (Collins et al., 2013). Projections of future 

climate are characterised by GHG emission scenarios. Studies show that as human 

understanding of future emissions is limited, climate change projections involve exploring 

climate response to a wide range of possible futures influenced by societal choices.  

2.3. Statistical Downscaling under Perfect Prognosis approach  

Under perfect prognosis approach, statistical relationships are trained using large-scale 

variables (predictors) from the reanalysis dataset and historical observations. The underlying 

assumption of the perfect prognosis approach is that reanalysis data represent real large-scale 

atmospheric conditions (Manzanas, 2016). This approach involves the training (calibration) 

phase and downscaling (prediction) phase. In the training phase, a statistical relationship 

linking predictors and observed local-scale variables is established using data from a common 

historical period of the reanalysis time window and the station-based observations period 

(Gutiérrez et al., 2013; Casanueva et al., 2016).  

In the downscaling phase, the resulting model is applied to GCM predictor data forced by 

different concentration or emission scenarios to obtain target local-scale climate variable(s). 

For this reason, only large-scale variables which are well simulated by both GCMs and 

reanalysis are commonly selected as predictors (Wilby and Wigley, 1997; Wilby et al., 2004).  

Further, this approach does not consider, as predictors, surface variables such as precipitation 

since they are directly influenced by model parameterisations and orography (Manzanas, 

2016). The major setback for PP is that reanalysis data does not necessarily provide a perfect 

representation of the large-scale circulations. 
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2.4. Selection of Global Climate Models for Downscaling 

As discussed in Section 1.2.5, GCMs are the main tools for understanding how climate may 

evolve in future. They are also useful in characterising outcomes and uncertainties under 

specific assumptions about future forcing scenarios (Flato et al., 2013). Presently, high 

resolution climate information is greatly sought for climate change impact assessment studies. 

This information is obtained from GCM outputs using downscaling techniques. However, 

downscaled climate information is associated with a number of uncertainties. One of the 

sources of these uncertainties is the choice of GCMs used in the downscaling process (Wibig et 

al., 2015). Therefore, the choice of GCMs in impact studies is a very important step. In most 

applications a small ensemble of climate models is chosen for the assessment as it may not be 

necessary to use all GCMs projections in detailed climate change impact studies. In practice, 

computational and human resource constraints justify the selection of a subset of GCMs for 

downscaling (McSweeney et al., 2012; Lutz et al., 2016). 

In literature, a number of approaches have been used to select GCMs for impact studies. Pierce 

et al., (2009) and Lutz et al. (2016) used the past-performance approach. In this approach, the 

skill of the model to simulate present and near-past climate is the criterion for model selection. 

Models are assessed in their ability to simulate key climatological variables such as mean 

annual temperature, total annual precipitation. This approach is referred to as validation 

approach by Fenech et al. (2002) and Breach et al. (2016). In the context of climate change, 

GCMs should be able to simulate observed climate phenomena. These may include 

climatological mean, seasonal cycles, inter - annual variability and frequency of extreme 

events (Brands et al., 2011). This criteria is supported by (Flato et al., 2013; McSweeney et al. 

2012; Lutz et al., 2016; Zubler et al., 2016) who contend that GCM of choice should represent 

present climate realistically by simulating key processes since such models increase confidence 

in the generation of projections for future climate. Many studies have used this method and the 

climate research community encourage its use. 

2.5. Assessment of CMIP 5 GCMs Integrated in the Statistical Downscaling Portal (SDP) 

Miao et al. (2014) assessed the performance of 24 CMIP5 models in simulating intra-annual, 

annual and decadal temperature over Northern Eurasia for the period 1901 to 2005. This 
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ensemble of GCMs included seven (CanESM2, CNRM-CM5, HadGEM2-ES, IPSL-CM5A-

MR, MIROC-ESM, MPI-ESM-MR and NorESM1-M) of the eight GCMs that are integrated in 

the SDP with the exception of GFDL-ESM-2M only. The study established that of these seven 

models CNRM-CM5, HadGEM2-ES, MPI-ESM-MR and NorESM1-M underestimate annual 

temperature while CanESM2, IPSL-CM5A-MR and MIROC-ESM overestimates. While 

Chylek et al. (2011) found similar results for CanESM2 of the arctic temperature over the 

period 1970 to 2000, Chong-Hai and Ying (2012) established that CanESM2 had a larger 

warming trend than observations with CNRM-CM5 underestimating annual temperature over 

China. Further, Hewitson et al. (2014) established that the CanESM2 model was able to 

capture local scale differences over Africa which is relevant for impact and adaptation studies. 

This is similar to what Yang et al., (2015) found in East Africa where correlation between 

observed and modelled precipitation in CNRM-CM5 was high.  

A study by Mehran et al. (2014) cross-validated historical precipitation simulations of 34 

CMIP5 GCMs against observations for the period 1979 to 2005. Apart from the MPI-ESM-

MR, other seven GCMs integrated in the SDP were part of the 34 models assessed.  Over 

regions of complex topography such as Southern Africa and South America, most models 

overestimate precipitation but underestimate it over arid regions. Further ensemble mean and 

median were showed to out-perform individual CMIP5 models.  

In West Africa, Roehrig et al., (2013) established that the model CNRM-CM5 simulates well 

the diurnal cycle of low level clouds and appreciable amount of precipitation during most of 

the day. Furthermore, the onset of monsoon is correctly captured by the three models; CNRM-

CM5, MPI-ESM-MR and NorESM1-M. However, the model IPSL-CM5A-MR underestimates 

maximum precipitation and does not capture the spring precipitation near the Guinea coast but 

simulates summer rainfall well over the Gulf of Guinea south of the equator. 

Ongoma (2017a) used five CMIP5 models, which included CanESM2 and CNRM-CM5, to 

assess potential future variations of mean rainfall and temperature over East Africa under 

RCP4.5 and RCP8.5. Although results show that these GCMs tend to underestimate and 

overestimate seasonal rainfall during MAM and OND respectively, they simulate annual cycle 

in the entire region fairly well. 
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A study by McSweeney et al. (2015) sought to identify 8 to 10 GCMs, from CMIP5 models, 

appropriate for use in the assessment of regional climate change across three regions: Africa, 

Europe and Southeast Asia. For Southern Africa, the assessment of each of these models was 

based on the ability to simulate annual cycles of precipitation and temperature. The study 

classified a model as “biased” if position and timing of features are realistic but magnitude is 

inaccurate and “significantly biased” when it represents a surface climate variable 

unrealistically. Table 2 is a summary of an assessment of the seven models that are integrated 

in the SDP as analysed by McSweeney et al (2015) over Africa. As for Southern Africa, 

performance was found to be mixed and no models emerged as significantly 'worse' than others 

generally. 

     Table 2: Assessment of CMIP5 models integrated in the SDP  

Model Annual cycle of 

Temperature 

Annual cycle of 

precipitation 

Key 

Teleconnections 

CanESM2 Satisfactory Satisfactory Biases 

CNRM-CM5 Satisfactory Satisfactory Satisfactory 

atisfactory Satisfactory Satisfactory 

IPSL-CM5A-MR Satisfactory Satisfactory Satisfactory 

MIROC-ESM Satisfactory Satisfactory Satisfactory 

MPI-ESM-MR Satisfactory Satisfactory Satisfactory 

NorESM1-M Biases Biases Satisfactory 

     Source: Adapted from McSweeney et al. (2015) 

A recent study by Munday and Washington (2017) used twenty-one GCMs with a common 

ensemble member r1i1p1 (same as the one used in the portal) from the CMIP5. Five of these 

models: CanESM2, MIROC-ESM, IPSL-CM5-MR, MPI-ESM-MR and NorESM1-M are 

among eight models integrated in the portal. The study established that these models capture 

the location of Angola Low (AL) well. Moreover, annual cycle of rainfall over Southern Africa 

is reproduced well by these models despite exhibiting a large spread in rainfall amounts. Good 

performance of IPSL-CM5A-MR and MPI-ESM-MR is also noticed in East Africa by Yang et 

al (2015) where correlations and root mean square error (RMSE) between observations and 

models is greater than 0.8 and less than 0.5 respectively, in each GCM.  
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Libanda et al., (2016) assessed the performance of two CMIP5 models, namely CNRM-CM5 

and CanESM2 by comparing with observed station data for thirty nine meteorological stations 

across Zambia. The study established that annual cycle of the rain season (October to April) 

was well captured by both models. Besides representing the dry season (May to September) 

well, the two models also captured the downward gradient of the distribution of precipitation 

from North to the South of Zambia. Comparing the two models, the study established that 

CNRM-CM5 out-performed the CanESM2 as the latter under estimated precipitation over 

some parts of Eastern Province. 

A recent study by Charles et al. (2017a) investigated how statistical bias correction of CMIP5 

models impact the future climate change under RCP8.5 for 2020 – 2050, relative to the period 

1980 – 2000. This was a single-site study as only Mt. Makulu station was involved. Three bias 

correction methods: change factor, nudging and quantile mapping were compared using four 

GCMs from CMIP5 archive, namely: GFDL-ESM2M, MIROC5, MPI-ESM-MR and NCAR-

CCSM4. Results show that change factor method performed better in correcting bias of annual 

precipitation as quantile mapping and nudging methods yielded poor accuracy. 

2.6. Selection of Large-scale Variables (Predictors) 

The selection of large-scale variables (predictors) is one of the most crucial tasks in statistical 

downscaling of climate projections. Hofer et al. (2015) argue that there are two ways of 

selecting predictors for statistical downscaling, namely priori selection and data-based 

selection. In priori selection, predictors are chosen based on knowledge outside the available 

data (without data analysis). As for the second method, selection is based on statistical analysis 

of the relationship between potential predictors and predictand (data based selection). To 

counter the weaknesses associated with each of these two methods, the use of both methods is 

common in most studies.  

Regardless of the method used in predictor selection, there is consensus among the 

downscaling community (Hewitson and Crane, 1996; Wilby et al., 2004; Coulibaly et al., 

2005; Maraun et al., 2010; Gutiérrez et al., 2013; Manzanas, 2016) that any study involving 

statistical downscaling of GCM outputs should be preceded by a careful selection of most 

relevant predictors for the target local variable. Maraun et al., (2010) and Wibig et al., (2015) 

contend that a predictor of choice should be of high predictive power and can be identified by 
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some correlation analysis with local-scale variables (predictand). However, Hewitson and 

Crane (2006) warn against relying on relationships that are completely correlative and demand 

for knowledge of local physical processes as invaluable in determining meaningful predictor 

combinations. Further, Tareghian and Rasmussen (2013) cautioned against using excessive 

number of predictors since some of them may be correlated and lead to poor prediction 

accuracy and difficulties in interpretation. 

In the context of climate change, predictors for downscaling should include large-scale 

variables that contain relevant climate change signal such as changes in thermodynamic 

properties. These may include circulation variables, free atmospheric temperature and moisture 

variables (Huth, 2002; Hewitson and Crane, 2006; Brands et al., 2011; Benestad, 2016). This 

stand point is consistent with Gutierrez et al. (2013) who avoided the use of predictors that 

only include circulation variables such as geopotential height, sea level pressure, zonal and 

meridional wind components. They argue that circulation variables tend to have a weaker 

climate change signal than temperature and/or absolute humidity which are related to 

variations in radiation balance. Thus in downscaling temperature an indicator of the radiative 

properties of the atmosphere should be considered (Huth, 2004).  

Similarly, humidity information need to be taken into account when downscaling precipitation 

(von Storch et al., 2000) since it improves predictions for present climate and stationarity of 

the model (Hewitson and Crane, 2006). Besides, local precipitation relies on atmospheric 

circulation and most GCMs do not simulate relative humidity well (Hanssen-Bauer et al., 

2005). However, they also acknowledge the use of signal bearing predictor(s) such as 

atmospheric moisture when downscaling climate under climate change conditions.  

Predictors used in some previous studies involving statistical downscaling of temperature and 

precipitation are given in Table 3. It is worth noting that this table is not exhaustive but only 

meant to illustrate predictors used to downscale temperature and precipitation in different 

regions. Based on predictors shown in Table 3, it is apparent that predictors used for 

downscaling temperature and precipitation usually constitute a combination of circulation and 

those carrying radiative properties of the atmosphere. Middle tropospheric variables (at 850 

hPa and 750 hPa) are commonly used while upper levels (500 hPa) or more are rarely utilised. 



 

 

 

Table 3: Illustration of predictors and methods used in statistical downscaling of temperature and precipitation from different regions 

(countries) 

Predictand Predictors Methods Region/country References  

Temperature T2m, SLP Canonical correlational analysis –CCA 

(EOF –based) 

Scandinavia Benestad, R.E 

(2001) 

Temperature T850, SLP Multiple linear regression (MLR), CCA, 

Singular Value Decomposition (SVD) 

Central Europe Huth, R. (2002) 

Temperature 

Precipitation 

T2m, SLP, Z850, U850, V850 

T2m, SLP, Z850, U850, V850, 

Dew point temperature at 2m 

Analogue Western 

Mediterranean 

Grouillet et al., 

(2016) 

Tmax, Tmin 

 

Precipitation 

U500, Z500, Z850, Q850/R850, 

Vortices at 500 hPa 

MSLP, U500, U850, Z500, 

Q850/R850, Q500/R500 

SDSM (regression based) Northern Canada Dibike et al., (2008) 

Temperature T550, Z550 Simple linear regression (SLR) Cordillera 

Blanca, Peru 

Hofer, M. et al., 

(2015) 

Precipitation SLP Analogue Central Sweden Wetterhall, F. et al. 

(2005)  

precipitation Q500, Q850, U850, airflow 

strength at 850hPa 

SDSM Agustan del 

Norte, Philippine 

Burdeos, K.B and 

Lansigan, F.P 

(2017) 

Tmax 

precipitation 

Z500, T850 

T500, Q850, U850 

Analogue based on nearest neighbour Senegal Manzanas, R.G( 

2017) 

Note:  

Predictors: specific humidity (Q), meridional wind component (V), zonal wind component (U), relative humidity (R), temperature at 2 

metres (T2m), temperature (T), geopotential height (Z),  sea level pressure (SLP/MSLP), dew point temperature at 2m (D2)  

Methods: Canonical Correlational Analysis (CCA),  Multiple Linear Regression (MLR), Singular Value Decomposition (SVD), Statistical 

Downscaling Model (SDSM), Empirical Orthogonal Functions (EOF), Self-Organising Maps (SOM), Probability Density Functions (PDF) 

and Cumulative Density Function (CDF). 
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    Table 3 Continued 

Predictand Predictors Methods Region/country References  

Tmax 

 

 

Tmin 

precipitation 

U500, U850, Z850, 850 hPa 

divergence, 500 hPa airflow 

strength, 

Surface zonal velocity 

U850, T2m, MSLP, surface 

specific 

humidity 

SDSM South Wollo 

Zone, North 

Central Ethiopia 

Legesse, S.A et al.(2013) 

precipitation Large-scale precipitation, specific 

humidity at 10m 

Empirical Orthogonal 

functions (EOF) 

Tanzania Mtongori, H.I. et al.(2016) 

precipitation Q750, R750, U750, V750, surface 

temperature 

Self-Organising Maps (SOM) 

and PDF 

South Africa Hewitson,B.C and Crane, 

R.G ( 2006) 

Rainfall and 

temperature 

(Tmin, Tmax) 

U700, V700, 500 – 850hPa lapse 

rate, T2m, 10m U and V winds, 

relative and specific humidity 

SOM and CDF (cumulative 

distribution functions) 

Cape Town/ 

South Africa 

Tadross and Johnston, 

(2012) 

Precipitation  T850, Q850, U850 Analogue Zambia  Libanda, B et al., (2016) 

Note:  

Predictors: specific humidity (Q), meridional wind component (V), zonal wind component (U), relative humidity (R), temperature at 2 

metres (T2m), temperature (T), geopotential height (Z),  sea level pressure (SLP/MSLP), dew point temperature at 2m (D2)  

Methods: Canonical Correlational Analysis (CCA),  Multiple Linear Regression (MLR), Singular Value Decomposition (SVD), Statistical 

Downscaling Model (SDSM), Empirical Orthogonal Functions (EOF), Self-Organising Maps (SOM), Probability Density Functions (PDF) 

and Cumulative Density Function (CDF). 
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2.7. Selection of Geographical Domain 

Local climate variables such as precipitation and temperature are related to conditions taking 

place over large surrounding space as well local geographical features (Benestad, 2016). 

Additionally, GCMs have different skill in reproducing observed climatology across space and 

time. This standpoint justifies the selection of a geographical domain as an important activity 

in a statistical downscaling process. Wilby et al. (2004) argued that this helps in specifying the 

location and dimensions of the large-scale predictor fields for downscaling local variables of 

interest. The domain chosen for downscaling should be large enough to reflect influential 

processes affecting the region under study. 

