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Notation

The following notation has been used throughout.

R is a real line.

I is an interval and t € T C IR.

H?n is an n-dimensional real-valued vector space.

D is a connected open subset of R" and x € D.

¢(t), P(t), etc. are real-valued n-dimensional vector functions.

is a norm defined over ]?n and defined as follows:

I = max Ikl .
i=1,...,Nn



General Introduction

Many physical problems are studied through mathematical equations
especially differential equations. For example, problems in mechanics,
electricity, aerodynamics, to mention just a few, use differential
eguations. While it is true to say that physical sciences and tech-
nology are the two main sources of problems which require the use of
differential equations, biological and social sciences are increas-
ingly being realised as other sources. For example population study
is one area where differential equations are applied.

Much of the literature on differential eguations is on linear
differential equations. Methods of solving a variety of linear
differential equations are known but most of these methods cannot
be effectively extended to n%nlinear diffgrential eguations. This
makes the solving of nonlinear equations a difficult task. What
has been done to ease this problem is to abandon the idea of solving
an equation and instead get as much information as is possible about
a class of solutions of the nonlinear diff;rential equation by
examining the equation itself. After extracting enough information,
then one can find ways of approximating a particular solution as
the exact one is almost impossible to get.

This work is a brief* survey of the literature available concern-
ing periodic soclutions of nonlineqr ordinary differential equations.

Chapter 1 is on the standard existence theory of differential
equations. Chapter 2 is a brief account of critical points and
Chapter 3 is on stability theory. The last chapter looks at some
of the existence theorems for periodic solutions of nonlinear

differential equations. References are given at the end. 244
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1.

CHAPTER 1

EXISTENCE AND UNIQUENESS OF SOLUTIONS

1 Introduction

Before the theory of differential equations can unfold in more
interesting directions there are three basic guestions to settle.
Given a system of differential equations and some conditions, does
a solution exist which satisfies the conditions? If solutions do
exist, can there be more than one sclution satisfying the same
conditions? If the conditions are slightly varied, doe; a solu-
tion respond accordingly?

A system of differential eqguations whose solutions are unique
and continuous in initial conditions constitutes what is called a
well-posed problem. ) - >

We give here an account of the standard theory in existence

and uniqueness.

1-2 Types of Ordinary Differential Equation®

Let fi : I XD+ R, i=1,2,...,n be real-valued functions
defined on I x D. Put f = (Fq,fz,...,Fn]. Then f maps I x D into
Rr".

Consider a system of differential equations

A 6,%),  i51,2,00.,0. (1.2.1)

An ordinary differential eguation of order n

2
G(t,x,%, d—;‘,...,ﬂ]=o (1.2.2)
dt dt

n
can be reduced to system (1.2.1) by first solving for 9-% to get
dt



9—%‘ Ft,x, [—‘j—t’i yerry 3 —= ). (1.2.3)
dt dt
Then, putting
= X, X = dx w = d2x w = dnhqx
2 IS | T T . n - —
1 2 dt 3 dt2 dtn 1
and
X = [x1,x2,...,xn].
Equation (1.2.3) then becomes
X, = X, i=1,...,n-1
1 1
. dxi -
X = Flt,x) (xi = g ),

which is clearly a system of type (1.2.1).

2 *

For brevity system (1.2.1) will be written as
x = flt,x). (1.2.4)
When f is independent of t (1.2.4) has the%form
x = f(x), (1.2.5)

known as an autonomous system as opposed to a nonautonomous system

(1.2.4). Special cases of (1.2.4) are the linear equation

x = Alt)x + b(t), (1.2.8)

where A(t) is an nxn matrix of continuous functions aij[tl, i,3=1,...

and b(t) is an n-vector function; and the periodic equation

x = f(t,x), Fflt+w,x) = f(§,x). (1.2.7)

[85)



.3 Existence and Unigueness

A function
x = lt),  ¢lt) = (@), .., (D) € R"

is called a solution of system (1.2.4) if ¢(t) is defined on some

interval I_C I, ¢(t) € D for every t e I_ and
b = Flt,p(t)).

The problem as far-as existence is concerned is to find a
differentiable function which will satisfy the given system (1.2.4).

When in addition uniqueness is sought, then the problem becomes that

-

of finding a solution through a given point. This is the so-called

initial value problem and has the form

-
- -

(p): Find a function ¢ such that

b = £t,0(t)) (1.3.0)
and .
olt) = &
for
(tO,E] in I x D.
It is easily seen that ¢(t) is a solution to the problem (p) if
and only if
t
plt) = & + J fls,¢(s))ds. (1.3.1)
t

0



For, differentiating with respect to t, (1.3.1) is seen to satisfy

the problem (p). Conversely, integrating (1.3.0) from tO to t

immediately gives (1.3.1). The problem (p) is therefore equivalent

to finding a function ¢ which satisfies the integral eguation (1.3.1].
With (1.3.1) at hand, conditions on f have been established

which are sufficient for the existence of at least one solution for (pl.

One such condition is the continuity of f (see e.g. [3; page 2]].

This is the weakest practical condition available. Examples exist

which show that continuity alone fails to guarantee unigueness of a

.

solution. For instance, the equation

dx i -
22 >
It X", x_O,

with x{0) = 0O

has two solutions satisfying the same conditdon, namely

x(t) =0
and
2
x(t) =%—.

One well known condition which in addition to continuity
ensures uniqueness of a solution is the Lipschitz condition defined
as follows:

A function f is said to satisfy a Lipschitz condition in I X D

if there exists a constant K such that for everyx and vy in D
[ flt,x) - fLE, v < Klx-yl, (1.3.2)

where K is independent of t. It is however, always sufficient that f
be Lipschitz in a neighbourhood of a given point x = £. 1In this

case f is said to be locally Lipschitz in I xD.



A function which satisfies a Lipschitz condition is clearly
continueous in x. For if (1.3.2) is satisfied, choose € > 0 such

that
Klix-y]| < e.

Then § > 0 can be taken to be-% so that

[Fle,x) - flt,y)|| < €
whenever

Ix-v| < 8.

-

When a function is continuously differentiable in x it is also

seen to satisfy a Lipschitz condition locally. For suppose that all
of

the partial derivatives 5;£ + i,j=1,...,n*are continuous. Let Sg[xO]
J

be a closed neighbourhood of X, € D, e > 0. Let tO correspond to X5

and let I be an interval lt—tol < ¢ contained in I. Then since
af. -

X are continuous in I x D there exists a constant K such that
J

2

Bfi -
Ezgit,x] f_K, i,3=1,40.,N

for (t,x) € I, x SE(XD]. If (t,x) and (t,y]) are any two points in
IO X Sg[xo)’ the application of the mean value theorem for functions

of n variables gives

Bfi
5;; (t,EJ[xj—yj]

|13 e B |

fi(t,x] - fi[t,y] =,

J=1

h , <&, <y., = (&, ,eca,E ),
whers x, EJJ Y5 g €4 €n



Hence

of,

i
T (t, &)
J

n
[F,(Ex) - £ (B < .2
3=1

|xi_yj

so that
| £Ct,x) - £, y)) E_Kn”x—y"

which is clearly a Lipschitz condition with constant Kn.
It follows therefore that if f is continuously differentiable in

x, then f is locally Lipschitz in every compact subset of D.

Theorem 1.3.1 (Picard)

-

Suppose that f is continuous and satisfies a Lipschitz condition

with a constant K in the region

= »

R = {(t,x) ¢ |t-t_| < a [x-g| <b}

which is contained in I % D. Then the system (1.2.4) has a unigue

salution ¢(t]) for which
cb[tol = £

and it is defined for !t—tol < o, where

o = min{a,%i

and

M = max £ t, %)
(t,x) eR

Proof

The proof of this theorem proceeds through showing that a sequence



of functions
¢k[t] = (¢1k[tl,...,¢nK(tJ]

defined as

i

6 (£) = €

1]

t
g + J F[s,¢k_1[5]]ds (1.3.3)

t
0

t
8 (£

converges uniformly to a function ¢(t), which is the required solution

&

on |t-t_| < a.

We first show that for each K, ¢k[t) is defined and continuous

-

on [t _,t +a]land
o’ o
o, (t3-8l < mit-t_|. (1.3.4)
Clearly the statement holds for k=0 since

¢, (t) = & for all t e [t ,t *a].