Although Goodess and Palutikof (1998) contend that the predictive ability of a model is 

expected to increase with increasing domain size, other studies have shown that too large a 

domain size can add unnecessary noise and result into producing spurious results. Further, a 

domain size which is small enough would enable completion of simulations in a reasonable 

amount of time since time required is proportional to the number of grid points. In order to 

establish the predictor–predictand relationship, the selected domain should capture synoptic 

forcing features represented by the GCM (Hewitson and Crane, 1996).  

To overcome some of the issues associated with the skill level of various domain sizes, the use 

of mean sea-level pressure or variables derived from mean sea-level pressure have formed the 

centrepiece of many downscaling studies due to its relatively conservative variability and 

hence, predictability (Goodess and Palutikof, 1998; Wilby and Wigley, 1997; Wilby et al., 

1998). In contrast, Gutierrez et al. (2013) and Haylock et al. (2006) demonstrated that predictor 

choice has more influence on the downscaled results than the size of the geographical domain 

applied. In the case of analogue method, Gutiérrez et al.(2004; 2013) suggest that better results 

are obtained from smaller domains. 

2.8. Projections of Changes in Temperature and Precipitation 

2.8.1. Global Level  

Analysis of global surface temperature records for the period 1880 to 2012 indicates an 

average warming of 0.85˚C since the pre-industrial period (IPCC, 2013). Global mean surface 

air temperature is projected to rise over the 21st century under all assessed emission scenarios 
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(Trenberth et al., 2007; Collins, 2011). Relative to the 1985 to 2005 average, global mean 

annual temperature is projected to increase by 0.3 to 2.5°C by 2050 with a higher change over 

land areas (Daron, 2014a). The Fifth Assessment Report of the IPCC (2013) has established 

that change in global temperature increases with the increase in RCP scenarios (i.e. from 

RCP2.6 to RCP8.5) as well as with time. Thus, long-term projections for the period 2081 – 

2100 show larger changes that are likely to exceed 1.5⁰C of warming under all IPCC emission 

scenarios with the exception of low emission scenario (Collins et al., 2013). By the end of 21st 

century, warming is likely to exceed 3⁰C under RCP8.5. 

Projected changes in future precipitation are characterised by model disagreements in the likely 

direction and magnitude of change (Hushaw, 2015). Global precipitation is projected to 

increase steadily over the 21st century under global warming conditions. On average, an 

increase of about 2 percent and 5 percent under RCP2.6 and RCP8.5 respectively is projected 

in global precipitation (Collins et al., 2013). Regionally, precipitation is projected to vary since 

dry regions will become much drier and wet regions wetter (Collins et al., 2013; IPCC, 2014; 

Kirtman et al., 2013).  

2.8.2. Africa 

In the last 50 to 100 years, most parts of Africa have experienced an increase in surface 

temperature of at least 0.5˚C (Hulme et al., 2001; Niang et al., 2014). Observed data shows that 

minimum temperature is increasing faster than maximum temperature (Boko et al., 2007; 

Collins, 2011; Cook and Vizy, 2012; Niang et al., 2014). Studies show largest warming for 

June – August (JJA) season than December – January (DJF) season (Hulme et al., 2001; 

Collins, 2011). Temperature increases observed in Sahara are larger than for any other region 

on the continent. 

During the 21
st
 century, it is likely that temperature over Africa will rise. The continent is 

expected to experience higher land warming than the global land average in all seasons. Drier 

subtropics will warm more than the wetter tropics (Christensen et al., 2007; Niang et al., 2014). 

Consistent with observed trends, minimum temperatures are projected to increase faster than 

maximum temperatures (Niang et al., 2014). By mid- and late- 21
st
 century, the increase in 

temperature over land across Africa is projected to exceed 2˚C and 4˚C under RCP2.6 and 

RCP8.5 respectively (Niang et al., 2014). Under the medium (A1B) and high (A2) greenhouse 
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emission scenarios of the Special Report on Emission Scenarios (SRES) (written as SRES A1B 

and SRES A2) (IPCC, 2000), mean annual temperature increase over the entire Africa is 

expected to rise by 2˚C by the end of this 21st century relative to the late 20th century (Niang 

et al., 2014). 

Owing to data quality, spatial coverage sparsity and model disagreement, conclusions about 

trends and changes in precipitation leads to low confidence as compared to temperature 

(Trenberth et al., 2007; Blamey et al., 2013; Maidment et al., 2014; Niang et al., 2014; Adler et 

al., 2017). Projected changes in precipitation vary spatially across the continent. This is evident 

in the projections of precipitation for different regions of Africa as discussed in the subsequent 

sections. 

2.8.3. North Africa 

During the 20th century the region has experienced rising surface temperature (National 

Intelligence Council - NIC, 2009; Collins et al., 2013), with Northern Algeria and Tunisia 

showing the greatest increase of about 2˚C to 3˚C (NIC, 2009). Projections for the region show 

notable increase in both annual maximum and minimum temperatures, with minimum 

temperature increasing faster than maximum temperature under SRES A1B scenario (Collins 

et al., 2013; Niang et al., 2014).  

Droogers et al. (2012) downscaled nine CMIP3 GCMs using the A1B scenario for the Middle 

East and North Africa (MENA) region for the period up to 2050. For North Africa, in 

agreement with Terink et al. (2013) the study shows reduced precipitation by 2050. Moderate 

decrease or no change is projected in winter (October to March) with significant reduction 

during summer (April to September) (Barkhordarian et al., 2013; Christensen et al., 2013). 

Drier conditions are projected with rising GHG concentrations with warm and cold seasons 

experiencing maximum and minimum decreases respectively (Barkhadorian et al., 2013). 

Terink et al. (2013) evaluated climate change for 22 MENA countries by downscaling nine 

GCMs. Two future periods were considered: 2020 – 2030 and 2040 – 2050, with baseline 

period 2000 to 2009. The study established decrease in projected annual precipitation for most 

parts of the region. For the Northern African region, largest decreases are projected for 

Morocco, Tunisia, Central Libya, Southern Egypt, Central and coastal Algeria. However, 15 to 
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20 percent increase in annual precipitation is projected in some countries such as Djibouti and 

Yemen. 

2.8.4. West Africa 

Over West Africa, increase in temperature is projected by both CMIP3 and CMIP5 models. 

Diffenbaugh and Giorgi (2012) characterised West Africa as a climate change hotspot using 

CMIP5 models under RCP4.5 and RCP8.5 scenarios. Under SRES A2 and A1B (CMIP3) and 

RCP 4.5 and RCP 8.5 (CMIP5), temperature increase is projected to rise above the 1986 – 

2005 baseline by between 3 to 6°C by the end of the 21st Century (Niang et al., 2014). These 

temperature projections are consistent with the range of 1.5 to 6.5°C warming found by (Sylla 

et al., 2016).  The warming will vary spatially with Guinean coast projected to be less warm 

than the Sahel (Blamey et al., 2013). Under RCP 8.5 scenario warming is projected to increase 

faster into the interior by about 5°C than along the Sahel/Sahara boundary. 

There is substantial uncertainty in the projected West African precipitation (Sylla et al. 2016; 

Riede et al., 2016; Monerie et al., 2017; Obada et al., 2017). This is largely attributed to model 

disagreement on both direction and magnitude of change (Sylla et al. 2016). The uncertainty is 

evident through the possible precipitation changes which range from  30 to 30  percent (Sylla 

et al., 2016) for the entire region and  10 to 10  percent in the Sahel alone (Obada et al., 

2017). Studies have established that the range of uncertainty varies directly with RCP forcing 

and time frame being considered. For instance, precipitation reduction strengthens and extends 

spatially to East Sahel as time periods shifts from 2036 – 2065 to 2071 – 2100 as well as 

forcing increases from RCP4.5 to 8.5 (Sylla et al. 2016). Spatially, precipitation is projected to 

decrease in Senegal, Mali, Northern Guinea and Southern Mauritania. However, some parts of 

gulf of Guinea, Sierra Leone, Ivory Coast and East Sahel are projected to experience increase 

in precipitation. 

2.8.5. East Africa 

Observation datasets show significant increase in temperature but decrease in precipitation 

over East Africa for the period 1951 – 2010 (Ongoma and Chen, 2017). This is consistent with 

Daron (2014a) who reports warming signal over East Africa for the period 1963 to 2012. Over 
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the past 50 years the region has experienced an average increase in temperature of 1.5 to 2˚C 

and surpassing 3 ˚C during March to August in some areas such as South Sudan. 

Anyah and Qiu (2012) assessed temperature and precipitation changes during the 20th and 21st 

century using a total of 11 CMIP3 model outputs over Greater Horn of Africa (GHA). The 

study shows that temperature has increased significantly over the GHA since the early 1980s. 

Based on high (A2) and mid – range (A1B) carbon dioxide emission scenarios, for two time 

periods; 2046 – 2065 and 2081 – 2100 relative to the 1981 – 2000 period, projections in 

temperature and precipitation changes were significant. A general increase in both maximum 

and minimum temperature for all seasons was projected under both scenarios and time periods. 

According to this study, significant increase in minimum temperature is greater than the 

increase in maximum temperature.  

At seasonal scale, the study established that under A1B scenario, the warming trend in the 

projected temperature anomaly reaches an average of about 1˚C for all seasons with exception 

of JJA which attains 1.5˚C by the year 2040. Seasonality in precipitation of GHA is noted in 

the CMIP3 models under A1B and A2 scenarios. This seasonality is attributed to the migration 

of Inter-tropical Convergence Zone (ITCZ) as there is remarkable increase in projected 

precipitation which coincides with ITCZ location. The Southern parts of the GHA are 

projected to experience slight increase in precipitation during DJF season. 

In Ethiopia, Legesse et al. (2013) downscaled projected temperature and precipitation over 

Wollo zone using the third version of the Hadley Centre Coupled Model (HadCM3) and two 

SRES emission scenarios; A2 and B2. The SRES B2 is the lower mid-range scenario where the 

emphasis is on local solutions to economic, social and environmental sustainability with less 

rapid and more diverse technological change. A statistical downscaling model (SDSM) was 

applied in this study. Results show increase in temperature and decline in precipitation for the 

future periods: 2010 – 2039, 2040 – 2069, and 2070 – 2100. Mean annual precipitation is 

projected to decrease by 14.2 to 43.3 percent by 2080s with respect to the 1980 – 2012 

average. However, maximum and minimum temperatures are expected to rise by 6.17˚C and 

5.65˚C respectively by 2080s with respect to the 1980 – 2012 average. Daron (2014a) and 

(Liebmann et al., 2014) have also reported the decrease in rainfall for MAM season during the 



 

24 

 

period 1963 to 2012 and 1979 to 2012 respectively. In contrast, the short rain seasons (SON) 

saw slight increase in rainfall especially over Great Lakes Region. 

2.8.6. Southern Africa 

Various studies have shown that Southern Africa is getting warmer while rainfall trends show 

mixed signals (New et al., 2006; Collins, 2011; Kruger and Sekele, 2013; Daron, 2014; 

MacKellar et al., 2014; Niang et al., 2014; Pinto et al., 2015) report temperature increase of 

about 1˚C to 1.5˚C over the past 50 years with the interior regions experiencing largest changes 

of up to 2˚C. Furthermore, minimum temperature has been found to be rising faster than 

maximum temperature over the region. Analysis of rainfall trends over Southern Africa reveals 

high temporal and spatial variability (Davis, 2011).  

Projections of temperature and precipitation over Southern Africa based on both GCMs 

simulations and downscaled GCM outputs show increase in temperature and decrease in JJA 

and SON rainfall. Temperature is projected to keep on increasing until 21st century (Davis-

Reddy and Vincent, 2017). Some parts of Northern Botswana, Namibia, Western Mozambique, 

Zimbabwe and Southern Zambia are expected to experience decrease in rainfall while 

Tanzania and parts of northern Mozambique are expected to be wetter. While annual 

temperature is projected to increase by 1˚C to 4˚C by 2050, the increase in seasonal 

temperature is projected to be 0 to 4˚C in summer and no change to 3.54˚C in winter. Under 

RCP4.5, temperature for DJF season will increase by between 1˚C to 3 ˚C by 2050, with higher 

emission scenarios having higher increase (Daron, 2014). 

2.8.7. Zambia 

The country has experienced climatic hazards that include seasonal floods and flush floods, 

drought, dry spells and extreme temperatures (NAPA, 2007). Since the second half of the 20th 

century, temperature has been increasing at a rate faster than the global average rate of 

warming. During the 1950 to 2010 period, the average increase in temperature is 

approximately 0.6˚C/decade Neubert et al.(2011) whereas the first three decades since 1950 

saw an increase of about 0.33˚C/decade (Phiri et al., 2013). From 1960 to 2006 mean annual 

temperature has risen by 1.3˚C, with an average rate of 0.29 ˚C/decade (McSweeney et al., 

2008).
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A study for Mt. Makulu by Chisanga et al. (2017a) revealed significant increasing trends for 

annual maximum and minimum temperatures. Seasonally, DJF and SON were found to have 

much higher heat spell events with probability of occurrence of 0.78 and 0.98 respectively. 

Generally, rainfall amounts across Zambia exhibit downward gradient from North to the South 

of the country (Phiri et al., 2013). Model projections over Zambia indicate an increase of 

between 1.2 ˚C to 3.4 ˚C in mean annual temperature by 2060 and 1.6 ˚C to 5.5 ˚C by 2090 

relative to the 1970 to 1999 average. Hot days and nights are projected to increase while a 

gradual decrease in number of cold days and nights is expected relative the 1970 to 1999 

average. Spatially, Southern and western regions of the country are expected to experience a 

higher warming trend than the northern and eastern counterparts (McSweeney et al., 2008).  

Projections of annual precipitation for Zambia do not indicate large changes (McSweeney et 

al., 2008). This differs from the projections presented in NAPA (2007), which reported 

precipitation increase in each of the Agro Ecological Regions (AERs) of the Zambia. In the 

study of McSweeney et al. (2008), the ensemble of models shows an increase of 15 percent in 

DJF rainfall and a decrease of 14 percent in SON rainfall by 2090 relative to the baseline 

period 1970 – 1999. The projected marginal increases of rainfall during DJF and MAM are 

concentrated in the north-east while the SON decreases are greatest towards the south of the 

country and little or no change is expected for JJA season. The reductions projected for the 

SON season are more substantial than any other season. The frequency and intensity of heavy 

rainfall events are expected to increase during the rainy season.  

2.9. Research Gap 

Literature reviewed in this study has shown that climate is changing globally and regionally. It 

is also clear that climate scientists use global climate models to understand how climate would 

evolve in future. However, the coarse spatial resolution of GCMs renders their outputs 

inappropriate for direct use in climate change impact and vulnerability assessment at local 

level. Therefore, the growing demand for higher spatial resolution climate information has 

necessitated the need for downscaling the coarse GCMs to local scale.  

The release of CMIP5 models which formed the basis for the Intergovernmental Panel on 

Climate Change Fifth Assessment Report (IPCC-AR5) induced more studies globally and 

regionally. Generally, CMIP5 models have higher resolution than CMIP3 models. Moreover, 
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they have improved in resolution, parameterization of physical process and model components. 

However, research seems to indicate that CMIP5 models have not been used to project changes 

in precipitation and temperature at various meteorological stations located across Zambia. This 

is evident from earlier studies for Zambia. Yamba et al. (2011) projected changes in 

precipitation over the Zambezi River Basin using raw outputs of CMIP3 GCMs. Stenek et al. 

(2011) also used CMIP3 GCMs to downscale precipitation and temperature for Zambia with 

focus on Kafue River Basin. Recently, Libanda et al. (2016) only assessed predictor variables 

associated with statistical downscaling or precipitation over Zambia. The study did not 

downscale the projected change. It appears from literature that despite relative improvements 

of CMIP5 models compared to CMIP3, there is still limited knowledge regarding projections 

of precipitation and temperature at local level. Therefore, this study focused on the projection 

of changes in annual and seasonal climatologies (long-term averages) of precipitation and 

temperature at meteorological stations across Zambia.  

2.10. Chapter Summary 

The chapter has presented the two theories on which this study is anchored, namely: 

Anthropogenic Global Warming (AGW) theory and the principle of uncertainty in Earth‟s 

climate. Considerations for selection of large-scale variables and GCMs for downscaling 

precipitation and temperature have been highlighted as well. The chapter has also brought to 

light the observed and projected changes in precipitation and temperature at various levels. The 

gap this research sought to address has been discussed. It has been shown that only scanty 

literature exists for Zambia on the subject of Statistical downscaling of climate projections 

from the GCMs outputs. Further, it has been established that despite the increasing demand for 

high resolution climate information for impact and vulnerability assessment, no study has been 

undertaken to downscale temperature and precipitation over Zambia as a whole using climate 

models from CMIP5 archive. 
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CHAPTER THREE: DESCRIPTION OF THE STUDY AREA 

3.1. Overview 

This chapter describes the study area and its physical, administrative and demographic 

characteristics. The study is focused on a total of 19 weather stations of which 11, 13 and 19 

stations were utilised for maximum temperature, minimum temperature and precipitation 

respectively. These weather stations are located across the country. Consequently, the 

description of the study area is at country level and includes agro-ecological regions. 

3.2. Geographical Location of Zambia 

Zambia is a landlocked country lying in central Southern Africa extending from longitude 22˚E 

to 34˚E and latitude 8˚S to 18˚ S with spatial coverage of 752, 615    (Jain, 2007). It lies 

entirely within the tropics and on the central African high plateau with an average altitude of 

1200m above sea level (asl.) (Kanyanga, 2008). It is surrounded by eight neighbouring 

countries, namely: Angola, Botswana, Democratic Republic of Congo (DRC), Malawi, 

Mozambique, Namibia, Tanzania and Zimbabwe. Figure 3 (a) shows the location of Zambia 

and her neighbouring countries. 

  

                               (a)                                                                     (b) 

Figure 3: Location of Zambia in Africa (red rectangle) (panel a) and provinces of Zambia 

(panel b).  

Source: Map of Africa from (Libanda et al., 2016) and map of provinces of Zambia from 
https://mwana.moh.gov.zm (retrieved on 22/02/2018) 
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3.3. Administration and Demographic Characteristics 

For administration purposes, Zambia is divided into ten provinces: Central, Copperbelt, 

Eastern, Luapula, Lusaka, Muchinga, Northern, North-Western, Southern and Western (Figure 

3(b)). According to Central Statistics Office (CSO, 2012) Zambia had 150 and 1430 

constituencies and wards respectively as of 2010. Since then, new districts have been created. 

At the time of the study, Zambia had 110 districts. 

According to CSO (2012), Zambia‟s total population of 13,092,666 composed of 49.3 percent 

and 50.7 percent male and females respectively. Rural population stood at 60.5 percent 

compared to 39.5 percent of the urban population. Although Zambia is highly urbanised, its 

population is predominately rural with annual rate of population growth of 2.8 percent during 

the inter-censal period, 2000 – 2010. The 2010 census saw an increase of 22.6 percent and 51.0 

percent in rural and urban populations respectively but is still sparsely populated with a density 

of 17.4 persons per square kilometre. Of the total population, 45.4 percent were aged below 15 

years.  

3.4. Climate  

Zambia is characterised by a tropical climate with three distinguishable seasons: hot and dry 

season from mid-August to November, warm and wet season (mid-November to April) and 

cool and dry season (May to mid-August) (NAPA, 2007; CSO, 2012). Average temperature is 

21˚C with coldest and hottest month being July and October respectively. While the range of 

cold temperature is 3.6 ˚C to 12.0 ˚C with an average of 8.1 ˚C, hot temperature has average of 

31.8 ˚C ranging from 27.7 ˚C to 36.5 ˚C (YEC, 1995 quoted in Kasali, 2008). Zambia is 

characterized by unimodal rainfall during the months of November to March. Rainfall is highly 

influenced by the migration of the Inter-Tropical Convergence Zone (ITCZ). ITCZ is a tropical 

rain belt that is formed when the Southeast Trade Winds and Northeast Trade Winds meet near 

the equator. It oscillates between the Northern and Southern tropics over the course of a year. 

This phenomenon results into downward gradient of rainfall distribution from the North to the 

South of the country (Libanda et al., 2016). It may also lead to inter-annual variability in 

rainfall. The annual rainfall ranges from 700mm to 1400m in the extreme southwest and in the 

north respectively (Kanyanga, 2008; Kasali, 2008). 
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Besides ITCZ, El Niño Southern Oscillation (ENSO) has a strong influence on rainfall in 

Zambia as it brings about inter-annual variations. The northern half of the country experiences 

drier conditions in the months DJF during La Niña episodes (cold phase) at the same time, the 

southern part experiences wet conditions. During EL Niño (warm phase) episodes, the opposite 

pattern occur, with the northern half experiencing wetter conditions than normal and dry 

conditions in the south (Kanyanga, 2008). Furthermore, northeast trade winds, southeast trade 

winds, northwest airflow and south airflow are the air masses that largely control the climate of 

Zambia. Based largely on rainfall pattern and soil type, Zambia is divided into three (I, II and 

III) distinguishable Agro-Ecological Regions (AERs). Moreover, AER II is further divided into 

two regions IIa and IIb based mainly on soil types. Figure 4 depicts spatial distribution of the 

AERs across Zambia and their major attributes displayed in Table 4. 

 

Figure 4: Agro-Ecological Regions of Zambia (Source: Author) 



 

30 

 

Table 4: Distribution and major attributes of AERs  

AER Location Attributes 

I  Plateau sub-region in 

Southwest Zambia, 

Zambezi and South 

Luangwa valleys 

 Semi-arid conditions with annual rainfall less than 

800mm 

 Mean annual temperature of 24.2°C with range 10.3 to 

36.5°C. 

 Altitude: 300 – 900m asl.  

II  Semi-veld plateau of 

central, Eastern and 

Southern provinces. 

 Kalahari sand plateau 

of western province. 

 Semi-arid and typical tropical conditions. 

 Receives about 800 – 1000mm annual total rainfall. 

 Mean annual temperature of 21.2°C, with range 6.3 

to33.7°C and altitude of 900 – 1300m asl. 

 2 subdivisions: IIa and IIb, which differs slightly in 

terms of amount of rainfall and soil type. 

III  Copperbelt, Northern, 

North-Western, 

Luapula and Muchinga 

(except Chama district 

–AER II) Provinces  

 Part of central African plateau 

 Typical tropical conditions. 

 Rainfall above 1000mm annual total rainfall. 

 Mean annual temperature of 20.7°C, with range 5.7 – 

32.1°C. 

 Altitude: 1100 -2000m asl. 

    Source: Adapted from Kanyanga (2008), Kasali (2008) and Jain (2007) 
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CHAPTER FOUR: DATA AND METHODOLOGY 

4.1. Overview 

This chapter describes datasets and methods used in the study. Several stages of the 

methodology leading to model development and downscaling of GCM projections are 

presented.   

4.2. Datasets  

4.2.1. Meteorological Station Data 

Station data for the period 1981 – 2010 was acquired from Zambia Meteorological Department 

(ZMD) which is the main national institution mandated to observe and manage weather and 

climate data. ZMD manages 39 manual weather stations and 68 automatic weather stations 

located across the country. Automatic weather stations are very recent (with less than 10 years 

of daily data). Therefore, this study relied on manual weather stations which have over 50 

years of daily data. Due to discontinuities in daily data, only 19 stations were utilised for 

precipitation, 13 for minimum temperature and 11 for maximum temperature (Figure 5). 

Independent data quality control was not carried out as ZMD had already done so. 

 

              Figure 5: Location of meteorological stations used in the study  
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4.2.2. Gridded Reanalysis Data   

ERA-Interim reanalysis dataset (Dee et al., 2011) of the European Centre for Medium Range 

Weather Forecasts (ECMWF) provided low resolution predictors (large-scale atmospheric 

variables) necessary for downscaling precipitation and temperature at surface level. This 

dataset runs from 1979 to date and has spatial horizontal resolution of 0.75° x 0.75°. It consists 

of daily estimates of both surface and atmospheric variables. Temperature and rainfall are 

some of the surface variables while wind, air temperature and pressure at various altitudes 

represent atmospheric variables contained in reanalysis data. This dataset is accessible at 

https://www.ecmwf.int/en/forecasts/datasets. Predictors considered in this 

study are displayed in Table 5. 

      Table 5: Predictor variables considered in this study  

Name  Code levels (hPa*) Units 

Geopotential height  Z 1000, 850, 700, 500       

Temperature T 1000, 850, 700, 500 K 

Specific humidity Q 1000, 850, 700, 500 kg     

U-wind component U 1000, 850, 700, 500      

V-wind component V 1000, 850, 700, 500      

Mean sea level pressure SLP 0 Pa 

2m Temperature T2m 0 K 

      Source: Statistical Downscaling Portal 

(www.meteo.unican.es/downscaling/login.html).*hPa stands for hectopascals, 

the SI units for pressure [1 hPa = 1milibar]. Q1000 means specific humidity at 1000hPa 

height 

4.2.3. Global Climate Model Simulations 

Simulations of precipitation and temperature were downscaled from three GCMs of the Fifth 

Phase Coupled Model Intercomparison Project (CMIP5) under RCP4.5 and RCP8.5. The 

process of selecting the models is described in detail in Section 4.3.5. Briefly the selection was 

based on their ability to simulate key climatological features over Southern Africa and Zambia 

in particular. CMIP5 dataset is available at the website http://pcmdi9.llnl.gov 

maintained by the Earth System Grid Federation which is an international collaboration of 

several climate modelling centres around the world. 

http://www.meteo.unican.es/downscaling/login.html
http://pcmdi9.llnl.gov/
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4.3. Methodology 

4.3.1. Geographical Domains  

Statistical downscaling of GCMs under perfect prognosis approach requires the screening of 

predictors (large-scale atmospheric variables) (Gutierrez et al., 2013; Ribalaygua et al., 2013). 

This includes the atmospheric domain surrounding the target region (Zambia in this case). In 

this study, four geographical domains (Ds) were assessed to determine the atmospheric 

window over which predictors in the ERA-Interim reanalysis data (also found in GCMs) are 

most influential on local precipitation and temperature. While Libanda et al. (2016) assessed 

predictors for downscaling precipitation over a single domain D1, other domains were included 

in this study for comparison purpose. The assessment of at least one domain is a common 

practice in climate downscaling (Wilby et al., 2004; Benestad, 2016). This permits the 

assessment of an atmospheric window over which preferred predictors have influence most. 

The geographical domains have been defined in such a way that the surrounding areas which 

have meteorological influence on Zambia are captured. Only one of these four domains was 

selected on the basis of predictor influence on the local climate. The four Ds and their 

respective number of grid points in ERA-Interim data are presented in Table 6. 

Table 6: Geographical domains considered 

Code Longitude Latitude No. of grid points 

D1 19 ˚E : 37 ˚E 22 ˚S : 4 ˚S 100 

D2 19 ˚E : 37 ˚E 28 ˚S : 2 ˚N 160 

D3 13 ˚E : 43 ˚E 22 ˚S : 4 ˚S 225 

D4 13 ˚E : 43 ˚E 28 ˚S : 2 ˚N 256 

4.3.2. Selection of Predictors  

This is a crucial and time consuming step in statistical downscaling of global climate models. 

Predictor selection in this study was done in two steps. The first step involved carrying out 

preliminary experiments to assess the influence of each of the predictors (at each level 

indicated) in Table 5 on local variables: precipitation (PRECIP), minimum temperature 

(TMIN) and maximum temperature (TMAX). This resulted into 66 experiments (22 for 

PRECIP, 22 for TMIN and 22 for TMAX). For the purpose of preliminary experiments, 

reanalysis data was downscaled over a common geographical domain using individual 
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predictor levels (example, each level of specific humidity: Q1000, Q850, Q700 and Q500). 

The performance of each of these variables was checked using correlations and KS-p values. In 

the second step, based on the said statistics and expert advice from meteorologists at ZMD, 

several potential predictor combinations were constituted as displayed in Tables 7 – 9.  

    Table 7: Predictor combinations tested for downscaling precipitation  

Code Combination  

V1 T2m, U1000, U850, V850, T850, Q850, Q700 

V2 T2m, U1000, U850, V850, T850, Q850 

V3 T2m, U850, V850, T850, Q850 

V4 T2m, U1000, V850, T850, Q850 

V5 Q850, T850, U850, V850 

V6 T2m, U850, V850, Q850 

V7 U850, T850, Q850 

V8 T2m, U850, Q850 

V9 Z1000, Z850, U850, V850, T850, Q850 

V10 Z1000, U850, V850, T850, Q850 

V11 Z850, U850, T850, Q850 

V12 T850, Q850, T700, Q700 

V13 T850, Q850, T700 

      Table 8: Predictor combinations tested for downscaling minimum temperature  

Code Combinations 

P1 SLP, T1000, T850, Z850, T2m, Q850, Q1000, U700 

P2 SLP, T850, U700, Q850, Z850 

P3 SLP, T850, U700, Q850 

P4 SLP, T1000, U700, Q850 

P5 SLP, T850, Q850 

P6 SLP, T1000, Q850 

P7 SLP, T850, Q1000 

P8 SLP, T2m 

P9 T2m 
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         Table 9: Predictor combinations tested for downscaling maximum temperature  

Note: In each of these combinations, the numbers associated with predictors denote the   

vertical level (hPa). As an example, T850 refers to air temperature at 850 hPa. 

In order to determine the most influential predictor-geographical domain combination, each 

predictor combination in Tables 7 – 9 was considered over every geographical domain 

presented in Table 6. This resulted into 52, 36 and 40 predictor-domain combinations for 

PRECIP, TMIN and TMAX respectively.  Each of these combinations represented a possible 

downscaling model for the respective local climate variables. For each target local variable 

(PRECIP, TMIN and TMAX), only one predictor-geographical domain combination was 

finally chosen by analogue method.  

In climate science, the term analogue is used to refer to states of the atmosphere that are 

similar. The method is based on the assumption that similar atmospheric patterns over a region 

of interest lead to similar meteorological outcomes (Manzanas, 2017). The main limitation of 

the analogue method is inability to produce a local state that has never been observed in the 

historical record. In this study, Euclidean distance was used as a measure of similarity between 

atmospheric patterns following the recommendation by Matulla et al. (2008). For the purpose 

of predictor selection, the analogue method was implemented as follows. 

Observed station dataset for the period 1981 to 2010 was divided into training period (75 

percent of data: 1981 – 2002) and testing period (25 percent of data: 2003 – 2010). The 

Code Combination 

T1 SLP, T2m, U1000, T850, U700, Q500 

T2 SLP, T2m, T850, U700, Q500 

T3 SLP, T850, U700, Q500 

T4 SLP, T850, U1000, Q500 

T5 SLP, U1000, U700, Q500 

T6 SLP, U1000, U700 

T7 SLP, T850, Q500 

T8 SLP, T850 

T9 SLP, T2m  

T10 T2m 
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training dataset was used to predict station daily time series for the testing period (2003 – 

2010) using the analogue method. For this purpose, a target day t was taken from the testing 

period (2003 – 2010) and the analogous day u from the training period (1981 – 2002) based on 

the minimum Euclidean distance between the predictor combination values for day t and u, 

was determined. The surface variable value of the analogous day   is assigned to the target day 

t as a predicted local-scale value. This procedure is executed for each day in the testing period 

to produce a predicted daily time series              , where n denotes the number of days. 

Each of the respective predictor combinations in Tables 7 – 9 was used to simulate predicted 

time series for each of the three local climate variables at each meteorological station. These 

were then compared with the corresponding daily station observation time series, 

             , from the testing period. The skill for each predictor combination was assessed 

based on correlation analysis of the observations and corresponding predicted values from 

reanalysis in the historical period (1981 – 2010). Kolmogorov Smirnov p values were also 

considered for assessing model reliability (dissimilarity). These measures of skill are described 

in section 4.3.3 below 

4.3.3. Performance Measures of Predictor Variables  

A number of statistical measures were used to assess performance of each predictor 

combination listed in Tables 7 – 9 in predicting local variables. Correlation coefficient was 

used to measure the level of agreement between predicted and observed time series. Pearson‟s 

correlation coefficient (rho) was used to check the strength of the predicted values for 

temperature and Spearman‟s correlation coefficient (    was used to assess predicted values for 

precipitation, since it is less sensitive to strong outliers that lie in the tails of both samples. 

Reliability of predicted values was checked by Kolmogorov Smirnov p values (KS-p values 

evaluated the quality of distributional similarity in climatological terms of the predicted and 

observed time series.  

4.3.3.1. Pearson's Correlation Coefficient (rho) 

It measures the strength and direction of a linear relationship between the observations (o) and 

predictions (f). This score ranges from    to 1. In this context, a value of 1 describes a perfect 

positive linear relationship between observations and predictions whereas negative linear 

relationship is indicated by   . The closer the value is to 1 or   , the stronger the linear 
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correlation. The value of 0 indicates no linear relationship between variables. This measure is 

sensitive to outliers. For n pairs of observations              , and predictions              , 

Pearson correlation coefficient is computed by equation 4.1. 