Suppose the statement is true for k=r: that is

il

t
g + f F[s,¢r_1(5)]ds

t
o}

o.(t)

is defined and continuous, and (1.3.4) holds on [to,t0+a]. Since
¢r(t] is continuous in t, F(t,¢r[tJJ is continuous in t. So

t

g (t) = g + J fls, ¢ (8))ds

t
0

is defined and continuous in t. Also

t
lo_ ., (t1-€ll = | Jt £(s,¢_(8))ds]|

0

t
< J (s, 0_(s))]ds
—_ r
tD
< | < Mc b
< mlt-t l SMma<mg <



By induction ¢ ,(t) are defined and continuous and satisfy (1.3.4).

Hence ¢K(t) € R for K.
Next it has to be shown that [¢K] converge uniformly on

[t ,t +al.
o s}
Let di(E) = oy, () - o ()], K=0,1,...

By (1.3.3)

t

Baq (D)0 () = J [£(s,,(s))-F(s,0, ,(s))]ds,

t
0

Hence

-

t
”¢K+1(t)~¢K[t]H <K J

. o, (=16, _, ts)]as.

(8]

-

This implies that

t
d (t) < K J d (s)ds. (1.3.5)
A e
8]
But '
d ()< M|t-t_]|.
[s] —_— o
Also
t
d, (t) < KM { |s-t_|ds
1 — to 0
le-t 12

t :
dz(t] < K J dq(s]ds

tO
2 t

< Eaﬂ-J |s-t_|2ds

tO

3

_K2M |t
C T2 T3

[t-t |3
= M K2 — 2

31



By induction

" Knlt—toln
dn(tJ <% —
[oo]
It follows then that Z dn[tJ converges uniformly on [to,t0+a] since
n=0
: n
P By K'lt-tg]
] d )< g ——
n=0 " ~ n=0 ne
n n
o E KM t-t, | . m-eK|t—t |
S K E nl K '
n=0
Since
[ee] © -
HKZD {9, 4 ()0, (£} < Zo 6y 0q (£3-0, ([
the series = »

y o, . (t)-¢ (£)}
M S K

converges uniformly on [to,to+a]. But

W

/]

n._.
ZD {6, 1 (£)-0, (£} = ¢ (t)-¢ (],

k

S0

t
¢n[t] = £ +ff F(5,¢n_1[S]]ds

t
0

converges uniformly to a function ¢[t].

To show that

t
op(t) = & + [ f(s,¢(s))ds,

t
0

first note that for an arbitrary € >0



loctr-gl < llottd-o_ ()] + [lo, (£I-€f
< € + M-t
But ||¢(t)-g| is independent of €, so
lottd-g] < mlt-t_| < Ma <M %- = b

Hence ¢(t) € R for t ¢ [to,t0+a].

Now

t
I J [(s,9(s))-F(s,¢ (s))1ds|
t

° t
< K.L ¢ (s)-¢_ ()] ds
8]
o<ke et |

for large n.

Hence

t t
1im J FES,¢n(sJJd5 = J f(s,¢(s)]ds.
n - o “t- to"

o

So ¢(t) is a solution of (1.2.4). To show that ¢(t]) is unique,

suppose that Y(t) is another solution such that
Pl ) = ¢lt ) = €.

Since Yy and ¢ are solutions, there exist sequences Yy and b, such
that y_ > ¥ and ¢_ ~ ¢. Also, since w[tol = ¢[tO], there exists
a neighbourhood of to' 1t—to| < 8§ <o , 8 >0 such that for sufficientl

large n

€
o, £yt < 5

for any € >0 and t & (ty-§,t5+8).



Therefore

loer-ved] < foter-o (0 + [o_ (t)-y, te)]]
+ o (£1-p )

€ € €

23733

Since € is arbitrary, it follows that
dp(t) = YPlt)

for It—to| < 8§. This completes the proof.

-

1.4 Maximal Interval of Existgnce .

The interval on which a solution was proved to exist in Theorem
1.3.1 may be very small indeed. However, a solution may be defined
over a larger interval. This raises the question of the extent to
which a solution can be continued. =

let ¢(t) be a solution of (1.2.4) defined on I, = [t1,t2]. If

Y(t) is another solution defined on 12 = (t3,t4] and ch: 12, then

¥(t) is a continuation of ¢(t) if ¢(t) = Y(t) for all t e I

.
The maximal interval of existence of ¢(t) is (a,B) if ¢(t) has
no continuation on this interval. Naturally, it is desirable to
know when a solution ¢ can be continued. Of course, if ¢ is defined
on (a,B) and say B is an end-point of I on which f in (1.2.4) is
defined, ¢ cannot be continued beyond B. Thus the question of

continuation may be considered when g (or a) is an interior point

Also i¥ 1im ¢(t) does not exist, where t € (a,B), then ¢(t)
t > B

of I.



cannot be continued. This means therefore that continuation of a

solution ¢ is possible only when either a or B is an interior point

of I where f is defined on I x D and limit as t - 8 (or t -+ o) of

¢ (t) exists and remains in a compact subset A of D. For in this

subget and t £ (a,B)
[ £, %) < M.

Now if

oplt) = & + J fls,¢(s))ds,
t
o)

then for t,l and t2 such that o < t1 <t2 < B

t,
lote,)-a0e,] < J 145,652 ds
t

. 1
Mlt,-to ) ®

| A

By the General Principle of Convergence

lim ¢(t) = n
t >R

W

exists and n € A.

So a sclution Y(t) which at t = B is such that Y(B) = n exists

and is defined on some interval (R-6,8+8), & > O.

If now X is defined by

oplt), a<t<8B
x(t]) = :
wit), B <t<p+s

then ¥(t) is a solution of (1.2.4) on (a,B+S).

(t
x(t) = £ + J f(s,d(s))ds.

t
o

For if oo <t <B then



Taking the limit as t =+ B, we have

1im  x(t)
t >R

n

t
g + J f(s,x(s))ds.

t
0

On the other hand, if B f_t < B + §then

t
x (t) n + [ f(s,P(s))ds

f(s,x(s))ds.

n

=
T+
> o

From the discussion above it follows that if (a,B) is the maximal
interval of existence of a solution ¢, and B < » (or -» < o) then

the solution leaves every compact subset A of D as t approaches g (or a

Al >

4.5 Dependence of Solutions on Initial Points and Parameters

Generally,a solution ¢ of the problem (p) is written in the
form ¢[t,to,£) to imply that it is a solution through t = tD and its
value at t_ is £. Since ¢(t,tD,E] is a sglution to the problem (pJ,
it is continuously differentiable in t. The guestion which may be
asked is, how does a solution behave as a function of tD or £ In
particular, conditions may be sought under which ¢[t,to,£) is

continuous in to and £ as well.

Theorem 1.5.1

Let f be continious and satisfy a Lipschitz condition in I X D.

Suppose that ¢[t,t0,£] is a solution of (1.2.4) defined over (o,B).

Let [c,d] be a closed interval contained in (o,R) with to as an




15.

interior point. If |n-g|| is sufficiently small, then ¢(t,t_,n) is
defined for t € [c,d]l; moreover ¢[t,t0,n) tends to ¢[t,to,g)

unifommly for t € [c,d] as n > £.

To prove this theorem, two lemmas will be proved first, as they
will be required. One lemma will require the concept of an approximate

solution defined as follows.

For & >0, a differentiable function X (t) is called a §-solution
of the system (1.2.4) in the interval I_C I if y(t) e D, for every

t e I and
(@]

[he)-ft,pe))]| < 6. .

Lemma 1.5.2 (Gronwall's Ineqguality)

* -

Let h and g be continuous real valued functions of t defined

for o < t < B with g(t) > 0. Suppose that K(t) is differentiable

on (a,B), nondecreasing and such that

t
h(t) i_K(t] + I hislg(slds, = (o <t f_B]. (1.5.1)
o
Then
t
hit) f_K(t]exp[J gl(s)dsl.
ol
Proof
Take
t
Ult) = K(t) + J hislglslds, (o f_t E_BJ,
o
so that

UCt) = K(t) + hit)lglt).



Since g(t) > 0 and ult) z_h[t] by (2.5.1), then

0Ct) < K(E) + Ult)gle).
or

O(t) - gtIule) < Kit),

Using the integrating factor
t

exp{—[ g(slds}
o

we get

t t
gf[uit}exp{—[ g(slds}] f_k(t]eép{-J g(s)ds}.
a a

t
since gls) > 0O, exp{-J g(slds} < 1.
o -
g t -
So -EE[U(t]exp{—[ gls)ds}] < K(t).
a

Hence

t
U(t)exp{—[ g(s)ds} < K(t) + Ula) - Kla).
Jo -

But Ulg) = Klal. So

t
U(t]exp{-J glslds} < K(t)
o

or

t
U(t) < K(tlexp { g(slds.
= o

Since h(t) E_U[t], the result follows.

1€



Lemma 1.5.3

Let ¥ satisfy a Lipschitz condition with a constant K in I X D

and let A be an open subset of I x D. Let ¢(t) and (t]) be two

S§-solutions of (1.2.4) in I, = (a,B) such that (t,¢(t)) and (t,yp(t))

are in A for t ¢ Iq. If

loce 3-wie Il < 6,
then

loted-ped]| < 8,+28]t-t_[1exp{K|t-t |1}.

Proof

Let £(t) = ¢(t)-P(t). Then

t
glt) = () + [ [b(s)-F(s,4(s))+Fs,¢(s))
.t .
[s]

- P(s)-Fls,Pp(s))+F(s,pls))ds

t
= gt ) + [ {1b(s)-F(s,0(s))] - [ls)-Fls,ypls))]

t
o

+ [f(s,0(s))-F(s,P(s))] }ds.

Hence

t
leell < 6+ 28le-t, |+ [ oter-ytalas
t bo
=8, * 26|t—t0| + [t K||£(s)| ds.
@]

By Lemma 1.5.2
leed| < 1, + 28]t-t_|Texplk|t-t [}

Now the proof of theorem Z follows.

17



Proof ofTheorem 1.5.1

Since f is Lipschitz in I x D, there is an open set AC I x D
such that [t,¢[t,t0,£)} € A for t € [c,d] and f is Lipschitz in A.
The solution ¢(t,to,n] exists. Using Lemma 4, so long as

(t,¢(t,to,nl remains in A, and noting that § = 0 for sclutions,
lott,t ,8) - ote,t_,m|l < [[e-nfexpik]t-t |3

This implies that for sufficiently small |&-n|, ¢(t,t0,n] remains
in A and is defined for t € [c,d}. The above inequality also implies
that as £ - n, ¢[t,tD,n] - ¢[t,t0,£] uniformly.

Theorem 1.5.1 states that for fixed t and‘to, ¢[t,t0,gl is
continuous in . It is indeed also true that ¢(t,to,g3 is continuous
in both tO and £. For suppose that the hypotheses of Theorem 1.5.1
hold and ”E-n” and |t0-t1| are sufficientfy small. ¢[t,t1,nJ is

defined and if z = ¢[to,t1,n) when t = to’ then ¢[t,t1,n) = ¢[t,t0,z].

Now
t
In-zl = I +ts, 05,5 m)asl
t
1
< Mlt-ty ]

since f is continuous. Applying Lemma1.5.3 we have

lott,t,.n) - olt,t L8| < flott,tn) - ¢(t,t0,n]”

+

ottt on) - it,t_,E)

lott,t.2) - ottt L)

+

lott,t .m) = ¢lt,t .8l

I A

llz=nll + In-gll1exptk|t-t |3

so long as (t,¢(t,t;,n)) and(t,¢(t,t ,E)) remain in A.



Hence
o Ce,t,n) - ottt el < ety |+ [In-glTexpik]e-t |2,

from which the result follows.
It can also be shown (e.g. [3, page 29]1) that ¢ can be differentiat
with respect to tb and gi, i=1,...,n where § = [g1,...,gn1 when %;
exists and is continuous.
The ideas mentioned above apply with minor modifications to
systems of the type

X = flt,x,u), (1.5.2)

where Y is a vector parameter with real components Uy i=1,...,m.
For instance the initial.point would be [to,g,u°) and continuity or
differentiability would apply under apprdpriate conditions like

£ be continuous in u and for fixed u, flt,x,u) satisfies the

hypotheses of the unigueness theorem.

1.8 Linear Systems

Linear systems play a special role in the theory of differential
equations. The theory for linear equations, which is elegant and

complete, is the basis for much of the study of nonlinear eguations.

The equation
x = Alt)x, x e R (4.6.1)
is called a homogenecus eguation. Its solutions, when found, are
used to construct solutions of eguation (1.2.6).
Suppose that A(t) is a matrix of continuous functions defined

on I. Then the set of all solutions of (1.6.1] is described by the

. N



Theorem 1.6.1

The set of all solutions of (1.6.1) form a vector space of

dimension n over the complex field C.

Proof

Let ¢, and ¢, be solutions of (1.6.1). Put
Pl = X1¢1(t] + k2¢2[t3.

Then

d L] L]
TE V) = Ah() + A (t)

i

MALEIp, (E) + A ALE)G,(E)

n

ALEIIAG, (8] * A0, (1)1,

Hence the set of all solutions is a vector space.
Let Ei’ i=1,...,n be linearly independent points inZRn.
That is gi = (0,0,...,1,0,...,0) where 1 is at ith position. By

the existence theocrem 1.3.1 if to ¢ I thege exist solutions ¢i(t]

such that
0, (t ) = €, i=1,...,n.
If now
X1¢1[t] +»%2¢2(t3+...+kn¢n[t] = 0 for all t e I,
then
A1¢1[t01 + A2¢2[tol+...+An¢n(tO] =0
or

MEq * AE e tA £ = 0.



Hence

since gi, i=1,...,n are linearly independent.
If ¢ is any solution of (1.6.1) such that ¢[to] = £, then

there exist constants Ai, i=1,...,n such that & = A1£1+...+Angn. Hence

Gt ) = AEy oA B

By uniqueness,

BLE) = A 0, (E) + Ao, (t)+. A o (B).

Therefore every solution of (1.6.1) is a lingar combination of ¢i(t),
i=1,...,n, as required.

When n linearly independent solutions are found, a matrix whose
columns are these n solutio;s, can be ﬁo;med. This matrix, known
as a fundamental matrix, can now be used to construct any solution of
equation (1.6.1). Denoting such a matrix by @, any solution of (1.6.7"

is of the form
ot} = @(t)C,

where C is a constant vector.
Associated with equation (1.6.1) is a matrix differential

eguation *
7 = A(t)Z ' (1.6.2)

whose solutions are nxn matrices whose columns are solutions of
equation (1.8.1). A fundamental matrix ¢ satisfies (1.6.2). 1In
fact, a necessary and sufficient condition that a solution matrix

® of (1.6.2) be a fundamental matrix is that the determinant of o,



det ¢, does not vanish for any t.
If ® is a fundamental matrix, then its column vectors are
linearly independent. It follows that det ®(t) # O for each t.
Suppose that ®(t) is a solution matrix of (1.8.2) and that
det @(tol # 0 for same to. Then the column vectors of @(tOJ are
linearly independent. Now, if at some other point t1, det @(tq) = 0,

let
Pplt) = aT¢1(t) ..t an¢n[t]

where ¢i[t], i=1,...,n are the column vectors of ®(t). Then at t = tq,
w(t1) = 0. By uniqueness condition, y(t) = OG- since x = 0 is a
solution of (1.6.1). This contradicts the fact that ¢1(tol,...,¢n[tol
are linearly independent. Hence det &(t) # 0 for each t. It follows
that ¢ has linearly indepen;ent solution; of (1.6.1).

when a fundamental matrix for (1.6.1) has been constructed, a

solution of (1.2.8) can readily be found by using the variation-of-

constants formula. If Y(t) is a solution of (1.86.1), then
P(t) = a(tlc, (1.6.3)

where C is a constant n-vector. We seek a solution of (1.2.8) of

the form
e(tlci{t). (1.6.4)
Then considering (1.6.4) as a solution of (1.2.8) we have

S(IC(L) + B(LIC(L) = A(EIB(EIC(E) + blt)
or

Al£)®(£)C(E) + B(£IC(E) = A(E)IO(EIC + blt)



which reduces to
®(t)C(t) = blt).
Since det ®(t) # 0, we have

Eee) = & (£)blt)

or

1

t
Clt) J o 1 (s)b(s)ds + Cle).

to
Hence the solution ®(t) of (1.2.8) is of the form

t
BLt) = 9t ) + J 8(£)8 " (8)b(s)ds.
tO

The case where A(t) is a constant matrix is of particular

-

interest because a fundamenjal matrix asgociated with it can be

t
readily constructed. Write e A in the fomm

tA t7A t A
e = E + tA + 5T --.'*'——K—!—"'--., (1.86.5)

where E is a unit matrix. Differentiating (1.6.5) with respect to t,
t

it is easily seen that e A satisfies equation (1.8.2). Put t =0

in (1.6.5) and evaluate its determinant. The determinant is 1.