                                  
 (    ̅  

   (    ̅ 

√ (    ̅     
        √ (    ̅   

   

                                 (4.1) 

4.3.3.2. Spearman’s Rank Correlation Coefficient (    

This statistic measures the dependence between observations and predicted values using some 

monotonic function (Gutierrez et al., 2011). Basically,    is similar to the rho except that the 

former is computed using the ranks of data unlike the latter which use actual data values. Let 

 (    denote the rank of     observation among    observations and  (    denote the rank of 

     value among   predicted values. Then the Spearman rank correlation coefficient is 

calculated by equation 4.2 (Wackerly et al., 2008) which is equivalent to equation 4.1. 

                               
 ( (     (  ̅̅ ̅̅ ̅̅ ̅) 

   ( (     (  ̅̅ ̅̅ ̅̅ ̅)

√ ( (     (  ̅̅ ̅̅ ̅̅ ̅)
 
   

        √ ( (     (  ̅̅ ̅̅ ̅̅ ̅)
  

   

                                       (4.2) 

A more direct method exists for computing     (equation 4.3) and is widely available in 

literature (Wilks, 2006; Wackerly et al., 2008) 

                                                            
    

  
   

 (     
                                          (4.3)    

In equation (4.3),      (      (    is the difference in ranks between the     pair of data 

values. Average rank is assigned to tied values prior to computing the   ‟s if they occur in the 

data. The sign of this score shows the direction of association between observations and 

predicted values. Like rho, it ranges from    to 1 and its absolute value tends to 1 as 

observations and predictions become closer to being perfect monotone functions of each other. 

A coefficient of 1 or    in this case is a consequence of observations and predicted values 

having a perfect monotone relationship (not necessarily linear relationship). However, 

compared to the Pearson‟s correlation, Spearman‟s correlation coefficient is less sensitive to 

outliers that may be in the tails of both observations and predictions (Gutierrez et al., 2011).  

Further, since precipitation may not follow a normal distribution Spearman‟s correlation is 

better choice for validating precipitation. 
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4.3.3.3. Two sample Kolmogorov-Smirnov Test (KS test) 

The downscaling model‟s capability to reproduce the distribution of the target time series was 

assessed by using a two sample KS test (p-value approach). This is a non-parametric test which 

assesses the null hypothesis that the two samples come from the same distribution. In the 

context of climate change, this test helps to determine whether the SD method applied is 

capable of reproducing the observed distribution. Under perfect prognosis approach, it is 

desirable for the downscaling model to reproduce the observed distribution if it is to be useful 

for downscaling GCM simulations. The null hypothesis is rejected for p-values less than or 

equal to the significance level of 1 percent. Moreover, a good downscaling model would yield 

higher p-values than others. Larger p-values of KS test signify more distribution similarity 

between observed and downscaled time series than low values. The KS test statistic is 

calculated using the equation 4.5.  

                                                   |  (     (   |                                  (4.5) 

where   is the distance between cumulative density functions of two samples.  

4.3.4. Building the Downscaling Model  

The downscaling model was built using the analogue method under perfect prognosis approach 

(Section 2.3). Essentially, predictor combinations (Tables 7 – 9) over each of the four 

geographical domains (Table 6) served as potential downscaling models. The predictor 

combination with highest skills over a specific geographical domain was considered as a 

downscaling model.   

4.3.5. Selection of Global Climate Models 

The performance of eight CMIP5 Global Climate models (GCMs) over Zambia was assessed 

based on available literature. Basic information about these eight GCMs is presented in Table 

10. Literature was assessed to determine suitability of three GCMs based on their skill to 

simulate key climatological features such as annual cycles of temperature and precipitation for 

Zambia. 
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Table 10: Basic information of GCMs that were assessed in literature  

CMIP5 Model 

ID 

Modeling Centre Resolution 

Lat. ⨉ Lon. 

Periods of daily 

time series available 

in SDP 

CanESM2 Canadian Centre for Climate 

Modeling and Analysis, Canada. 
2.8° ⨉ 2.8° Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

CNRM-CM5 National Centre for 

Meteorological Research, France 
1.4° ⨉ 1.4°  Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

GFDL-ESM-2M NOAA Geophysical Fluid 

Dynamics Laboratory. USA 
2.0° ⨉2.5 Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

HadGEM2-ES Met office Hadley Centre, UK 1.25° 
⨉1.875 

Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

IPSL-CM5A-MR Pierre Simon Laplace Institute, 

France 
1.25° ⨉2.5 Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

MIROC-ESM Japan Agency for Marine Earth 

Science and Technology, 

Atmosphere and Ocean 

Research Institute, and National 

Institute for Environmental 

Studies, Japan. 

2.81° ⨉2.81 Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

MPI-ESM-MR Max Planck Institute for 

Meteorology, Germany 
1.875° 
⨉1.875 

Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

NorESM1-M Norwegian Climate Centre, 

Norway 
1.89° ⨉2.5 Hist: 1941 – 2000  

rcp4.5: 2010 – 2100 

rcp8.5: 2010 – 2100   

Source: www.meteo.unican.es/downscaling/ensembles and Zubler et al. (2016) 

Note:  Lat = Latitude, lon = Longitude, rcp = representative concentration pathway and hist = 

historical.   

4.3.6. Downscaling GCMs Scenarios  

After selecting the downscaling model using station daily data and ERA-Interim, the analogue 

method was again used to simulate daily future and baseline values of local variables. For the 

purpose of downscaling GCM simulations, the model built is applied to GCMs. In this case, 

the large-scale atmospheric variables from the GCM for a targeted day t (within downscaling 

period, 2020 - 2049) were compared to large scale variables in the reanalysis record (1981 – 

2010) using Euclidean distance as a measure of similarity. The surface estimate in the 
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reanalysis record corresponding to the analogue is the downscaled value for day t. At this 

stage, the analogue method was implemented in the same way as at the predictor selection 

stage except that the large scale variables for the targeted day t was obtained from the GCMs. 

Studies that have used the analogue method to downscale precipitation and temperature include 

Grouillet et al. (2016) and Manzanas (2017).  

In this study, daily time series were downscaled from GCM simulations for two time periods: 

2020 – 2049 (future period, F) and 1971 – 2000 (baseline period, B). This was done to 

compare modelled time series of the past and future simulations. A web based statistical 

downscaling portal accessed on https://www.meteo.unican.es/downscaling was 

utilised to downscale daily time series for precipitation, minimum temperature and maximum 

temperature for baseline period (B) (1971 – 2000) and future period (F) (2020 – 2049) at 

weather station level from three GCMs constrained by two representative concentration 

pathways: RCP4.5 and RCP8.5. 

4.3.7. Computation of Climate Change Signal and Analysis of Scenarios 

Daily time series that were downscaled through the process described in section 4.3.6 were 

aggregated to seasonal and mean annual values using R Studio version 3.2.2. The climate 

change signal was computed using delta method. In this method, the change in climate is 

computed by subtracting mean of the baseline period from the mean of the future period. In the 

case of precipitation, the difference is expressed in percentage terms. Equations 4.6 and 4.7 

were used to compute the climate change signal in temperature and precipitation 

                                             (4.6) 

  

`            (4.7) 

where ∆  = change in temperature, ∆  = change in precipitation,  

             ̅           {
                    

                       
  

Climate change projections for precipitation and temperature are presented using the ensemble 

mean of GCMs computed for each RCP. The use of ensemble mean is very common in climate 

change studies (Mehran et al., 2014; Miao et al., 2014). Studies (Flato et al., 2013; Miao et al., 

2014; Pierce et al., 2009; Zubler et al., 2016) show that model ensemble results are better than 

                       ∆𝑃 
Y̅𝐹  Y̅B

Y̅B
 ×  00%     

           ∆𝑇   𝑌̅𝐹  𝑌̅𝐵 

https://www/
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those of any single GCM. This is attributed to the presence of information from all 

participating models and single models tend to be overconfident. It is one way of reducing 

uncertainty associated with model configuration. Furthermore, the use of more than one 

scenario allowed a range of plausible future climate change (Cubasch et al., 2013). Uncertainty 

in the projected mean climate change is expressed quantitatively using model spread (a range 

of values calculated by various models). IPCC have used model spread as a measure of 

uncertainty of climate change projections in a number of their reports.  

Robustness of the projected changes was ensured by computing ensemble mean of at least two 

GCMs with the same sign of change. This is one of the methods for determining the robustness 

of a climate change signal (Collins et al., 2013) and it has been applied in other studies (Osima 

et al., 2018)  

4.4. Chapter Summary 

The current chapter has presented methodological aspects of the study with respect to 

procedures, techniques and tools that were used to assess the objectives and hypothesis framed 

in Chapter One. Figure 6 summarises the major steps followed in this study to downscale 

precipitation and temperature. 
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      Figure 6: Graphical representation of downscaling process followed in the study 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

5.1. Overview 

This chapter presents and discusses findings of the study based on the objectives outlined in 

Section 1.4. The GCMs used in the study are presented in Section 5.2 while predictor 

combinations selected for downscaling precipitation and temperature are given in Section 5.3, 

Downscaled precipitation and temperature averaged over the time periods 2020 – 2049 and 

1971 – 2000 are presented in Section 5.4. Projected changes in precipitation and temperature 

for the period 2020 – 2049 relative to 1971 – 2000 are presented in Section 5.5. 

5.2. Selection of GCMs from the CMIP5 Archive of Models 

Despite relative improvement in terms of spatial resolution and model processes in CMIP5 

GCMs (Flato et al., 2013), findings of this study indicate that CMIP5 models have not been 

extensively utilized in climate change studies over Zambia.  Relying on a few studies done for 

Zambia (Chisanga et al., 2017; Libanda et al., 2016) and largely on Southern Africa (Hewitson 

et al., 2014; McSweeney et al., 2015; Pinto et al., 2015; Munday and Washington, 2017), three 

models CanESM2, CNRM-CM5 and MPI-ESM-MR (Table 11) were selected from a pool of 8 

CMIP5 models (Table 10). These models have been shown to capture key climatological 

features such as annual cycles of temperature and precipitation over Southern Africa and 

Zambia in their simulations of past and present climate. Furthermore, time period available for 

the study was also taken into account in the selection of models since inclusion of more models 

would require more computational time.  

 Table 11: Selected Global Climate Models  

Model Studies in which the model was used 

CanESM2 Hewitson et al. (2014); Libanda et al (2016);  McSweeney et al.(2015); 

Munday and Washington (2017); 

CNRM-CM5 Dosio et al (2015); Dosio and Panitz (2016); Libanda et al (2016); 

McSweeney et al. (2015); Munday and Washington (2017);  

MPI-ESM-MR Chisanga et al. (2017b); McSweeney et al. (2015); Munday and 

Washington (2017). 
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Libanda et al (2016) showed that CanESM2 and CNRM-CM5 are able to reproduce rainfall 

distribution over Zambia. This was evidenced by their capability to capture the downward 

gradient of rainfall distribution from North to South. MPI-ESM-MR was among the four 

models Chisanga et al. (2017) used in their study aimed at investigating how bias correction 

methods impact modelled future changes in temperature for Mt. Makulu. McSweeney et al. 

(2015) also demonstrated that these three GCMs are among models capable of simulating 

annual cycles of temperature and precipitation for Southern Africa reasonably well. 

5.3. Selection of Predictors  

The selection of predictors involved the simultaneous choice of large scale variables and 

geographical domain of great influence on the predictand. This is consistent with Hofer et al. 

(2015) who argued that the choice of the downscaling geographical domain is an integral part 

of the process of selecting predictors (large-scale variables). For each predictand, a 

combination of large scale variables over a domain was selected based on Pearson correlation 

coefficient for temperature and Spearman correlation for precipitation, and p–values of 

Kolmogorov Smirnov test computed from the observed and predicted daily time series. 

5.3.1. Predictors for Precipitation 

Predictor combinations listed in Table 7 were considered for precipitation. Validation scores 

for precipitation are given in Figure 7. A Table of validation scores is also given in Appendix 

A. Although correlation coefficients are generally low, panel (a) of Figure 7 show relatively 

higher correlations of predictors with precipitation over domain D1 with predictor 

combinations V1, V4, V5, V9 and V10 having the highest correlation of 0.47 each. Over D3, 

the predictor V11 has the same correlation coefficient of 0.47 as those predictors over D1. The 

geographical domains D1 and D3 have the same spatial average for correlation coefficient of 

0.46 whereas D2 and D4 have 0.44. It is worth noting that correlations for precipitation tend to 

be low under perfect prognosis approach. 

The predictors V1, V4, V5, V9 and V10 over D1 and V11 over D3 were shortlisted based on 

correlation coefficient. The predictor V5 formed by a combination of large scale variables 

T850, Q850, U850 and V850 was selected for downscaling precipitation over D1 since it 

outperformed the predictor combinations represented by the codes V1, V4, V9 and V10 over 

D1 and V11 over D3 in terms of KS p–values. 
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        Figure 7: Validation scores for precipitation (D stands for geographical domain) 

This selection of the domain is consistent with Gutierrez et al. (2013) who argued that for the 

analogue method, better results are obtained from the smaller domains. However, this is a 

deviation from the Goodess and Palutikof (1998) who suggested that predictive skill of the 

model is expected to increase with increasing domain size. Other studies have shown that large 

sized domains can add unnecessary noise and result into producing spurious results. 

Furthermore, predictor choice has greater influence on the downscaled results than the size of 

the domain used (Gutierrez et al., 2013; Haylock et al., 2006). 

The chosen predictor combination (V5: Q850, U850, V850 and T850) for downscaling 

precipitation is slightly different from the combination (Q850, U850, T850) recommended by 

Libanda et al. (2016). Their combination does not include meridional wind component at 

850hPa (V850). The current study has established that inclusion of V850 improves coefficient 

of correlation and KS-p values. This discrepancy is likely to arise from the small number of 

predictor combinations that Libanda et al. (2016) tested. The findings of the current study 

shows that exclusion of circulation variables such as in the combinations V12 (T850, Q850, 

T700, Q700) and V13 (T850, Q850, T700) yielded lower correlations. This is in accordance 

with findings of several previous studies (Huth, 2002; Hewitson and Crane, 2006; Brands et 
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al., 2011; Gutierrez et al., 2013; Benestad, 2016) which contend that inclusion of circulation 

variables in the downscaling model adds value to projections of local precipitation. 

Results also show that inclusion of one or more of the variables T2m, U1000, Q700, Z1000 

and Z850 to those making V5 did not improve validation scores for precipitation. Further, the 

use of T2m in place of T850 as in the case of V6 (T2m, U850, V850, Q805) led to reduction in 

correlation coefficient and   – value of Kolmogorov Smirnov test. The inclusion of Z1000 to 

V5 did not alter correlation coefficient but reduced p-value of Kolmogorov Smirnov test for 

distribution similarity. Under climate change conditions, it is desirable for the downscaling 

model to reproduce the distribution of the target time series (Gutierrez et al., 2013). As such, 

preferred p-values of KS-test need to be as large as possible since low KS-  values indicate 

significant distributional dissimilarities between the observed and downscaled series. Thus, 

including Z1000 is not favourable since it affects distributional similarity of the observed and 

predicted time series. 

5.3.2. Predictors for Minimum Temperature (Tmin) 

Pearson correlation coefficients (rho) for each predictor combination for minimum temperature 

(Tmin) are generally high over each domain (Figure 8a). With exception of predictor 

combinations P8 (SLP, T2m) and P9 (T2m), the Pearson correlation coefficient (rho) is largest 

over the smallest domain D1 for most predictor combinations (P1 – P7). In the case of 

Kolmogorov Smirnov test (Figure 8b); D1 consistently yielded the highest p values for each 

predictor combination. Similar to precipitation, the smallest domain, D1 was selected for 

downscaling minimum temperature since it yielded higher correlations and KS-  values 

compared to other domains. This confirms the findings of Gutierrez et al (2013). Appendix A 

gives explicit values of validation scores for minimum temperature. 

Comparing the performance of predictors over D1, excluding P8 and P9 based on their low 

correlation coefficients, results show that predictor combination P1 has the largest correlation 

coefficient but lowest KS-p value over the domain of choice D1. Although P1 has higher 

correlation with Tmin (r = 0.79) than any other combination, it was not a preferred predictor 

choice owing to its low KS-  value (0.54) and being a combination of many large-scale 

variables. Discarding P1 based on the large number of variables combined is in agreement with 
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Tareghian and Rasmussen (2013) who warned against using excessive number of predictors as 

this may lead to multi-collinearity and poor prediction accuracy. 

 

 

  Figure 8: Validation scores for minimum temperature (TMIN) 

Other predictors with comparable rho values over D1 are P2 (0.784), P3 (0.786), P4 (0.786), 

P5 (0.783), P6 (0.785) and P7 (0.781). Comparing their KS-  values over D1, shows that P5 

and P7 outperform all others with respective KS-p values of 0.647 and 0.644. Based on 

correlation coefficient and KS-  values, P5 (SLP, T850, Q850) is a predictor set of choice for 

downscaling minimum temperature. Results also show that exclusion of circulation variables 

as in predictor sets P5 to P9 leads to larger  -values of Kolmogorov Smirnov test. This implies 

improved distribution similarity between observed and predicted time series for minimum 

temperature. This is desirable under climate change conditions and consistent with Gutierrez et 

al. (2013) who established that temperature and/or humidity variables tend to have stronger 

climate change signal than zonal and meridional wind component in the case of temperature. 