Hence

d(t) = etA

is a fundamental matrix for (1.6.1) for a constant matrix A.
The case where A(t) is periocdic calls for a special mention as

well. Suppose that w is a period of A(t). That is

Alt+w) = A(t) for all t.
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The characteristic roots of C in (1.8.8) are called characteristic
multipliers while those of R are called characteristic exponents.
These roots play a significant rel¢ in determining the existence of
periodic solutions and stability of solutions of periodic systems-

1.7 Autonomous Systems

Autonomous systems, like linear systems, occupy a special place in
the theory of differential equations. Freguent occurrence of these
systems in applications hés led to extensive mathematical.investiga-
tions. As a result the theory of dynamical systems of which autonomous

systems are part and parcel developed. -

Solutions of autonomous systems are often studied in the X-space
called the phase space ratﬁerqthan the (t,§j~space as is often the
case with non-autonomous systems. This is because when a solution
of an autonomous system is unigue, its curve or orbit will never
intersect any orbit of another solution.

For suppose that ¢ and ¢ are two solutisns of (1.2.5) such that

¢(t11 = w[tz), where t1 # t2' Define

x (t] w(t+t2-t1).

Then

n
i

X(E) = plert,—t) = Flylert,-t, )

1]

Fly()),

implying that x(t) is also a solution of (1.2.5). But

X(t1] = w(tzl = ¢[t1J. Hence by unigueness yx(t) = ¢(t) for all t in
the maximal interval of existence of ¢. Since the orbits of Yp(t) and
x(t) are identically the same, it follows 'that the orbits of ¢ and ¥

coincide.



Three types of orbits occur in the phase space, namely a single po:
which corresponds to a constant or trivial solution a simple closed
curve corresponding to a nontrivial periodic solution, and a simple arc

which represents a nontrivial, nonperiodic solution.



CHAPTER 2

CRITICAL POINTS OF 2-DIMENSIONAL AUTONOMOUS SYSTEMS

2.1 Introduction

Critical points, sometimes called equilibrium points, stationary
or singular points, are quite significant in the study 6f systems of
differential equations. Cunningham {6, page B85] points out the
importance of these points. He states: "The singular points of a
differential equation are Fdndamental in determining properties of
its solutionS, Considerable insight into the qualitative aspects of
the solutions, and some guantitative information a% well, can be had
through the study of singularities.”

- »

2.2 Nondegenerate Critical Point

Critical points are those points x(e R") such that flx) = 0
in (1.2.5),

Consider the Jacobian matrix

of,
1 PR
-§°>—<— 1,J=1,...,ﬂ.
v J

Let P be a critical point of (1.2.5)., P is called a nondegenerate
critical point if

det J(P) # 0. (2.2.1)

Otherwise it is called a degenerate critical point. A nondegenerate
critical point is sometimes called an elementary or simple critical

point.



The consequence of (2

is isolated,

.2.1) is that a nondegenerate critical point

since if (2.2.1) holds and P is not isolated, then there

exists a sequence of critical podints Pn such that Pn > P as n > o«

et h. = P <P or P_ = P+h_ . Then we have
n n n n
BFi
f(P ) = f£(P) + h |=—= (P)| *+ o(h_), as h_ » 0,
n njox. n n
J
where
glr) = olr) as r >0
means
g(r] +> 0 as r~>20
Il
But f(Pn) = f(P) = C.
Hence )
oF,
h  |—=P)} = olh )..
n {ox, n
J
afi -1
Since (2.2.1) holds 5;—-[P] exists so that
J
hn = o(hn].

This is a contradiction.

It should be pointed
is isolated, the converse

by the following example::

lLet

out that though a nondegenerate critical point

is not always true. This is easily verified



Then (0,0) is the only critical point. Hence it is isolated. But

[1 0} [1 0}
det = = 2%,
0 2x, 0 2x, 2

and it vanishes at x = (0,0). Hence it is not simple.

2.3 Type of 2-dimensional Systems Considered

Consider now the system

Xeo

= P(x, ,X,J,
1772 (2.3.1)

Xe

5 = Q(x1,x21,

-

where P and @ are continuous and are locally Lipschitz. Without loss
of generality the critical point of system (2.3.1) may be taken to be
the origin. This is because jf (x?,xg] is, any critical point, a linear

transformation of coordinates (x1,x23 by

translates the critical point into the origin in [U1,U2)-spaoe.

Suppose further that system (2.3.1) is of the form

X, = ax,*bhx *+f, (x,,x.7,
.1 1 2 1 (2.3.2)
X5 ='cx1+dx2+f2(x1,x21,
2 22 .
where fi = olr)asr->0, r = x1+x2, i=1,2, . That is fi tends to

zero faster than the linear terms as r ~ 0. When fi =0, i=1,2,

system (2.3.2) takes the linear fomrm

ax,]+bx2

X
=
1]

(2.3.3)

) cx1+dx2.



For system (2.3.3) the origin is a simple critical point 1f
ad-bc # O.

The linear system (2.3.3) is quite important in determining the
nature of solutions of the system (2.3.2). When the origin is a simple
critical point, it is generally true to expect the behaviour of the
orbits of solutions of (2.3.2) near the origin to be very similar to
the behaviour of the orbits of (2.3.3) provided 4 and i) satisfy
certain minimum assumptions.

Let

A= [0 E]

\C
be the coefficient matrix in system (2.3.3). Suppose that X1 and AZ
are the characteristic roots of A. Let P be a nonsingular matrix.

-

The transformation » >
X = Py
reduces system (2.3.3) to the form
y = P Apy. (2.3.4)
P can be chosen such that -
B=p AP

has one of the following forms:-

A1 0
1. a Az qur# AZ’ both reall,
2. A0 () = X1 = Az, real),
c A
Ay
3. (A = A1 = AZ real, and 'y >0},
0 X

1 (kq,xz complex conjugate
0 a-1iBj



Since stability or instability of the origin plays an important
part in classifying critical points, it will therefore be mentioned
here.

The zero solution Y(t) = 0 of (2.3.3) is stable if for any € >0

there exists a § >0 such that all solutions ¢(t) for which

loce DIl <8, (2.3.5)
imply that

lld)[t”]” <e  (2.3.8)

holds for all t i_to. -

This means that the origin is stable if any solution whose initial

value lies in the spherical! region of radius § will remain in the
k3 *

spherical region of radius e¢.
If in addition

lim |¢(t)]| = o, (2.3.7)
t > o

then the origin is said to be asymptotically stable. However, should
(2.3.6) fail to hold, then the origin is unstable.

It is also convenient to consider the polar functions

2 2 3
r(t) =i(¢1[tJ + ¢2(t)) (2.3.8)
and
1 ¢2(t]
e[t] = tan m > [2.3.9]
where ¢(t) = (¢1(t),¢2[t]], when discussing critical points of 2-dimensior

systems. They help to trace the position and direction of the orbits.



One other technigue employed in the analysis of orbits of solutions

of 2-dimensional system (2.3.2) is toc rewrite (2.3.2) in the form

(or —) (2.3.10)
X

where X, # 0 (or X5 = 0}.

2.4 Classification of Critical Points of the Linear System (2.3.3)

Case 1: A1 and A2 are real and distinct.

(a) A1<O,A2<O.

Equation (2.3.4) becomes

Y1 = AqVqs
Vo = AyVy,e :

The sclution through (y?,ygl [# (0,0)) at t = 0 is

th

y1(t] = y?e ,
0 >‘Zt
yz[t] = v,e . =

Since Xi <0, i=1,2,
lim y. (£) = 0, i=1,2..
i
t > o

If y? = 0 and ys # 0, then [U,yz(t)] is the solution. Similarly

[yq(t),DJ is the solution throughty?,ﬂ]. Using (2.3.10) we have

>

k 2
y2_y1.‘ K_j\-,]—'

The orbits near the origin are as shown in Figure 1(al.