5.3.3. Predictors for Maximum Temperature (Tmax) 

Figure 9a displays validation scores: rho (panel a) and KS-  values (panel b) for maximum 

temperature. Numerical values of validation scores for Tmax are displayed in Appendix A.
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Similar to precipitation and minimum temperature, the smallest domain (D1) yields higher 

correlations for all predictor combinations (Figure 9a). Moreover, with exception of predictor 

sets T6 (SLP, U1000, U700) and T10 (T2m) whose KS-  values are 0.678 and 0.618 

respectively, other predictor sets have low   values of Kolmogorov Smirnov test. However, 

T10 composed of T2m only had a better correlation coefficient (rho   0.757) than T6 which is 

composed of circulation variables only and had the smallest correlation coefficient (rho   

0.716). Moreover, the removal of temperature variables from the predictor field as it is the case 

with combinations T5 (SLP, U1000, U700, Q500) and T6 (SLP, U1000, U700) lead to smaller 

correlation coefficients. 

 

  

      Figure 9: Validation scores for maximum temperature (TMAX) 

Thus inclusion of temperature variables improves the predictive power of the downscaling 

model for Tmax. The use of T2m in place of T850 marginally reduces correlation coefficient 
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tropospheric variables improve distributional similarity of observed and predicted time series 

for Tmax. Therefore, the predictor set T10 (T2m) is preferred for downscaling Tmax since it 

yielded comparably high correlation and KS-  value over D1. From the foregoing, selected 

predictors for each predictand are displayed in Table 12. D1 is the geographical domain over 

which temperature and precipitation were averaged in historical (1971 to 2000) and future 

periods (2020 to 2049). The choice of the domain D1 is in agreement with Libanda et al. 

(2016) who used the same domain for assessment of predictors for downscaling precipitation 

over Zambia. Further, it is confirms the assertion Gutiérrez et al.(2004; 2013), made that better 

results for downscaled precipitation using analogue method are obtained from the smaller 

domains. 

Table 12: Selected Predictors and their Validation Scores  

Code  Predictor combination Predictand Rho KS p – value  

V5 T850, Q850, V850, U850 Precip 0.47 0.63 

P5 SLP, T850, Q850 Tmin 0.783 0.647 

T10 T2m Tmax 0.757 0.618 

5.4 Downscaled Precipitation and Temperature 

Results for downscaled precipitation, minimum temperature and maximum temperature at 

meteorological stations for both historical (1971 – 2000) and future (2020 – 2049) time periods 

under two concentration pathways (RCP4.5 and RCP8.5) are presented in this section. The 

presentation and discussion of results is based on an ensemble of GCMs; CanESM2, CNRM-

CM5 and MPI-ESM-MR. This approach has been shown to yield better results than those from 

any single GCM (Flato et al., 2013; Miao et al., 2014; Pierce et al., 2009; Zubler et al., 2016). 

For precipitation, however, the ensemble mean is computed based on at least two GCMs which 

have the same sign of the climate change signal. This enables quantification of robustness in 

projected change in precipitation since it is highly characterised by uncertainty. 

5.4.1. Precipitation  

Downscaled Mean annual precipitation of the ensemble mean for the historical period 1971 – 

2000 and future period 2020 – 2049 under RCP4.5 and RCP8.5 emission scenarios are 

presented in Figure 10 for meteorological stations given in Figure 5. Numerical values are 

presented in Appendix B. Results show that stations in the northern part of the country receive 
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more rainfall compared to those in the Southern part. This is consistent with earlier studies 

(Libanda et al., 2016; Phiri et al., 2013; Thurlow et al., 2009; NAPA, 2007). With exception of 

Mansa, Mpika and Serenje, other stations in AER III are projected to have Mean Annual 

Precipitation (MAP) above 1000mm which agrees with (Kanyanga, 2008; Kasali, 2008; Jain, 

2007). For the period 2020 – 2049, stations in the AER III are projected to experience MAP 

ranging from 916 to 1206mm and 887 to 1203mm under RCP4.5 and RCP8.5 respectively. 

The smallest and highest MAP for stations in AER III is projected to occur over Serenje and 

Mwinilunga respectively under both RCPs (Figure 10).  

 
Figure 10: Downscaled projections of MAP for the baseline period (1971 - 2000) and future 

(2020 - 2049) time periods using an ensemble of at least two GCMs. LCA means Lusaka City 

Airport and KKIA mean Kenneth Kaunda International Airport 

Meteorological stations in AER II are projected to experience MAP ranging from 667 to 

977mm and 676 to 938 under RCP4.5 and RCP8.5 respectively. The smallest and highest MAP 

for stations in AER II is projected to occur over Magoye and Mongu respectively under both 

RCPs (Figure 10).  

Projected seasonal precipitation is downscaled for three seasons, namely; December – 

February (DJF), March – May (MAM) and September – November (SON) using an ensemble 

of GCMs and two RCPs (RCP4.5 and RCP8.5). Due to lack of rainfall activities during June – 

August (JJA) season, JJA season was not considered for analysis. Downscaled seasonal 

precipitation is consistently largest during December – February (DJF) season, ranging from 

393 – 810mm (historical), 410 – 729mm (RCP4.5) and 434 – 740 mm (RCP8.5). Livingstone 

meteorological station consistently exhibit lowest DJF precipitation under both RCPs. Under 

RCP4.5, the largest DJF precipitation is projected to occur over Kasama whereas Kafironda is 
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expected to experience the largest DJF precipitation under RCP8.5 scenario (Figure 11). See 

Appendix C for more information on downscaled projections of seasonal precipitation. 

 
Figure 11: Downscaled projections of DJF precipitations for the baseline (1971 - 2000) and 

future (2020 - 2049) time periods using an ensemble of GCMs. LCA means Lusaka City 

Airport and KKIA isKenneth Kaunda International Airport.  

The downscaled projections of March – May (MAM) precipitation range from 101 – 364mm 

(historical), 105 – 314mm (RCP4.5) and 85 – 339mm (RCP8.5). Livingstone has the lowest 

MAM precipitation for historical and under RCP8.5 scenarios. Under RCP4.5 scenario, the 

lowest downscaled MAM precipitation occurs over Mumbwa weather station. The largest 

MAM precipitation is consistently projected for Mbala weather station for both RCP4.5 and 

RCP8.5 scenarios as well as for historical period (Figure 12 and Appendix C).  

 

Figure 12: Downscaled projections of MAM precipitation for the baseline (1971 - 2000) and 

future (2020 - 2049) time periods using an ensemble of GCMs. LCA means Lusaka City 

Airport and KKIA mean Kenneth Kaunda International Airport. 
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Figure 13 shows downscaled September – November (SON) precipitation for the time periods 

1971 – 2000 and 2020 – 2049. The SON precipitation is projected to be largest over 

Mwinilunga weather station for both time periods and scenarios under consideration. It is 

projected to range from 97 – 274mm (historical), 94 – 301mm (RCP4.5) and 87 – 254 mm 

(RCP8.5) across all weather stations used in the study. Kenneth Kaunda International Airport 

(KKIA) and Mpika weather stations are projected to experience the lowest SON precipitation 

(Figure 13 and Appendix C).  

 

Figure 13: Downscaled projections of SON precipitation for the baseline (1971 - 2000) and 

future (2020 - 2049) time periods using an ensemble of GCMs. LCA means Lusaka City 

Airport and KKIA mean Kenneth Kaunda International Airport  

The downscaled projections of precipitation (Figures 10 – 13) show larger mean annual and 

seasonal precipitation for meteorological stations in the northern part of the country. Marginal 

decrease in downscaled projected precipitation is also clear for most stations.  

5.4.2. Temperature 

The downscaled projected temperature show increasing trends for both minimum temperature 

and maximum temperature under both RCPs at every station considered. Minimum 

temperature is projected to increase to 12.0 – 17.8°C (RCP4.5) and 12.2 – 17.9°C (RCP8.5) 

from the baseline range of 11.4 – 16.9°C. For both time periods and RCPs, the largest 

minimum temperature and smallest minimum temperature is projected to occur over Petauke 

and Kafironda respectively (Figure 14a). See Appendix D for more information. 
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Similar to minimum temperature, the downscaled maximum temperature is projected to 

increase for all stations under both RCPs. Maximum temperature is projected to increase to 

27.9 – 32.3°C (RCP4.5) and 28.2 – 32.4°C (RCP8.5) from the baseline range of 26.4 – 30.6°C. 

Mpika and Livingstone weather stations are projected to experience the smallest maximum 

temperature and largest maximum temperature respectively (Figure 14b). For numerical values 

of maximum temperature, refer to Appendix F.  

 

Figure 14: Downscaled projected mean annual minimum temperature (panel a) and maximum 

temperature (panel b) for the baseline (1971 – 2000) and future (2020 – 2049) time periods 

using an ensemble of GCMs. LCA means Lusaka City Airport and KKIA mean Kenneth 

Kaunda International Airport. 

Downscaled seasonal mean temperatures also indicate an increase in minimum and maximum 

temperature (Figures 15 – 16). The DJF minimum temperature is projected to be in the range 

of 15.1 – 19.1°C (Historical), 15.6 – 19.7°C (RCP4.5) and 15.6 – 19.8°C (RCP8.5). The lowest 

minimum temperature for DJF season is expected to occur over Mbala station for both 
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scenarios. Mongu and Livingstone stations will experience the largest minimum temperature 

under RCP4.5 scenario. However, only Mongu station is projected to have the largest 

minimum temperature under RCP8.5 (Figure 15). 

For the MAM, JJA and SON seasons, Kafironda weather station exhibits the smallest 

minimum temperature for baseline and future time periods under the two concentration 

pathways (Figure 15). The largest minimum temperature during these three seasons will occur 

over Petauke under both RCPs. The downscaled projected MAM minimum temperature will 

increase to 12.9 – 17.7°C under RCP 4.5 and 13.0 – 17.8°C under RCP 8.5 from the baseline 

minimum temperature ranging between 12.2 and 16.6°C. For JJA season, the projected 

minimum temperature lies between 4.2 and 13.1°C (historical), 5.4 and 14.4°C (RCP4.5) and 

5.6 to 14.6°C (RCP8.5). During the SON season, minimum temperature ranges between 12.5 

and 18.9°C (historical), 12.9 and 19.8°C (RCP4.5), and 13.1 to 19.8°C (RCP8.5) (Figure 15). 

  

  
Figure 15: Downscaled projections of seasonal minimum temperature for the baseline (1971 – 

2000) and future (2020 – 2049) time periods using ensemble of GCMs. LCA means Lusaka 

City Airport and KKIA means Kenneth Kaunda International Airport]. 



 

55 

 

The downscaled seasonal maximum temperatures also exhibit increases over every station 

considered in this study. The lowest maximum temperature is consistently projected to occur 

over Mpika weather station for all seasons and RCPs. Livingstone is projected to experience 

the highest maximum temperature during the seasons DJF and MAM under both RCPs with 

Mongu posed to experience largest maximum temperature during JJA and SON seasons 

(Figure 16). The DJF maximum temperature is projected to be in the range of, 28.4 – 32.9°C 

(RCP4.5) and between 28.8 – 33.0°C (RCP8.5). The ranges of maximum temperature for 

MAM season are 27.2 – 31.5°C (RCP4.5) and 27.5 – 31.7 °C (RCP8.5). The JJA season is 

projected to experience maximum temperature ranging from 25.2 to 30.3°C under RCP4.5 and 

25.4 to 30.7°C under RCP8.5. The SON maximum temperature is projected to range between 

31.1 and 35.5 under RCP4.5 and 31.1 to 35.7°C under 8.5 scenarios (Figure 16). 

  

  

Figure 16: Downscaled projections of seasonal maximum temperature for the baseline (1971 – 

2000) and future (2020 – 2049) time periods using ensemble of GCMs. [LCA means Lusaka 

City Airport and KKIA means Kenneth Kaunda International Airport.] 
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5.5. Projected Changes in Precipitation and Temperature 

5.5.1 Projected Changes in Annual Precipitation 

Figure 17 shows percentage change in mean annual precipitation (MAP) as projected by an 

ensemble of GCMs using RCP4.5 emission scenario. The figure shows decrease in MAP for all 

meteorological stations in AER III, ranging from  10.2 percent (Mansa) to    1 percent 

(Mpika). For AER II, MAP will decrease over stations in the eastern part of the region and 

increase in western part. A mixed change signal in precipitation ranging between  8.4 percent 

(Mumbwa) and 5.6 percent (Kabwe) is projected for stations in the central part of region II.  

Livingstone meteorological station in AER I is projected to experience increase in MAP. The 

projected change in mean annual precipitation under RCP4.5 across stations ranges from 

  0   percent (Mansa) to 6.4 percent (Livingstone).  

 

Figure 17: Projected changes in downscaled MAP for an ensemble of GCMs under RCP4.5 

scenario for the period 2020 - 2049 relative to 1971 - 2000.  

In Figure 18, the ensemble average of GCMs under RCP 8.5 projects change in MAP over 

meteorological stations ranging from       percent (Kasama) to 7.0 percent (Livingstone).  

Similar to projections under RCP4.5, precipitation is projected to decrease for all 

meteorological stations in AER III, ranging from       percent (Kasama) to      percent 
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(Kafironda). For AER II, precipitation will decrease over stations in the eastern part of the 

region and increase in western part. A mixed change signal in precipitation ranging between 

 6.8 percent (Mumbwa and KKIA) and 1.7 percent (LCA) is projected for stations in the 

central part of region II. Livingstone meteorological station in AER I is projected to experience 

an increase of 7 percent in MAP. The results show larger changes for stations in AER III than 

those in AERs I and II. 

 

Figure 18: Projected changes in downscaled MAP for an ensemble of GCMs under RCP8.5 

scenario for the period 2020 – 2049 relative to 1971 – 2000.  

Projections show model agreement on decrease of precipitation for stations in the northern 

region of Zambia. These projections are consistent with the findings for Mpelele (2018) who 

established decrease in future precipitation for the northern region of the country using 

dynamical downscaling. However, a mixed signal is projected in precipitation change for the 

Southern region. The general decreasing pattern in precipitation can be attributed to decrease in 

DJF rainfall (McSweeney et al., 2008), late start and early cessation of rainy season (NAPA, 

2007). This study has projected decrease in mean annual precipitation for all meteorological 

stations located in AER III with isolated exceptions in AERs I and II where marginal increases 

have been projected. This result is inconsistent with NAPA (2007) which reported increase in 

precipitation in the northern part of the country and for each AER of Zambia. This discrepancy 
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can be attributed to the use of a single climate model, the Hadley Centre Coupled Model 

version 3 (HADCM3) in the earlier study. The use of one model does not account for 

uncertainty attributed to model structure. The use of ensemble of models, however, reduces 

uncertainty in projections that are associated with individual model structure (Flato et al., 

2013; Pierce et al., 2009). 

5.5.2 Projected Changes in Seasonal Precipitation 

Changes in projected seasonal precipitation are reported for DJF, MAM and SON seasons. The 

season JJA has not been included in the analysis of seasonal precipitation based on lack of 

rainfall activities during the season. The results indicate that seasonal precipitation varies 

according to stations and representative concentration pathways. Figure 19 indicates increase 

in DJF precipitation for Livingstone station under both RCPs during the period 2020 – 2049 

relative to 1971 – 2000. Under RCP4.5, increase in DJF precipitation is projected for Kabwe, 

Livingstone, LCA, KKIA and Mpika with the rest of the stations likely to experience decrease 

in precipitation. Under RCP8.5, Kafironda, Livingstone, Mfuwe, Mongu and Serenje are 

projected to experience an increase in DJF precipitation. The rest of the stations are projected 

to experience a decrease in DJF precipitation (Figure 19). Numerical values for projections of 

seasonal precipitation for each station are given in Appendix C. The ensemble of models 

projected changes in DJF precipitation ranging from       to 4.3 percent and       to 6.1 

percent under RCP4.5 (Appendix H) and RCP8.5 (Appendix I) respectively. These projections 

are in line with McSweeney et al., 2008). Reduction in DJF precipitation may result into 

serious crop failure for this is the main season for crop development and growth. 

 
Figure 19: Projected changes in downscaled DJF precipitation for the period 2020 – 2049 

relative to the baseline 1971 – 2000 under RCP4.5 and RCP8.5 scenarios.  
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The MAM precipitation for Lusaka city, Magoye, Mongu and Mt. Makulu is projected to 

increase under both concentration pathways. Livingstone and Kabwe are projected to 

experience an increase in MAM precipitation under RCP4.5 and a decrease under RCP8.5 

scenario. As for the remaining stations, a decrease in MAM precipitation is projected under 

both RCPs. The largest increase is expected to occur over Mt. Makulu under both scenarios. 