R

Figure 1(a)

When returning to the original coordinates (x1,x21, the figures
are skewed but retain the qualitative features. For example, a straight
line in (yq,yz) coordinates will be a straight= 1line in (x1,x2]

coordinates. For if Yy = my1+c and

then the eguivalent equation in (xq,le coordinates is

X = Y+8&m . 08-By

2 a+B8m X1 o+ Rm ©

which is an equation of a straight line. Alsc a closed curve in a
[yq,yZ)—plane will be a closed curve in a (xq,le—plane.

Thus, Figure 1(a) above is eguivalent to Figure 1(al).1 below.

-
2
N,

Figure 1(al).1



Every orbit in Figure 1(a) (and hence Figure 1(a).1) has the same
limiting direction at the origin except the orbit along the Yo axis.

The origin is called an ordinary stable node.

(b) )‘1 >0, )\2>O

Here

lim y.(t) = o i=1,2,...
1
t > o

The orbits are as shown .in Figures 1(b) and 1(b).1.

Y, Yo

Figure 1(b) . Figure 1(b).1

The origin is called an unstable ordinary node.

() A, <0 <A,

At
_ o™
y1(t] = y,e
At
y2(tJ = yge 2

Iim yq[tJ = * o according to whether y? >0 or y? <0. However,
t »> o

lim yz[tJ = 0. In general, the orbits resemble hyperbolas as shown
t>
in Figures 1(c) and 1(c).1.



Vo

Xa

Figure 1(c)

N

Figure 1(c).1

The origin is called a saddle point or a col. It is unstable.

Case 2: A = X1 = Xz,'y= 0

(a) A <0

System (2.3.4) becomes

vy - Ay; %
V, = AV,
giving
y1[t] = yoext, y, () ivyDQXt-

1 2

lim +vy(t) = 0 and using (2.3.10]

t > o
y2=y/|'

Hence the orbits are straight lines

v
F S
4

Figuee R(Q)

«

terminating at the origin. The origin is called a singular node.

stable.

%\

It is



(b) A >0

As in 2(a), the orbits are aetraight lines but this time originatin

from the origin. The critical point is known as an unstable singular

node.

Case 3: A = A1 = Az, Yy >0

System (2.3.4) is of the fomrm

Yo = AYy-
So -
yz[t] = ygext,
and hence 91 : Ay1 = Yy;ekt,
giving ) yq(t] = (y$+yygt]eXt.

If A < 0, then both yq(t] and yz[t] tend to zero as t + ». Also

0 a] At o At
dy1 _ (y1+Yy2tJe +sze
dy2 Ayoekt

2
yo
. Y
_—O +Yt+7\‘
Yo
yO
- Ly s D,
0 A
y2 ‘
dyﬂ
Hence 1im ET" = + oo,
t> 2o V2



If yg > 0, both yq[t] and y2(t] are positive for t positive and larg

enough.
If ys = 0, yz(tJ = 0, yqtt] is either positive if y$> 0 or negative
if y? < 0. In the case of A > 0, y1(tJ and yz[t] tend to infinity as

t » o, Hence the orbits are as shown in Figures 3.1 and 3.Z2.

3, %
Y fA— A
// R 3
A

Figure 3.1 - . Figure 3.2

The origin is called a stable degenerate node when A < 0 and an

unstable degenerate node when X > O.

Case 4: X, = o+iB, A, = o-iB8, B # O

1 2

(al o <O

The real canonical form of

[ouiB‘*’ 0
0 a-iB

o B
is -8 o

oy, * By,

Hence 2
(2.3.11)

vy = ~Byy * ay,-



Using polar coordinates
y, = T cos 0, y, =T sin 6,

then (2.3.41) becomes

r = qQr
6= -8
Hence
r(t) = r eOct
o)
B(t) = w(t) = -Bt.
lim r(t) = 0
t > o

Iim w(t) oo if_ B < 0 or B > 0.
t »> o

" :

The orbits are as shown in Figures 4.1 and 4.2.

Y
'\\

N

WAaN

e
N

N

B<O
Figure 4.1 : Figure 4.2

The origin is called a focus. It is stable.

g>0



(b} o >0
The arguments are as those in (a). However, since r(t) tends to
infinity as t > «, it is called an unstable focus and it spirals

gutwardly.

(c)a=20

In this case the system is
Vi T BY
y2 = _Byz'

Using (2.3.10), then

2 2
y1 + y2 = C.
Hence the orbits are circles s
Na

¥

-/

and the origin is known as a centre. It is stable but not asymptotical

stable.

The above discussion shows that if the real parts of the character
istic roots are all negative or zero then the origin is stable. Other-

wise it is unstable.



2.5 Critical Points in Nonlinear System (2.3.2)

The problem which arises when considering system (2.3.2) is to be
able to predict the extent to which the behaviour of the orbits near
the critical point of (2.3.2) can be determined by the linearized
system (2.3.3). There are a few examples, given below, which show
that the behaviour of orbits near a critical point of a linearized
system can be different from that of orbits of the corresponding
nonlinear system.

Despite some difficulties which may be encountered when relating
system (2.3.2]) to (2.3.3), one property is always carried over from
the linearized system to the nonlinear [2.3.23. This is that if the
origin is an asymptotically stable critical point for the linearized
system (2.3.3) then it is one for system (2.3.2). This arises in cases
where both characteristic r@ots have negdtive real parts.

Consider first the case where all characteristic roots are real

and distinct. The canonical form of (2.3.2) is then

Ve = MYyt gy ygsys)

(2.5.1)
Vo = AV * gy lyysy,)

where g. = olr) as r (=/y2+y2) > 0.
i Y17Y3

Changing to polar coordinates (2.5.1) becomes

TCOE VY, VLY,

X1y§ * kzyé + r cos § g1[r cos B, r sin 8)
+ rsin § g2[r cos 6, r sin 9)
i_urz + rR(r,9),

where o= - min(|A |A2|].

it



Hence

r<ur+ olr), (< 0. (2.5.2)

The case where X, = X, (=u) and vy = 0 also gives (2.5.2). When vy # 0O,

let v = u, then system (2.3.2) becomes

<
N
i

My oy, 810y 5Y5)
Vo = Wy * gy lvyayy),

so that in the polar coordinates it becomes

rr = yqilfl * y2§/2

2
HY4 + U}//lyz + y1g1 (y/] :Vz)
2

u32+ prZCDs 6 sin 6 + rR(r,8)

or

r § % r + ol(r),

which is of the form (2.5.2). Finally, when A1 = q *+ iB, AZ = o-1iR,
B # 0 and o < 0, the system in polar coordinates is also of the form
(2.5.2).

Hence if r is small enough, say O <r<r, then all the cases

considered give

rit) < r(oeHt (2.5.3)

So if r(@) < r,, r(t) <r,, for all t > 0. From (2.5.3) it follows

1 1’
that r(t) tends to the origin as t tends to infinity. In other words
all orbits approach::the origin as t increases. Similarly, if the real

parts are all positive it can be shown that the origin is unstable for

system (2.3.2).



Before we can carry on further analysis, the critical points of
system (2.3.2) will be precisely defined.

The origin is called an attractor if there exists a § > 0 such
that for any orbit of a solution of (2.3.2) which has at least one
point in 0 <r<§, the solution exists over a t half line and the
orbit tends to the origin as t > « or as t—-» - »,

&hus 1f f, = f2 = 0 in (2.3.2) then nodes and spirals are attracto:
whereas saddles and centres are not.

The origin is called a node for system (2.3.2) if it is an attract
and orbits arrive at the origin in a definite direction. This
definition embraces ordinary and degenerate nades. If orbits arrive
in a definite direction at the origin and every straight line through
the origin is tangent to.some orpit, then the origin is called a
singular node. ) :

The origin is called a focus if it is an attractor such that
|8(t)] » +~ as t » © (or - ), where 6(t) is as defined in (2.3.9). I

there exists a neighbourhood U of the origin such that all orbits in U

are closed, then the origin is called a centre.

If there exists exactly one solution tending to the origin as
t » o and this solution lies on a curve y, = w(y1] where w(y1] has a
continucus first derivative and i[o] = 0, then the origin is called a
col or a saddle point. The roles of Yq and y, are interchanged for

t > -,



Theorem 2.5.1

If the origin is a focus for the linearized system (2.3.3), then

it is a focus for the nonlinear system (2.3.2).

Proof

It has already been shown that the origin is an attractor for
(2.3.2). The equations (taken to be in canonical form) for (2.3.2)
are

Vg = oyg Byt gy lygayp) 0.5 a)

y2 = - By1 + 0‘:}/2 * 82(y1:y2)-
The eguation for 6 in polar coordinates is giwen by
Zé _ . _ .
= BlyZey?y ( ) - ( )
- y/[ y2 yz]%z y/, Jy2 yzg»] y/] :yz

2 2
= -Br + ol(r7), as r ~» 0,

De
[

or -B + o(1), as r-= 0.

But r >0 as t >« {for a < 0). Hence as t -

De

= -B + 0(11.



Therefore for any solution (y1(t],y2(t]] sufficiently near the origin
6(t) = -Bt + o(t).

It follows that

|8(t)] > as t > £
This completes the proof.

Though attractors of (2.3.3) go into attractors of (2.3.2) it is
not generally true that a node or a céntre for (2.3.3).goes into a node
or a centre respectively of (2.3.2). The following two examples

illustrate the situation. -

Example 1 -

Consider the system

. XZ

Xg o= X T . [x2+x2];7 (2.5.5)
%8g 7172

» X1

Xo = =X 2 2.1 "

2 2 loge(x1+x2]

The linear system is
T TN
X, = X2, (2.5.8)

and the origin is a singular node. for (2.5.6). The polar equations

corresponding to (2.5.5) are

Ld
-

I

loger

giving



r(t) = ce_t and hence

8 (t]

n

~loge(t—logec] + Kk

where c,k are constants.

So B(t) » - ag t » o .

Hence the origin is a focus.

Example 2

" - _ _ 2 2
X, X0 x1/k1+x2
(2.5.7)
Y B 2.2
Xy = X, xz/k1+x2 .
-
The linear system is
><'] = _>§2 *
. (2.5.8)
27X
The origin is a centre for (2.5.8).
Changing (2.5.7) to polar coordinates we get
IT = X, X, * X%,
. 2.2 2.1 2.2 2.1
= X%, x,|(x1+x23 * XX x2(x,‘+x2]
(22372
= -lxy+x,
3
= -r ,
or
2



and

NI=

- 2 X ( 2, 2)% T X ( 2
= g m XX, e Xy * X X4

+x2]
172 2

De
1]
-

Hence

The solution through (ro,eol at t = 0, (ro # 0), is given by

rit) = (¢ + -7
T -
8]
B(t) =t + 0 .
o
Therefore as t » « = *
r(t) -0
and
B(t) » oo,

Hence the origin is a focus for (3.5.7).

Theorem 2.5.2

If the origin is a centre for (2.3.3), then it is either a centre

or a focus for (2.3.2].

Proof

The system in canonical form is

V4 = By, * g (y,,y,)
. 1o (2.5.8)
Vo = “Byq * g, (yysy, ).



In polar coordinates (2.5.8) reduces to

r =

é cas H
Qr

r = olr)

6 = -B+o(1)

= - + ——?T~g2[r cos §,r sin 8} - Eigfggq(r cos §,r sin 8)

47.

cos 6g1(r cos O,r sin @) + siruegzir cos §,r sin 6)

(2.5.9)

(2:5-10)

as r ~ 0. It follows therefore that for sufficiently small r, 6(t) is

either positive for 8 < 0 or negative for g > O, s0 that 8(t) » t o as

t > oo,

Theorem 2.5.3

Ei £, and fz are such that

1

£,] = otr' "€

(1=1,2) as r»> 0O

(2.5.114)

where € > 0, then if the origin is a singular node for (2.3.3), it is

a singular node for (2.3.2).

Proof
The system in canonical form is

Ve = g * gy lygsy,)

Vo = Ay gy ly,sy,).

In polar coordinates (2.5.12) is

93
1]

AL * Ccos egq(r cos B,r sin 9)

+ sin egzir cos §,r sin 6)

cos 6

De
!

2[r cos B,r sin 6)

_sin ©

(2.5.12)

g1(r cos B,rsin B

(2.5.13)



from which

i [cos egz(r cos 0,r sin 6)-sin 6g1(r cos O,r sin 6)]

% T
dr T Ar *+ cos 6g1[r cos B,r sin 6)+sin 6g2(r cos §,rsin 8)
(2.5.14)
let the right hand side of (2.5.14) be F(r,8].
By (2.5.11)
|F(r,8)] < 2C r1+€ , C>0 as r ~ 0.
Thus r : ' r
0 " .
|J F(r,8(r))dr < 2c J r dr<eo , (2.5.18)
0 0

for r small enough. It follows therefore that 6 = 6(r) = 6(r(t)) tends

to a finite angle as r -~ 0, as required.

-

Theorem 2.5.4

If the origin is an ordinary node for (2.3.3) then every orbit of

(2.3.2) near the origin has a limiting direction which makes an angle of

0, /2, w or 3n/2. s

Proof

The system in canonical form is given by

Vg = Aqyq gy (yysy,)

. (2.5.17)
Vo = Ag¥p * g5 lyguy,d.

In polar coordinates (2.5.17) reduces to
r = rfxqcosze + Azsinze] + olr)
. (2.5.18)
4] [kz-kqlcos Bsin® + al1).



Consider the following regions for € > 0 (0<e<m/4):

In the canonical coordinates [yq,yzl, the regions are as shown in

Figure 2.5.2.

Ry : |6 <e
R, :|6—1V2[i€

Ry : |6 - 7] <e

3

Ry le - 3n/2| <e

{

vl

o)
-

Figure 2.5.1 5

4

-

Figure 2.5.2
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Now, from (2.5.17)
§ = 12,2y )sin 2 8 + o(1). (2.5.18)

Let A2 <A1‘<O. The other cases can be treated similarly. 0On the
line 8 = ¢, sin 2¢ > 0. By (2.5.18) 6 < 0 for sufficiently small r.
Alsc, on the line 6 = -g, é > 0. Hence if r is sufficiently small
then any orbit getting in R1 stays in Rq. A similar argument holds

for RB' On the other hand, on line 6 = € + /2,
sin 2(n/2 + €) = -sin Ze,

Similarly -

sin 2(n/2 -g) = + sin 2e.

It follows that any orbit Jhicp is outside Ry cannot get into Ry since
the direction of any orbit on the boundary of Ro is towards the
exterior of RZ' This is also true for region R4. Now, select § > O
small enough such that orbits starting in O <rri6 behave as outlined
above. 3

We show that if an orbit C starts inside 0 <r<§ it approacheé
the origin at an angle of 0, /2, m or 37/2. Suppose that this is not
true. Then C does not lie in any of the four regions R1,R2,R3 or R4
for some €_- But if C is in the region e < 6 < /2 - e,r it

eventually enters Rq, since for 6 = o

. ~ .
2(A2 A1151n 250 < 0

implying that é < 0. Hence C enters R1 for every €. It follows
therefore that C approaches the origin at an angle of w. A similar

procedure holds if C is in any region other than R1’R2’R3 or R4, thus

completing the proof.
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of
It can be shown (see for example [3; page 384]) that if——;L and

ox
3F 1
«~—— exist and are continuous in O_irﬂié, then there exists exactly

BX,I
one orbit tending to the origin in the directions ©w/2 and 37m/2.
In the case of a saddle point for (2.3.3) the following theorem

describes the geometry of the orbits of (2.3.2) near the origin.

Theorem 2.5.5

There exists at least one orbit tending to the origin at each of
of of

the angles 0 and w. If in addition =— and +=— exist and are
3x2 ax?
continuous in 0 <r<§, then thére exists exactly one orbit tending

to the origin at each of the angles 0 and m. Any orbit starting
sufficiently near either of these orbits in the neighbourhood of the
origin tends away from them as t + oo,

- »*

The proof can be found, for example, in [3, page 387].



CHAPTER 3

STABILITY

3.1 Definitions

In Chapter 2 the concept of stability was mentiocned. Though
stability was introduced when discussing critical points, nontrivial
solutions can equally be said to be stable or unstable. As in the
case of critical points, a change of coordinates may be applied to
the system such that the discussion is based on the zero solution.