However, the largest decrease is projected for Mfuwe and Mwinilunga under RCP4.5 and 

RCP8.5 respectively (Figure 20). The range of projected changes for MAM precipitation is 

from       to 27.3 percent and       to 18.6 percent for RCP4.5 and RCP8.5 respectively 

(Appendices H and I).  

 

Figure 20: Projected changes in downscaled MAM precipitation for the period 2020 - 2049 

relative to the baseline 1971 - 2000 under RCP4.5 and RCP8.5 scenarios. [LCA - Lusaka City 

Airport, KKIA - Kenneth Kaunda International Airport].  

During SON season, the ensemble of models project increase in precipitation under both 

emission scenarios over Kabwe, Livingstone, Mbala, Mfuwe and Mongu stations. Opposite 

change signs are projected for Kasama, Mansa, Mumbwa, Mwinilunga and Serenje 

meteorological stations under the two RCPs (Figure 21). The range of projected changes for 

SON precipitation is from       to 16.3 percent and       to 12.6 percent for RCP4.5 and 

RCP8.5 respectively (Appendices H and I).  

Seasonal projections by the ensemble of models largely indicate drying conditions for SON, 

DJF and MAM seasons across weather stations in Zambia (Figures 19 – 21). Relatively smaller 

changes are projected for DJF precipitation while the MAM season exhibits larger changes 

relative to the baseline means. Results of this study deviate from that of previous study 
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(McSweeney et al., 2008) which projected increase in DJF rainfall. However, it conforms to 

the decreasing SON seasonal precipitation projected for Zambia (McSweeney et al., 2008). 

The decrease in projected precipitation could be in terms of amounts, onset and cessation of the 

raining season. The decrease in DJF precipitation has profound implications on Zambia‟s 

agriculture sector which is largely rain-fed (Jain, 2007) and on water resources management. 

 

Figure 21: Projected changes in downscaled SON precipitation for the period 2020 - 2049 

relative to the baseline 1971 - 2000 under RCP4.5 and RCP8.5 scenarios. [LCA: Lusaka city 

airport, KKIA: Kenneth Kaunda International.] 

The general picture is that precipitation is projected to decrease in the northern and eastern 

parts of Zambia, increase in the western and Southern parts and mixed signals in the central 

region. The projected decrease in mean annual precipitation has implication on availability and 

management of water resources, agriculture, health, and hydroelectric power generation.  

The projected decrease in precipitation has far reaching hydrological and agricultural 

implications especially that Zambia already experiences precipitation deficit which is attributed 

to relatively high temperatures and hence excess potential evapo-transpiration (NAPA, 2007).  

5.5.3 Projected Changes in Minimum Temperature  

Projected changes in minimum temperature using the ensemble of models under RCP4.5 and 

RCP8.5 emission scenarios are displayed in Figure 22 and Figure 23 respectively. The 

ensemble average of three GCMs projects increase in minimum temperature over every station 

under both emission scenarios. Livingstone will likely experience the largest increase of 

1.15°C and 1.32°C under RCP4.5 (Figure 22) and RCP8.5 (Figure 23) respectively. The least 
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increase of 0.59°C and 0.69°C is projected over Mbala under the two scenarios. Consistent 

with individual models, the ensemble of GCMs under both scenarios project increases that tend 

to get larger towards the Southern part of the country. Regardless of the emission scenario 

considered, minimum temperature is projected to increase by 0.59 – 1.32°C across 

meteorological stations. See Appendix D for more information. 

    

Figure 22: Projected changes in downscaled mean TMIN for ensemble of GCMs under 

RCP4.5 scenario for the period of 2020 – 2049 relative to 1971 – 2000. 

 
Figure 23: Projected changes in downscaled mean TMIN for ensemble of GCMs under 

RCP8.5 scenario for the period of 2020 – 2049 relative to 1971 – 2000.  
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5.5.4. Projected Changes in Maximum Temperature 

Ensemble average changes in maximum temperature for the period 2020 – 2049 with respect to 

the period 1971 – 2000 for RCP4.5 and RCP8.5 scenarios are shown in Figure 24 and 25 

respectively. Maximum temperature is projected to increase over every station under both 

scenarios. However, larger increases in maximum temperature are seen under RCP8.5 scenario 

than RCP4.5. Petauke will very likely experience the largest increase of 1.85°C and 2.08°C 

under RCP4.5 and RCP8.5 scenarios respectively. Least increases of 1.45°C (RCP4.5) and 

1.63°C (RCP8.5) are projected over Kafironda. Maximum temperature is projected to increase 

by 1.45°C to 2.08°C across meteorological stations regardless of the emission scenario. 

Consistent with individual models, the ensemble of GCMs under both scenarios projects 

increases that tend to get larger towards the Southern part of the country (Figures 24 – 25). 

 

Figure 24: Projected changes in downscaled mean TMAX for ensemble of GCMs under 

RCP4.5 scenario for the period of 2020 – 2049 relative to 1971 – 2000. 
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Figure 25: Projected changes of downscaled TMAX from the ensemble of three GCMs under 

RCP8.5 scenarios for the period 2020 - 2049 relative to 1971 – 2000.  

5.5.5. Projected Seasonal Temperature Changes 

On seasonal basis, the ensemble of models projects increase in both minimum temperature and 

maximum temperature for the seasons SON, DJF, MAM and JJA at all weather stations under 

both emission scenarios. The increase gets bigger with the increase in concentration of 

emissions (Figure 26 – 27). Thus, changes are bigger under RCP8.5 than RCP4.5 for most 

stations. For minimum temperature, the largest and smallest increases at each station are 

projected to occur during JJA and DJF seasons respectively under the two future emission 

scenarios (Figure 26). 

The Ensemble mean shows that for DJF season, Kafironda will experience the smallest 

increase of 0.26°C and 0.29°C in mean minimum temperature under RCP4.5 and RCP8.5 

respectively. Similarly, Mbala is projected to experience the smallest rise in mean minimum  

temperature of 0.47°C (RCP4.5) and 0.57°C (RCP8.5) during MAM season, 1.04°C (RCP4.5) 

and 1.21°C (RCP8.5) in JJA, and 0.38°C (RCP4.5) and 0.42°C (RCP8.5) for SON (Figure 26). 

Apart from JJA season under RCP4.5, Livingstone is consistently projected to experience the 

highest increase for DJF, MAM and SON season under both scenarios. Under RCP4.5 

scenario, seasonal mean minimum temperature for Livingstone will rise by 0.68°C (DJF), 
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1.25°C (MAM) and 1.30°C (SON). For JJA season, the largest increase of 1.41°C is projected 

to occur over Kabwe station (Figure 26a). As for RCP8.5, the ensemble of models project 

increases of 0.74°C (DJF), 1.50°C (MAM), 1.68°C (JJA) and 1.35°C (SON) in minimum 

temperature for 2020 – 2049 relative to 1971 – 2000 (Figure 26b) over Livingstone. These 

changes may have implications on tourism sector in the   

 

 

Figure 26: Projected changes of downscaled seasonal minimum temperature using the 

ensemble of three GCMs under RCP4.5 and RCP8.5 emission scenarios for the period 2020 - 

2049 relative to 1971 – 2000.  

The Ensemble mean projects seasonal mean maximum temperature to increase by 1.45 – 

1.85°C (DJF), 1.37 – 1.84°C (MAM), 1.56 – 2.07°C (JJA) and 1.35 – 1.86°C (SON) under 

RCP4.5 emission scenario (Figure 27a). The increase in seasonal maximum temperature under 

RCP8.5 is projected to be in the range of 1.59 and 2.22°C (DJF), 1.61 and 2.21°C (MAM), 

1.81 and 2.39°C (JJA) and 1.35 and 1.95°C (SON) (Figure  27b). For most weather stations, 

largest warming is projected to occur during JJA season under both scenarios. The results show 

that changes in maximum temperature tend to get larger towards Southern part of the country. 
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Figure 27: Projected changes of downscaled seasonal maximum temperature using the 

ensemble of three GCMs under RCP4.5 (panel a) and RCP8.5 (panel b) emission scenarios for 

the period 2020 - 2049 relative to 1971 - 2000.  

In agreement with previous studies (McSweeney et al., 2008; NAPA, 2007) the current study 

has projected increase in annual and seasonal temperature across all meteorological stations 

under both emission scenarios (Figures 17 – 27). The projected changes indicate smaller 

increases for stations in the northern part of Zambia compared to those in the southern part. 

Thus, continued increase in temperature may have implications on various sectors of the 

economy and adversely impact livelihoods. Therefore, it is necessary to enhance 

implementation of climate change policy.  

5.6. Chapter Summary 

The chapter has presented and discussed research findings in relation to the objectives of the 

study. Besides, findings have been compared to previous similar studies. Temperature has been 

projected to increase for every station under both RCP4.5 and RCP8.5 emission scenarios at 

both annual and seasonal scales. Projections for precipitation, however, are less certain across 

meteorological stations although the level of model agreement is high in the projected decrease 

in annual and seasonal precipitation for the northern part of the country 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1. Overview 

This chapter presents conclusions drawn from the findings of the study. It also brings out 

recommendations that focus on national policy issues and future research. 

6.2. Conclusions 

The primary goal of this study was to project changes in precipitation and temperature at 

meteorological stations located across Zambia for the period 2020 – 2049 relative to the 

baseline period 1971 – 2000. 

A non-parametric analogue method based on nearest neighbour was used to downscale three 

Global Climate Models whose horizontal spatial resolution is about 100 to 300 km per grid 

box. These GCMs were constrained by two representative concentration pathways; RCP4.5 

and RCP8.5. The assessment of literature demonstrates that three CMIP5 GCMs, namely; 

CanESM2, CNRM-CM5 and MPI-ESM-MR are capable of simulating the past and present 

climate for Southern Africa and Zambia in particular. These models have been used in a 

number of studies for Zambia but more often for Southern Africa. 

The study has established that the exclusion of circulation variables from the predictor field for 

downscaling precipitation leads to low predictive power of the downscaling model. For the 

purpose of downscaling precipitation, atmospheric temperature at 850hPa (T850) has better 

predictive power than temperature at 2 metres (T2m). Results show that replacing T850 by 

T2m in predictor combinations for precipitation led to reduction in both correlations and p – 

values of the Kolmogorov Smirnov test. Generally, middle tropospheric atmospheric variables 

were found to be suitable for downscaling precipitation. Therefore, the predictor combination 

consisting of Q850, T850, U850 and V850 was used to downscale precipitation. In the case of 

temperature, the exclusion of circulation variables improved the skill of the downscaling 

model. The removal of at least one of the temperature variables T2m and T850 from predictor 

fields for temperature resulted into lower correlations of observations and predicted values. 

SLP, Q850 and T850 constituted the preferred predictor combination for downscaling 

minimum temperature. Moreover, T2m was used to downscale maximum temperature.
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 Precipitation is projected to decrease for all stations located in the AER III and for most 

stations in the AERs I and II. The results indicate that precipitation will decrease over most 

stations in AERIII under both RCPs. However, a mixed climate change signal for precipitation 

is projected for few stations in AER III. While some meteorological stations in AERs I and II 

are projected to experience marginal increase in precipitation, most of them are expected to 

have reduced precipitation. Under RCP4.5, the ensemble of models projects changes in 

seasonal precipitation ranging from       to 4.3 percent (DJF),       to 27.3 percent (MAM) 

and       to 16.3 percent (SON). Moreover, seasonal precipitation changes are projected to 

range from       to 6.1 percent (DJF),       to 18.6 percent (MAM) and       to 12.6 

percent (SON) under RCP8.5 scenario. 

Clear increase in minimum temperature and maximum temperature is projected at all stations 

used in the study. The increase in temperature tends to be larger for stations located in the 

Southern part of the country. Regardless of the emission scenario considered, minimum 

temperature is projected to increase by 0.59 to 1.32°C across meteorological stations. 

Maximum temperature is projected to increase by 1.45°C to 2.08°C across meteorological 

stations regardless of the emission scenario.  

On a seasonal scale, temperature is projected to increase across all stations during each season. 

The smallest increase in minimum temperature is projected to occur during DJF season with 

JJA expected to experience the largest increase for every station under both emission scenarios. 

In the case of maximum temperature, the smallest increase is projected to occur during MAM 

season for most stations. Besides, largest increases are projected for JJA season under both 

emission scenarios for the majority of stations. 

6.3. Recommendations 

6.3.1 Policy Recommendations 

Impacts of climate change permeate societies and many economic sectors. The projected 

increase in temperature and decrease in precipitation are expected to exacerbate water deficit, 

crop failure and lower hydropower generation. Livestock would be deprived of grazing land 

and stressed by high temperature.  To minimize the adverse impacts that could result from the 
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projected changes in precipitation and temperature, the following policy recommendations are 

proposed. 

i. The Government of the Republic of Zambia through line ministries and other 

stakeholders should promote irrigation farming. This would supplement crop water 

demand which is predominantly rain-fed.  

ii. Although Zambia is making head ways in the adoption and promotion of alternative 

sources of energy such as wind and solar, there is need to expedite the implementation 

process and expand the solar power grids. This would greatly cushion the power 

shortage which the country experiences during years of low rainfall and subsequent 

reduction of water in Kariba dam.  

iii. There is need to create climate data sharing protocol between the Ministry of Transport 

and Communications through Zambia Meteorological Department and local 

Universities. This will make climate data accessible for educational purposes and 

students pursuing studies related to weather/climate will have the experience of 

working with real climate data.  

iv. Strengthen institutional capacity in weather/climate monitoring. This will in turn 

reinforce early warning systems and emergency planning.  

6.3.2. Recommendations for Future Research. 

The research has served its purpose of providing high resolution climate information at local 

scale. It has provided an understanding of how precipitation and temperature are likely to 

change at various meteorological stations across Zambia for the period 2020 – 2049 relative to 

baseline 1971 – 2000. Nevertheless, some opportunities for future research were identified 

during the investigation. 

The study has only projected mean climate change for precipitation, minimum temperature and 

maximum temperature at annual and seasonal time scales. Future studies can investigate 

climate variability and extreme weather events for the period 2020 – 2049. Understanding 

plausible changes in extreme weather indices could motivate formulation of strategies aimed at 

mitigating and adapting to adverse impacts of extreme weather/climate events.  
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An assessment of GCMs performance in reproducing past and present climate for Zambia was 

not carried out. The current study solely relied on model performance as reported in literature. 

An independent assessment of models would have provided insights into performance of 

individual GCMs when assessed against gridded observed datasets. Future research, therefore, 

should be dedicated to an independent assessment of an ensemble of models suitable for 

downscaling climate over Zambia under multiple concentration pathways. 

Future studies may consider testing several statistical downscaling methods and compare their 

results. This would provide a pool of methods suitable for climate downscaling activities in 

Zambia.  