Consider for instance a system of differential equations
v = glt,y), | (3.1.1)

such that g is continuous and satisfies a Lipschitz condition.
Suppose that é[t] is a nonzero solution of (3.1.1) under discussion.

By setting

x
n

y - ¢(t)

or

x + ¢(t],

<
I

system (3.1.1) is transformed into

%< gt xeo(t)) - glt,60t). (3.1.2)
Denote by f(t,x) the right-hand side of (3.1.2). Then

x.= £(t,x), £(t,0) = 0, (3.1.3)

and the zerc solution x(t) = 0 of (3.1.3) corresponds to the nonzero
solution ¢(t). In this regard, when discussing a zero solution, we

shall have in mind system (3.1.3).
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While the above descriptions of stability may apply to solutions
of nonautonomous and some solutions of autonomous systems such as
critical points and nonperiodic solutions, complicaticns do arise
when periodic solutions of autonomous systems are discussed. For
example, if ¢(t) is a nontrivial periodic solution of (1.2.5) it
cannot be asymptotically stable. For suppose ¢(t) is asymptotically
stable. Since ¢(t+yu) is also a solution of (1.2.5), given any € > O,

there exists & > 0 such that

D<r<fote ) - ot | <8 (3.1.4)
and -
1im ||¢(t)-¢lt+p)] = O. (3.1.5)
t‘—> o0

let T be a period of ¢(t). Put t = tO +nT. Then t » o as n > o,

but

0 <r<[olt_+nTI-¢(t _+nT+i.

3

It is in this respect that certain concepts of stability have
been formulated specifically to describe periodic solutions. Two
such concepts are orbital and phase asymptotic stability.

In the definition of orbital stability, the distance from an
orbit is significant. 18t C be a closed orbit. The distance

between a podnt x and C, denoted by d(x,C], is

d(x,C) = infimum{d(x,y),y € C}. (3.1.4)

)
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C is said to be orbitally stable if any solution whose orbit
at some point comes close to C stays within the region near C.
That is, given € > 0, there exists a § > 0 such that for any
solution yY(t) which at some point t,

d[w(tO],C) <8
implies that
d(y(t),C) < ¢
for all t > to. If in addition
lim dy(t),C) = Q,
t -> ©o
then C is said to be asymptotically orbitally stable.

Orbital stability is not very close to the definitions of
stability introduced earlier on. The following definition is much
closer.

Let ¢(t) be a solution of an autonomous system (1.2.5). ¢(t)
is said to be uniformly stable if, given € > 0, there exists §
depending only on €, such that if Y(t) is a seclution of (1.2.5) which

at some t,I and t2 satisfies

loce, 1-we)] < 6,
then

ottt I-plest )] < e

for all t.i 0. If in addition there exists a constant T such that



lim [|¢lt+TI-p(t)] = O,

t > o

then ¢ is said to be phase asymptotically stable. T 1s called an

asymptotic phase.

3.2 Liapunov Functions

The stability of the zero sclution can be established through
the use of Liapunov functions. The systems to be discussed are

(3.1.3) and
x = f(x), f(0) = O. (3.2.1)

where f is defined and satisfies a Lipschitz Tondition locally.
Let V(x) be a real-valued function from R" into R and

suppose that V(x} satisfies the following twoc conditions:

- *

(i) V(x) has continuous first order partial derivatives
with respect to Xy i=1,...,n in an open region  about
the origin;

(ii) v(0) = 0©.

The function V is said to be positive semi-definite on { if

for all x g Q

V(x):> 0. (3.2.2)
If

Vix) > 0, (3.2.3)

then V is said to be positive definite on . Negative semi-definite

and negative definite are when (3.2.2) and (3.2.3) are reversed.



V is called a Liapunov function if it satisfies a definiteness
condition and the function
Vi) = 72 (3.2.4)
i=1 1
satisfies a definiteness condition of the opposite sign, where
x = ¢(t) is a solution of (3.2.1).
In the case of a nonautonomous system (3.1.3) the definition
of a Liapunov function has to be slightly modified. Let W(x)
satisfy conditions (i) and (ii) and a definiteness condition,
Let V(t,x) satisfy the following conditions:
(iidi) V(t,x) is defined in  for all t > Oy

(iv]) V(t,x) has continucus first order partial derivatives

aV .93V . N
~8-7t—, 5; s 1=’I,...,n;
i

(v) V(t,0) = 0 for all t > 0
(vi) W{x) < V(t,x) [or W(x) < -V(t,x) if W satisfies a
negative definiteness condition].

Then V(t,x) is a Liapunov function if

Vit,x) = ¥

. 3V
3t

2Lox. (3.2.5)
X. i
1

it ™~13

i=1

satisfies a definiteness condition of the opposite sign to V(t,x).
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Theorem 3.2.1

If V(x) is positive definite and Vix) < 0 in some neighbourhood

2 of the origin, then the zero solution is stable. If in addition

-V(x) > 0 for all x € Q, x # 0, then the zero solution is asymptot-

ically stable.

The theorem holds if V(x]) is replaced by V(t,x) for a non-

autonomous system.

Proof

Given € > 0, define

i

H (0D = {x : ||| = e} € Q"

and

-

x:|x] <elc .

Se(O)

Hg(O] is a compact set. Since V(x) is continuous and positive
definite on HE(DJ there exists a positive number K such that
Vix) > K on HE[D). Since V(x) is continuous at x = O and
V(0) = 0, there exists § > 0 such that 0<§ < ¢ and V(x) < K for
X € SS(O].

let ¢(t]) be a solution which at t = to’ ¢(tD] = X and
X, € 86(01. Since V(¢(t)) < 0 for t > t,, we must have Vip(t))

nonincreasing for t > t_. That is V(¢(t)) < VI{¢(t )) < K. This

implies that ¢(t) € S (0) for all t > t .
§ ~ o
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Now if -V(x) > 0, then V(x) is decreasing along the orbit
of x = ¢(t) and tends to the origin. For if not, then -V(x) has a
zero not identical with the origin, to which —V(x] tends. But
this cannot happen since -V(x) is positive definite in @ and for

x # 0. Hence ¢(t) tends to the origin as t = o,

Theorem 3.2.2

s

Llet V(x), with V(0) 0, have first order partial derivatives

in ©. Suppose that Vix) is positive definite and V(x) assumes

positive values arbitrarily near the origin. Then the origin is

unstable.

Proof

Take € > 0. Choose™$ < € and defingﬁSS[D] and Hg(DJ as in the
proof of Theorem 3.2.1. Let X, € SSED] and consider a solution ¢(t)
which at t = tO has the value X The point X, can be chosen such
that V(xOJ > 0. Since V(x) is positive definite V(x) increases
along the orbit of ¢(t). Hence such an orpit cannot tend to the
origin. Also v > K > 0 in © and therefore V(x) cannot approach a

fixed value in Sg(D]. The orbit of ¢(t) therefore leaves SS(OJ.

Theocrem 3.2.3

Under the same assumptions for V(x) as_in Theorem 3.2.2 with

Vix) = AV(x) + V*(x)

where V*(x]) is non-negative in @ and X > 0, the zero solution is

unstable.




Proof

As in the proof of Thecrem 3.2.2, let Xq € Sd[D] be an

value of ¢(t) at t = 0 such that V(xO] > 0. Now

SEVIOIEI) = AV(B(E)) + V*(9(t))
or

E% e Myl = e tur o).

So

e‘AtV(¢(t)J

t -t %
Vix ) + [ e "SVoe))ar.
0 JO -
Since V*($(t)) > 0 in &,
e Mupm)) > Vix ) >0

or

VI9(t)) 3_V[xO]eAt > 0.

Ea

initial

Hence for all t, V is increasing on the orbit of ¢. Therefore

®(t) cannot stay in any neighbourhood S¢ (0] contained in Q2.

3.3 Stability of a System

It is of interest tg examine whether a system of differential

equations which is known to have stable systems will retain stability

under perturbations.

Condider the system

% = flt,x). (1.2.4)

The perturbed system is of the form
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% = Flt,x) + glt,x). (3.3.1)

One approach used is to place conditions on f and find out what
perturbations g(t,x) will preserve stability. For example,

suppose that (1.2.4) is the homogeneous equation
. n
X = AX, (x e R (1.6.1)

where A is a real nxn constant matrix with all its characteristic

roots having negative real parts. The following theorem holds.