The study was confined to projections of changes in precipitation and temperature without 

assessing possible impacts on specific sectors such agriculture, energy, water resources, health 

and wildlife. It is therefore recommended that future studies should consider assessing impacts 

of the projected changes in climate on specific sectors. 
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APPENDICES 

   Appendix A: Validation scores for precipitation and temperature 

Variable 

 

Predictor 

Code 

Correlation coefficient Kolmogorov Smirnov p values 

Geographical domains Geographical domains 

D1 D2 D3 D4 D1 D2 D3 D4 

PRECIP V1 0.468 0.444 0.464 0.442 0.474 0.557 0.479 0.443 

V2 0.465 0.444 0.459 0.445 0.509 0.537 0.505 0.443 

V3 0.461 0.444 0.456 0.445 0.489 0.469 0.417 0.598 

V4 0.469 0.440 0.461 0.448 0.467 0.579 0.611 0.568 

V5 0.469 0.446 0.458 0.446 0.633 0.645 0.449 0.503 

V6 0.463 0.448 0.459 0.443 0.543 0.467 0.397 0.530 

V7 0.462 0.447 0.457 0.443 0.546 0.525 0.477 0.427 

V8 0.465 0.440 0.461 0.440 0.402 0.394 0.595 0.459 

V9 0.469 0.449 0.452 0.438 0.535 0.637 0.679 0.509 

V10 0.469 0.447 0.451 0.442 0.587 0.623 0.616 0.597 

V11 0.462 0.447 0.466 0.449 0.649 0.651 0.539 0.567 

V12 0.456 0.432 0.455 0.424 0.305 0.482 0.358 0.446 

V13 0.456 0.432 0.457 0.431 0.494 0.482 0.535 0.560 

TMIN P1 0.794 0.787 0.791 0.781 0.544 0.473 0.525 0.355 

P2 0.784 0.776 0.780 0.773 0.580 0.531 0.559 0.477 

P3 0.786 0.778 0.782 0.776 0.580 0.531 0.559 0.477 

P4 0.786 0.778 0.782 0.777 0.485 0.535 0.428 0.443 

P5 0.783 0.779 0.781 0.776 0.647 0.423 0.490 0.298 

P6 0.785 0.783 0.783 0.776 0.568 0.335 0.421 0.320 

P7 0.781 0.776 0.779 0.774 0.644 0.474 0.509 0.448 

P8 0.770 0.769 0.773 0.769 0.553 0.547 0.454 0.381 

P9 0.775 0.773 0.779 0.775 0.642 0.602 0.459 0.386 

TMAX T1 0.777 0.759 0.763 0.743 0.376 0.308 0.422 0.243 

T2 0.781 0.763 0.768 0.748 0.398 0.392 0.385 0.387 

T3 0.767 0.749 0.755 0.735 0.395 0.244 0.417 0.177 

T4 0.767 0.747 0.758 0.734 0.288 0.227 0.275 0.184 

T5 0.722 0.706 0.716 0.695 0.571 0.315 0.561 0.218 

T6 0.716 0.699 0.706 0.686 0.678 0.293 0.484 0.352 

T7 0.769 0.746 0.759 0.736 0.388 0.311 0.335 0.296 

T8 0.763 0.750 0.756 0.740 0.484 0.556 0.432 0.329 

T9 0.758 0.748 0.749 0.737 0.495 0.418 0.395 0.435 

T10 0.757 0.748 0.752 0.736 0.618 0.458 0.483 0.410 

Note:  

 PRECIP, TMIN and TMAX refer to precipitation, minimum temperature and maximum 

temperature respectively. 

 Predictor codes are as defined in tables 

 The geographical domains are as defined in Table 6. 
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Appendix B: 30 year period historical and future mean annual precipitation and projected 

changes for the ensemble of GCMs under RCP4.5 and RCP8.5 emission scenarios.  

Station Location Historical RCP4.5 RCP8.5 

 Lat. (°C) Lon.(°C) Mean Mean 

(mm) 

Mean  

∆% 

Mean 

(mm) 

Mean  

∆% 

Kabwe 14.4 28.5 854 902 5.56 859 0.53 

Kafironda 12.6 28.1 1232 1159 -5.92 1169 -5.14 

Kasama 10.2 31.1 1311 1196 -8.80 1123 -14.4 

Livingstone 17.8 25.8 592 630 6.38 634 7.01 

LCA 15.4 28.3 798 821 2.88 812 1.69 

KKIA 15.3 28.4 769 737 -4.16 717 -6.76 

Magoye 15.9 27.6 697 667 -4.40 676 -2.98 

Mansa 11.1 28.9 1089 977 -10.2 938 -13.9 

Mbala 8.9 31.6 1220 1114 -8.71 1103 -9.60 

Mfuwe 13.3 31.9 822 743 -9.56 783 -4.76 

Mongu 15.3 23.2 934 977 4.56 974 4.21 

Mpika 11.9 31.4 989 959 -3.10 948 1.44 

Mt. Makulu 15.5 28.2 783 819 4.52 762 -2.71 

Mumbwa 15.1 27.2 788 722 -8.44 734 -6.84 

Mwinilunga 11.7 24.4 1314 1206 -8.22 1203 -8.50 

Ndola 12.9 28.7 1161 1067 -8.09 1042 -10.2 

Petauke 14.3 31.3 909 858 -5.59 885.7 -2.56 

Serenje 13.2 30.2 1001 916 -8.44 886.7 -11.4 

Solwezi 12.2 26.4 1297 1182 -8.82 1180 -9.03 
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Appendix C: 30 year seasonal mean for baseline and future periods for precipitation (mm) 

using ensemble of models under RCP4.5 and RCP8.5 scenarios. 

Station 

DJF MAM SON 

Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 

Kabwe 580 597 573 136 144 135 136 159 148 

Kafironda 810 725 740 244 221 226 176 175 146 

Kasama 803 729 671 330 276 253 177 195 160 

Livingstone 393 410 434 101 109 85 97 110 109 

LCA 545 562 538 129 136 151 124 117 115 

KKIA 529 539 483 129 115 125 111 94 107 

Magoye 479 454 444 105 110 113 113 103 97 

Mansa 691 598 584 236 191 190 162 171 119 

Mbala 701 613 594 364 314 339 153 163 156 

Mfuwe 525 508 529 191 146 159 105 111 113 

Mongu 606 533 554 173 186 196 152 159 157 

Mpika 660 673 601 203 179 166 124 113 87 

Mt. Makulu 530 471 469 126 161 150 127 119 117 

Mumbwa 532 471 464 125 105 102 131 117 136 

Mwinilunga 703 644 562 335 271 203 274 301 254 

Ndola 766 678 654 214 188 184 180 176 159 

Petauke 599 591 578 177 153 144 131 120 109 

Serenje 672 566 584 190 172 151 127 134 108 

Solwezi  790 703 665 278 252 245 228 185 191 
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Appendix D: 30 year mean (°C) for baseline and future periods for minimum temperature and 

projected changes (°C) using an ensemble of models. 

Station Location Historical RCP4.5 RCP8.5 

Lat. (°S) Lon. (°E) Mean Mean Mean ∆ Mean Mean ∆ 

Kabwe 14.4 28.5 14.76 15.72 0.9658 15.84 1.086 

Kafironda 12.6 28.1 11.38 12.02 0.6408 12.16 0.7841 

Kasama 10.2 31.1 14.20 14.84 0.6402 14.95 0.7479 

Livingstone 17.8 25.8 14.87 16.02 1.151 16.19 1.32 

LCA 15.4 28.3 14.87 15.68 0.8179 15.78 0.9144 

KKIA 15.3 28.4 14.08 15.06 0.9725 15.18 1.096 

Magoye 15.9 27.6 14.00 14.86 0.8553 15.01 1.006 

Mbala 8.9 31.6 13.93 14.52 0.5941 14.62 0.6899 

Mongu 15.3 23.2 16.15 17.02 0.8761 17.18 1.032 

Mpika 11.9 31.4 14.13 14.79 0.6548 14.88 0.7504 

Mt. Makulu 15.5 28.2 14.67 15.44 0.7691 15.53 0.8602 

Ndola 12.9 28.7 14.11 14.83 0.7259 14.95 0.8391 

Petauke 14.3 31.3 16.86 17.83 0.963 17.93 1.066 

Appendix E: 30 year seasonal mean for baseline and future periods for minimum   

                       temperature (°C) using ensemble of models 

Note: Kafiro represents Kafironda weather station and Mt. Mak represents Mt. Makulu station. 

Station DJF MAM  JJA SON 

Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5  Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 

Kabwe 17.7 18.2 18.3 14.6 15.6 15.8  10.0 11.4 11.6 16.8 17.7 17.7 

Kafiro 16.7 16.9 17.0 12.2 12.9 13.0  4.21 5.41 5.64 12.5 12.9 13.1 

Kasama 16.4 16.8 16.8 14.8 15.4 15.5  10.3 11.4 11.6 15.4 15.8 15.9 

L/stone 19.0 19.7 19.7 14.9 16.1 16.4  8.31 9.67 10.0 17.4 18.7 18.8 

LCA 17.0 17.5 17.6 14.8 15.7 15.8  10.9 12.0 12.2 16.8 17.5 17.6 

KKIA 17.8 18.3 18.4 14.2 15.2 15.4  8.71 10.1 10.3 15.7 16.7 16.7 

Magoye 18.2 18.7 18.7 14.0 14.9 15.2  7.95 9.09 9.4 16.0 16.8 16.9 

Mbala 15.1 15.6 15.6 14.6 15.1 15.2  11.3 12.3 12.5 14.8 15.2 15.2 

Mongu 19.1 19.7 19.8 16.4 17.3 17.5  11.1 12.3 12.6 18.1 18.9 19.0 

Mpika 16.3 16.7 16.7 14.8 15.4 15.5  10.1 11.2 11.4 15.4 15.9 16.0 

Mt Mak 17.3 17.7 17.7 14.5 15.3 15.4  9.84 11.0 11.2 17.1 17.8 17.8 

Ndola 17.3 17.6 17.7 14.4 15.0 15.1  9.19 10.4 10.6 15.6 16.3 16.4 

Petauke 18.9 19.5 19.6 16.6 17.7 17.8  13.1 14.4 14.6 18.9 19.8 19.8 
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Appendix F: 30 year mean (°C) for historical and future periods for maximum temperature and 

projected changes (°C) using an ensemble of models 

Station Location Historical RCP4.5 RCP8.5 

 
Lat.(°S) Lon.(°E) Mean Mean Mean ∆ Mean Mean ∆ 

Kafironda 12.6 28.1 29.05 30.49 1.445 30.68 1.629 

Kasama 10.2 31.1 27.70 29.21 1.508 29.44 1.736 

Livingstone 17.8 25.8 30.55 32.25 1.701 32.40 1.856 

LCA 15.4 28.3 26.78 28.49 1.701 28.71 1.921 

KKIA 15.3 28.4 28.02 29.60 1.58 29.73 1.713 

Magoye 15.9 27.6 29.25 30.96 1.71 31.13 1.880 

Mongu 15.3 23.2 30.41 32.15 1.74 32.42 2.007 

Mpika 11.9 31.4 26.37 27.94 1.57 28.19 1.822 

Mt. Makulu 15.5 28.2 28.02 29.65 1.625 29.82 1.797 

Ndola 12.9 28.7 28.53 30.07 1.543 30.28 1.751 

Petauke 14.3 31.3 28.83 30.67 1.845 30.9 2.079 

 

Appendix G: 30 year seasonal mean for historical and future periods for maximum temperature (°C) 

using an ensemble of models 

Note: Kafiro represents Kafironda weather station and Mt. Mak represents Mt. Makulu station. 

Station DJF MAM JJA SON 

Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 Hist. RCP4.5 RCP8.5 

Kafiro 28.5 30.0 30.2 28.6 30.0 30.2 27.3 28.8 29.1 31.8 33.2 33.2 

Kasama 27.3 28.8 29.2 27.1 28.4 28.7 26.0 27.6 27.8 30.5 32.1 32.1 

L/stone 31.2 32.9 33.0 30.0 31.5 31.7 27.0 29.1 29.4 34.0 35.5 35.5 

LCA 27.1 28.7 28.9 26.2 27.8 28.1 23.9 25.7 25.9 30.1 31.8 31.9 

KKIA 28.3 29.8 29.9 27.3 28.7 29.0 25.1 27.0 27.2 31.4 32.9 32.9 

Magoye 29.5 31.2 31.3 28.6 30.0 30.3 26.3 28.2 28.4 32.7 34.5 34.5 

Mongu 29.9 31.4 31.7 29.8 31.3 31.7 28.3 30.3 30.7 33.7 35.5 35.7 

Mpika 26.8 28.4 28.8 25.6 27.2 27.5 23.6 25.2 25.4 29.5 31.1 31.1 

Mt Mak 28.4 30.0 30.2 27.4 28.9 29.1 25.0 26.7 27.0 31.3 33.0 33.0 

Ndola 28.1 29.6 29.9 28.0 29.4 29.7 26.6 28.3 28.5 31.5 33.0 33.0 

Petauke 29.0 30.9 31.2 28.2 30.0 30.4 25.9 27.8 28.0 32.2 34.0 34.0 
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Appendix H: Projected changes in seasonal mean precipitation, minimum temperature and 

maximum temperature using ensemble of three models under RCP4.5 scenario 

Station Precipitation (%) Minimum temperature (°C) Maximum temperature (°C) 

DJF MAM SON DJF MAM JJA SON DJF MAM JJA SON 

Kabwe 2.87 5.76 16.3 0.56 0.96 1.41 0.93 - - - - 

Kafironda -10.5 -9.48 -0.71 0.26 0.64 1.20 0.45 1.50 1.37 1.56 1.35 

Kasama -9.21 -16.4 10.4 0.35 0.63 1.15 0.42 1.45 1.37 1.60 1.61 

Livingstone 4.27 7.89 13.1 0.68 1.25 1.36 1.30 1.73 1.45 2.07 1.56 

LCA 3.09 5.50 -5.87 0.50 0.89 1.17 0.71 1.61 1.63 1.79 1.77 

KKIA 2.00 -11.0 -15.1 0.51 1.01 1.39 0.96 1.50 1.46 1.86 1.51 

Magoye -5.21 4.90 -8.53 0.45 0.98 1.13 0.84 1.68 1.48 1.89 1.79 

Mansa -13.6 -18.8 5.87 - - - - - - - - 

Mbala -12.6 -13.6 6.60 0.49 0.47 1.04 0.38 - - - - 

Mfuwe -3.37 -23.4 5.43 - - - - - - - - 

Mongu -12.1 7.48 4.75 0.63 0.90 1.20 0.77 1.59 1.51 2.04 1.83 

Mpika 1.96 -12.0 -8.76 0.40 0.62 1.04 0.56 1.58 1.56 1.57 1.56 

Mt Makulu -11.2 27.3 -5.61 0.38 0.83 1.13 0.73 1.60 1.49 1.73 1.68 

Mumbwa -11.4 -16.0 -10.6 - - - - - - - - 

Mwinilunga -8.49 -19.2 9.78 - - - - - - - - 

Ndola -11.5 -12.1 -2.52 0.32 0.67 1.20 0.70 1.54 1.44 1.68 1.51 

Petauke -1.36 -13.4 -8.87 0.56 1.04 1.34 0.91 1.85 1.84 1.82 1.86 

Serenje -15.7 -9.24 5.80 - - - - - - - - 

Solwezi -11.0 -9.30 -18.8 - - - - - - - - 

   Note: The dash (   ) implies absence of the variable at a meteorological station 
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Appendix I: Projected changes in seasonal mean precipitation, minimum temperature and 

maximum temperature using ensemble of three models under RCP8.5 scenario 

Station Precipitation (%) Minimum temperature (°C)  Maximum temperature (°C) 

DJF MAM SON DJF MAM JJA SON  DJF MAM JJA SON 

Kabwe -4.06 -0.26 8.18 0.63 1.13 1.64 0.94  - - - - 

Kafironda 2.04 -7.46 -17.0 0.29 0.81 1.43 0.59  1.72 1.61 1.83 1.35 

Kasama -7.98 -23.4 -9.65 0.42 0.72 1.36 0.48  1.83 1.65 1.82 1.64 

Livingstone 6.08 -16.6 12.6 0.74 1.50 1.68 1.35  1.79 1.67 2.39 1.56 

LCA -4.26 16.8 -6.87 0.55 1.00 1.33 0.77  1.87 1.97 2.05 1.8 

KKIA -10.4 -2.91 -3.13 0.56 1.17 1.64 1.00  1.59 1.66 2.13 1.47 

Magoye -2.15 7.73 -14.0 0.45 1.20 1.42 0.95  1.83 1.73 2.16 1.79 

Mansa -2.30 -19.3 -26.1 - - - -  - - - - 

Mbala -3.02 -6.76 1.73 0.56 0.57 1.21 0.42  - - - - 

Mfuwe 4.28 -16.9 7.24 - - - -  - - - - 

Mongu 3.88 13.5 3.51 0.70 1.09 1.49 0.84  1.87 1.86 2.35 1.95 

Mpika -10.7 -18.3 -29.3 0.44 0.70 1.22 0.63  1.96 1.94 1.81 1.58 

Mt Makulu -0.41 18.6 -7.66 0.40 0.94 1.39 0.71  1.76 1.75 2.00 1.67 

Mumbwa -1.47 -18.5 3.89 - - - -  - - - - 

Mwinilunga -12.7 -39.3 -7.40 - - - -  - - - - 

Ndola -3.57 -13.8 -11.9 0.35 0.76 1.43 0.81  1.81 1.74 1.92 1.53 

Petauke -2.18 -18.8 -16.7 0.65 1.18 1.50 0.92  2.22 2.21 2.07 1.82 

Serenje 3.10 -20.2 -14.9 - - - -  - - - - 

Solwezi -5.42 -12.0 -16.5 - - - -  - - - - 

Note: The dash (   ) implies absence of the variable at a meteorological station 
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APPENDIX J: R script for computing annual and seasonal means at each station 

Note:  

 Computation were executed using R version 3.5.0 (2018-04-23) 

 X represents any of the variables: PRECIP, TMIN or TMAX, 

 r is the number of rows to be skipped in a data frame 

 “station” the name station should be replaced by the station ID 

e.g. “KAFIRO01” for KAFIRONDA 

###########################################################################  

Options (digits=4## controls number of significant digits to print 

library(plyr)## for implementing the split-apply-combine pattern in R 

library (dplyr) ## for data manipulation 

library(lubridate) ##for working with dates 

library(hydroTSM)##daily, monthly, seasonal 

library(scales)## to access breaks/formatting functions 

library(zoo)## manipulation of regular and irregular time series of  

       ##numeric vectors/matrices 

setwd("~/CHOTA MSc/Software (2018)/RStudio wd dissertation/DOWNSCALED 

SCENARIOS/X") 

################################## Historical ################## 

###loading the model cnrm_cm5_hist 

X_cnrm_cm5_hist <- read.csv("~/Documents/CHOTA MSc/Software 

(2018)/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/CNRM-

CM5/hist_t2m/a1p10 - a1p10_X - Analogues (default) - CNRM-CM5 - 

historical_r1i1p1.csv", skip = r) 

head(X_cnrm_cm5_hist## reading the first few rows in the data frame 

###Converting date to R date format 

X_cnrm_cm5_hist$Date <- as.Date(X_cnrm_cm5_hist$Date, "%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X: Selecting a STATION from the data frame 

X_cnrm_cm5_hist <- subset (X_cnrm_cm5_hist, select=c("Date", 

“station”))  

head(X_cnrm_cm5_hist) 

colnames(X_cnrm_cm5_hist) <- c("Date","X_cnrm_cm5_hist") 

###loading the model CanESM2_hist 

X_CanESM2_hist<-read.csv("~/Documents/CHOTAMSc/Software(2018)/RStudio 

wd dissertation/DOWNSCALED 

SCENARIOS/X/CanESM2/hist/a1p10_X - Analogues (default) - CANESM2 - 

historical_r1i1p1.csv", skip = r)  

### Converting date to R date format 

X_CanESM2_hist$Date <- as.Date(X_CanESM2_hist$Date, "%d/%m/%Y", na.rm 

= TRUE) 

head(CanESM2_hist) 
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###STATION_X: Selecting a station from the data frame 

X_CanESM2_hist <- subset(X_CanESM2_hist, select=c("Date", “station”))  

head(X_CanESM2_hist) 

colnames (X_CanESM2_hist) <- c("Date","X_CanESM2_hist") 

###loading the MPI-ESM-MR 

X_MPI_ESM_MR_hist<- read.csv("~/Documents/CHOTAMSc/Software 

(2018)/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/MPI-ESM -

MR/Hist-t2m/a1p10 - a1p10_X - Analogues (default) - MPI-ESM-MR – 

historical_r1i1p1.csv", skip = r)  

head(X_MPI_ESM_MR_hist) 

 

### Converting date to R date format 

X_MPI_ESM_MR_hist$Date <- as.Date(X_MPI_ESM_MR_hist$Date, "%d/%m/%Y", 

na.rm = TRUE) 

head(X_MPI_ESM_MR_hist) 

### STATION_X: Selecting one STATION from the data frame 

X_MPI_ESM_MR_hist <- subset(X_MPI_ESM_MR_hist, select=c("Date", 

“station”))  

colnames(X_MPI_ESM_MR_hist) <- c("Date","X_MPI_ESM_MR_hist") 

###Combining the datasets using column bind function 

STATION_X_hist <- cbind(X_cnrm_cm5_hist, X_CanESM2_hist[,2], 

X_MPI_ESM_MR_hist[,2]) 

colnames(STATION_X_hist) <- 

c("Date","X_cnrm_hist","X_CanESM2_hist","X_mpi_esm_mr_hist") 

###Calculate row means 

STATION_X_hist$ens_X_hist <- rowMeans(STATION_X_hist[,2:4], 

na.rm=TRUE) 

head(STATION_X_hist) 

###Make new variables, year and month 

STATION_X_hist<-transform(STATION_X_hist, 

month=as.numeric(format(Date,"%m")),year=as.numeric(format(Date,"%Y")

, na.rm = TRUE)) 

head(STATION_X_hist) 

### Number of years in the time slice 

nyrs <- yip("1971-01-01", "2000-12-31", date.fmt= "%Y-%m-%d", 

out.type = "nmbr") 

nyrs 

 

###Converting to zoo file 

STATION_X_hist.zoo <- zoo(STATION_X_hist[,2:5], STATION_X_hist$Date) 

head(STATION_X_hist) 
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### Long term annual mean tmin/tmax temperature 

STATION_X_annual_his<-annualfunction(STATION_X_hist.zoo,FUN=mean, 

na.rm=TRUE) 

STATION_X_annual_his 

write.csv(STATION_X_annual_his,file = "STATION_X_annual_his.csv", 

row.names = FALSE) 

### Long term mean monthly values of X 

STATION_X_monthly_his<- monthlyfunction(STATION_X_hist.zoo, FUN=mean, 

na.rm=TRUE) 

STATION_X_monthly_his 

write.csv(STATION_X_monthly_his, file = "STATION_X_monthly_his.csv", 

row.names = TRUE) 

###seasonal_means 

STATION_X_seasonal_hist <- seasonalfunction(STATION_X_hist.zoo, 

FUN=mean, na.rm=TRUE) 

STATION_X_seasonal_hist 

write.csv(STATION_X_seasonal_hist, file = 

"STATION_X_seasonal_hist.csv", row.names = TRUE) 

NOTE: For annual and seasonal precipitation use the function SUM and 

divide by nyrs. 

  e.g. STATION_pr_annual <-

annualfunction(STATION_pr_hist.zoo,FUN=sum, 

       na.rm=TRUE)/nyrs 

#################################### RCP45########################### 

###loading the cnrm_cm5_rcp45 

X_cnrm_cm5_rcp45 <- read.csv("~/Documents/CHOTA MSc/Software(2018) 

/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/CNRM-CM5/rcp45-

t2m/a1p10 - a1p10_X - Analogues (default)-CNRM-CM5 rcp45_r1i1p1.csv", 

skip = r)  

head(X_cnrm_cm5_rcp45) 

### Converting date to R date format 

X_cnrm_cm5_rcp45$Date <- as.Date(X_cnrm_cm5_rcp45$Date, "%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X 

X_cnrm_cm5_rcp45 <- subset(X_cnrm_cm5_rcp45, select=c("Date", 

“station”))  

colnames(X_cnrm_cm5_rcp45) <- c("Date","X_cnrm_rcp45") 
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###loading the model CanESM2_rcp45 

X_CanESM2_rcp45 <- read.csv("~/Documents/CHOTA MSc/Software 

(2018)/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/CanESM2 

/rcp4.5/a1p10_X - Analogues (default) - CANESM2 - rcp45_r1i1p1.csv", 

skip = r)  

head(X_CanESM2_rcp45) 

### Converting date to R date format 

X_CanESM2_rcp45$Date <- as.Date(X_CanESM2_rcp45$Date, "%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X 

X_CanESM2_rcp45 <-  subset(X_CanESM2_rcp45, select=c("Date", 

“station”)) colnames(X_CanESM2_rcp45) <- c("Date","X_CanESM2_rcp45") 

### loading the MPI-ESM-MR 

X_MPI_ESM_MR_rcp45 <- 

read.csv("file:///C:/Users/ENOCK/Documents/CHOTA MSc/Software 

(2018)/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/MPI-ESM -

MR/rcp45-t2m/a1p10 - a1p10_X - Analogues (default) - MPI-ESM-MR - 

rcp45_r1i1p1.csv", skip = r)  

head(X_MPI_ESM_MR_rcp45) 

###Converting date to R date format 

X_MPI_ESM_MR_rcp45$Date <- as.Date(X_MPI_ESM_MR_rcp45$Date, 

"%d/%m/%Y", na.rm = TRUE) 

###STATION_X 

X_MPI_ESM_MR_rcp45 <-  subset(X_MPI_ESM_MR_rcp45, select=c("Date", 

“station”))  

###Rename columns 

colnames(X_MPI_ESM_MR_rcp45) <- c("Date","X_MPI_ESM_MR_rcp45") 

#####Combining the datasets using column bind function 

STATION_X_rcp45<-cbind(X_cnrm_cm5_rcp45,X_CanESM2_rcp45[,2], 

X_MPI_ESM_MR_rcp45[,2]) 

colnames(STATION_X_rcp45)<c("Date","X_cnrm_rcp45","X_CanESM2_rcp45","

X_mpi_esm_mr_rcp45") 

### Calculate row means 

STATION_X_rcp45$ens_X_rcp45 <- rowMeans(STATION_X_rcp45[,2:4], 

na.rm=TRUE) 

###Make new variables, year and month 

STATION_X_rcp45<transform(STATION_X_rcp45,month=as.numeric(format(Dat

e,"%m")),year=as.numeric(format(Date,"%Y"), na.rm = TRUE)) 
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###Number of years in the time slice 

nyrs <- yip("1971-01-01", "2000-12-31", date.fmt= "%Y-%m-%d", 

out.type = "nmbr") 

###Converting to zoo file 

STATION_X_rcp45.zoo <- zoo(STATION_X_rcp45[,2:5], 

STATION_X_rcp45$Date) 

### Calculating Long term annual mean in X 

STATION_X_annual_rcp45 <-annualfunction (STATION_X_rcp45.zoo, 

FUN=mean, na.rm=TRUE) 

STATION_X_annual_rcp45 

write.csv(STATION_X_annual_rcp45, file = 

"STATION_X_annual_rcp45.csv", row.names = FALSE) 

###Calculating change in long term annual mean tmin/tmax 

STATION_annual_change_X_rcp45<-(STATION_X_annual_rcp45)-

(STATION_X_annual_his) 

STATION_annual_change_X_rcp45  

write.csv(STATION_annual_change_X_rcp45,file="STATION_annual_change_X

_rcp45.csv", row.names = FALSE) 

### Long term monthly minimum/maximum temperature 

STATION_X_monthly_rcp45<-

monthlyfunction(STATION_X_rcp45.zoo,FUN=mean, na.rm=TRUE) 

STATION_X_monthly_rcp45 

write.csv(STATION_X_monthly_rcp45, file = 

"STATION_X_monthly_rcp45.csv", row.names = TRUE) 

### Long term monthly minimum/maximum temperature change 

STATION_X_monthly_change_rcp45<-((STATION_X_monthly_rcp45)-

(STATION_X_monthly_his)) 

STATION_X_monthly_change_rcp45 

write.csv(STATION_X_monthly_change_rcp45,file="STATION_X_monthly_chan

ge_rcp45.csv", row.names = TRUE) 

###seasonal_means 

STATION_X_seasonal_rcp45 <- seasonalfunction(STATION_X_rcp45.zoo, 

FUN=mean, na.rm=TRUE) 

STATION_X_seasonal_rcp45 

write.csv(STATION_X_seasonal_rcp45, file = 

"STATION_X_seasonal_rcp45.csv", row.names = TRUE) 

###seasonal changes in temperature 

STATION_seasonal_X_change_rcp45<-(STATION_X_seasonal_rcp45- 

STATION_X_seasonal_hist) 

STATION_seasonal_X_change_rcp45 
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write.csv(STATION_seasonal_X_change_rcp45,file="STATION_seasonal_X_ch

ange_rcp45.CSV", row.names = TRUE) 

NOTE: For precipitation use the function SUM and divide by nyrs 

      e.g. STATION_pr_annual <-annualfunction(STATION_pr_hist.zoo, 

FUN=sum, na.rm=TRUE)/nyrs 

################################## RCP85 ############################ 

###loading the model cnrm_cm5_rcp85 

X_cnrm_cm5_rcp85 <- read.csv("~/Documents/CHOTA MSc/Software 

(2018)/RStudio wd dissertation/DOWNSCALED SCENARIOS/X/CNRM-CM5/rcp85-

t2m/a1p10 - a1p10_X - Analogues (default) - CNRM-CM5 - 

rcp85_r1i1p1.csv", skip = r)  

head(X_cnrm_cm5_rcp85) ## To display the first 6 rows of the 

dataframe 

### Converting date to R date format 

X_cnrm_cm5_rcp85$Date <- as.Date(X_cnrm_cm5_rcp85$Date, "%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X 

X_cnrm_cm5_rcp85 <- subset(X_cnrm_cm5_rcp85, select=c("Date", 

“station”))  

colnames(X_cnrm_cm5_rcp85) <- c("Date","X_cnrm_rcp85") 

####loading the CanESM2_rcp85 

X_CanESM2_rcp85<-read.csv("~/Documents/CHOTA MSc/Software(2018) 

/RStudio wd dissertation/DOWNSCALEDSCENARIOS/X/CanESM2/rcp8.5/a1p10_X 

- Analogues (default) - CANESM2 –rcp85_r1i1p1.csv", skip = r)  

head(X_CanESM2_rcp85) 

### Converting date to R date format 

X_CanESM2_rcp85$Date <- as.Date(X_CanESM2_rcp85$Date, "%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X 

X_CanESM2_rcp85 <-  subset(X_CanESM2_rcp85, select=c("Date", 

“station”))  

#Rename columns 

colnames(X_CanESM2_rcp85) <- c("Date","X_CanESM2_rcp85") 

### loading the MPI-ESM-MR_rcp85 

X_MPI_ESM_MR_rcp85 <- read.csv("~/CHOTA MSc/Software (2018)/RStudio 

wd dissertation/DOWNSCALED SCENARIOS/X/MPI-ESM -MR/rcp85-t2m/a1p10 - 

a1p10_X - Analogues (default) - MPI-ESM-MR - rcp85_r1i1p1.csv", skip 

= r)  



 

94 

 

head(X_MPI_ESM_MR_rcp85) 

### Converting date to R date format 

X_MPI_ESM_MR_rcp85$Date<- as.Date(X_MPI_ESM_MR_rcp85$Date,"%d/%m/%Y", 

na.rm = TRUE) 

###STATION_X 

X_MPI_ESM_MR_rcp85 <- subset(X_MPI_ESM_MR_rcp85, select=c("Date", 

“station”))  

###Rename columns 

colnames(X_MPI_ESM_MR_rcp85) <- c("Date","X_MPI_ESM_MR_rcp85") 

###Combining the datasets using column bind function 

STATION_X_rcp85<-cbind(X_cnrm_cm5_rcp85,X_CanESM2_rcp85[,2], 

X_MPI_ESM_MR_rcp85[,2]) 

head(STATION_X_rcp85) 

colnames(STATION_X_rcp85)<-

c("Date","X_cnrm_rcp85","X_CanESM2_rcp85","X_mpi_esm_mr_rcp85") 

head(STATION_X_rcp85) 

###Calculate row means 

STATION_X_rcp85$ens_X_rcp85 <- rowMeans(STATION_X_rcp85[,2:4], 

na.rm=TRUE) 

head(STATION_X_rcp85) 

###Make new variables, year and month 

STATION_X_rcp85<-transform(STATION_X_rcp85, 

month=as.numeric(format(Date,"%m")),year=as.numeric(format(Date,"%Y")

, na.rm = TRUE)) 

###Number of years in the time slice 

nyrs <- yip("2020-01-01", "2049-12-31", date.fmt= "%Y-%m-%d", 

out.type = "nmbr") 

###Converting to zoo file 

STATION_X_rcp85.zoo <- zoo(STATION_X_rcp85[,2:5], 

STATION_X_rcp85$Date) 

head(STATION_X_rcp85.zoo) 

### Calculating long term annual mean temperature 

STATION_X_annual_rcp85 <-annualfunction (STATION_X_rcp85.zoo, 

FUN=mean, na.rm=TRUE) 

STATION_X_annual_rcp85 

write.csv(STATION_X_annual_rcp85,file="STATION_X_annual_rcp85.csv", 

row.names = FALSE) 

###Calculating change in long term annual mean in temperature 
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STATION_annual_change_X_rcp85<-STATION_X_annual_rcp85- 

STATION_X_annual_his 

STATION_annual_change_X_rcp85  

write.csv(STATION_annual_change_X_rcp85,file="STATION_annual_change_X

_rcp85.csv", row.names = FALSE) 

###seasonal_means 

STATION_X_seasonal_rcp85<- seasonalfunction (STATION_X_rcp85.zoo, 

FUN=mean, na.rm=TRUE) 

STATION_X_seasonal_rcp85 

write.csv(STATION_X_seasonal_rcp85, file = 

"STATION_X_seasonal_rcp85.csv", row.names = TRUE) 

NOTE: for precipitation use the function SUM and divide by nyrs 

      e.g. STATION_pr_annual <-annualfunction (STATION_pr_hist.zoo,    

                               FUN=sum, na.rm=TRUE)/nyrs 

### computing long term changes in average seasonal temperature 

STATION_seasonal_X_change_rcp85<-STATION_X_seasonal_rcp85-

STATION_X_seasonal_hist 

STATION_seasonal_X_change_rcp85 

write.csv(STATION_seasonal_X_change_rcp85,file="STATION_seasonal_X_ch

ange_rcp85.CSV", row.names = TRUE) 

NOTE: For precipitation, express the change as a percentage. 
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