Theorem 3.3.1

If A satisfies the conditions above and if g(t,x) is

continuous and

-

leggol o0 s gl > s,

then the zero solution of

x = Ax + glt,x) (3.3.2)

is asymptotically stable.

Proof

Recall that etA is a fundamental matrix for (1.6.1). Let ¢(t)
be a solution of (3.3.2) which exists for all t with ¢ (0) sufficiently

small. Now

t
o(t) = ePgr0) + J e 78R (o 6 (s))ds.

0

Since A has all its characteristic roots with negative real parts,



there exist positive numbers K and o such that

tA ot
le™" -

| f_Ke_
Then
-ot t -(t-s)o
lot)] < ke ot f e lgts, o(s1)]ds.

0

Since

leftodl o0 as gy -,

for any € > 0, there exists § > 0 such that
€

lett, )l < & Ix]
whenever

Il < -
Therefore, so long as ¢(t) remains small enocugh so that

loces] <6, ¢
then

ot b (t-s)o
[oCed]| < Ke " 7o) + ¢ j e 6] ds
0

or

7oty

[A.

t

o + j &%) ¢ ()] ds.
0

By Lemma 1.5.2

t
"oty < Kooyt

| A



or

loced]] < klocoie €O,

Since € can be chosen such that € < o, then provided
locodll <

we have
locts] <6  for a1l t > 0,

and
lim [ ()] = o. .

t >

The proof is now complete.

-

- -

On the other hand, if not all the real parts of the character-
istic roots are negative, the zero solution is not stable (cf. [3;
page 317]). However, if some characteristic roots have negative
real parts, some solutions of (3.3.2) will tend to zero as t - oo
In fact, if A has K characteristic roots, with negative Iealiparts,
there exists in the x-space, a real K-dimensional manifold S
containing the origin such that any solution ¢(t) of (3.3.2) with
¢(tOJ on S for some large tO will tend to the origin as t - o,

On the other hand, if $(to) is not on S though ¢[tOJ may be near
the origin ¢(t) will not tend to the origin as t - ». Details may
be seen for example in [3; page 330].

The results above apply well to the case where the constant
matrix A is replaced by a real periodic matrix A(t) of period w.
The characteristic exponents replace the characteristic roots of A.

In particular the following theorem holds.



Theorem 3.3.2

If A in (1.6.1) is replaced by a real periodic matrix A(t) of

period w and (1.6.1]) has all its characteristic exponents with

negative real parts then the zero solution of (3.3.2) is asymptoticall

stable.

Proof

A fundamental matrix of (1.6.1), @, is now given by
o(t) = PltIe "

where P(t) is a periodic nonsingular matrix of period w and R is
a constant matrix with all its characteristft roots having negative

real parts. If we let
x = P(tly, >

then

X = P(t)y + P(t)y
= (de PRseFRyy + P(EIY
= [A(t]@e_tR—Qe_tRRJy + P(t)y

= A(tIP(t) - P(tIR)y + P(t)y

so that (3.3.2) becomes

y = Ry + P“1[t1g(t,P(tJyl, (3.3.3)

and Theorem 3.3.1 applies now to (3.3.3).

The other approach used when studying the perturbed systems
is to identify systems which will preserve stability under specific
perturbations. Chow and Yorke [2] have shown that under interval

bounded perturbations, system (3.1.3) will preserve stability.



CHAPTER 4

PERIODIC SOLUTIONS

4.1 Introduction

A physical system may be described by a system of differential
equations. The problem which may arise therefore is to find out
whether there exists a solution of the differential equations
which will show some oscillatory behaviour of the physical system
represented by the syétem of differential equations. 'This leads
to the search of periodic solutions. Naturally, asymptbtically
stable solutions would be the most suitable fo seek because they
show that when a physical system works under slightly varied condi-
tions it will eventually regain its 'noypal' behaviour.

This chapter looks at some of the literature on the existence

of periodic solutions.

4.2 2-dimensional Autonomous Systems

Consider the system

x, = f (x,,x-)
1 e
T (4.2.1)

X2

It

F2[x1,x23,

where f1 and fz are continucus and satisfy a Lipschitz condition in
2 : o] 0 0O, .

Some open subset D of IR”. Recall that x° = (x1,x2] 1s called a

eritical point of f = (£,,£,) if £(x°) = 0. A point at which

f{x) #/0 is called a regular point.



Suppose ¢(t) is a solution of an n-dimensional autonomous systen
Dencte by y(¢) its orbit. Taking IR as its interval of existence,
y+(¢J will represent a semiorbit for O < t < » and y_[¢J another
semiorbit for -o < t < 0. Let Q(¢) be the set of limit points of ¢(t
as t > . The set of limit points of ¢(t) as t = ~» can pe represent
by Al$). Some of the properties of Q(¢) (or Al¢)) are summarized by

the following two theorems. let D R,

Theorem 4.2.1

Ef.y+[¢] is contained in a closed and bounded subset K of D,

then Q(¢) is nonempty, closed and connected.

Proof

+ -
Since v (¢) is contairted in @ closed and bounded subset K, the

sequence of points defined by
Pn = ¢(t+n), n=1,2,...

is bounded and has a convergent subsequenée in K. The limit of such
@ convergent subsequence is in K since K is closed. Hence Qd) is
nonempty.

Llet o be a limit point of Q(¢). We show that a is in Q(¢J.
There exists a sequence af points o in Q(¢) such that o > o.
That is, d[an,aJ >0 asn > w, S;nce %, are in Q(¢) there exists

a sequence of points tn such that ¢[tn ] > &, @ m > o, That ig
m m

d[¢[tn J,an] >0 asm~ oo, Hence for each N, as m -+ o,
m

1
Aot Va0 < L1,

m



Therefore

d[q)(tnm],a] id((b(tnm],o(,n] + d(un,o(,)

1
< = + d[un,u).

So, as n -+ o, ¢[tn ] > a. Hence g ¢ Qlel.
m

Finally, suppose that Q(¢) is not connected. Then there exist

two closed nonempty sets A and B in Rr" such that

AUB

i

Q)
and

ANB = §g.

- »

Since Q(¢) is bounded, A and B are bounded, and consequently A and B

are a positive distance apart. Let

d(A,B) = inf{d(x,y) : x ¢ A, vy ¢ B} = §,

where § > 0. Since the points in Q(¢) are limit points, there exists

a sequence of points tn -+ & as n -+ o such that

dip(t ),A) < S for n odd

T
and

d[¢(tn],B] < 0 for n even.

5
Now ¢(t) is continuous in t; so if we define

g(t) = d¢(t),A)



and

h(t) = d(g¢(t),B)

we have that g(t) and h(t) are continuous functions. For large t

g[th_1J—h(t2m_1) <0
since

g(th_qJ—h(th_1J = d(¢(t2m_1],A]

- dlglt, _,3,B)
< 2 d(d(t, 1,81,

and - . .

dlgle, 0,8 > <.

A similar argument shows that
g(tzml—h(th] > 0. ’

Hence there exists a sequence of points t% such that t; e (t

and
g(télﬁ~ h[té) = 0. (4.2.2)

¥ ’
Since ¢(tm] is bounded in K, (¢[th] has a convergent subsequence,

say ¢(t%) ~E. By (4.2.2)

d(&g,A) = d(&,B). (4.2.3)

Since & € 091, £ e a UB. Now, ANB = ?, so & } ANB. IfEce A,

then

2m—1’t2

)



d(&,A)

]
(an}

and

i

d(g,B) S,

contradicting (4.2.3). Similarly, if £ € B, (4.2.3) is contradicted.

Hence (¢} is connected. This completes the proof.

Before we start the other theorem, we define the concept of

invariance. A subset‘E of 0O is said to be invariant 1f for each

point x” € E, ¢(t,t_,x%) € E for all t.

Theorem 4.2.2

;f'y+(¢) is contajned in a closed and bounded subset K of D,

- Ed

then Q(¢) is invariant.

Proof
et x° ¢ Q¢). If x° is a critical point then the theorem

holds trivially. Suppose x® is not a critical point. Let y(t) be

a soclution through xO at t = tD. Since xO € Q(¢], there exists a

sequence of points t with t -+ e asn - e« such that ¢(tn] > x° = Yt

Let t1 be in the domain of Y. We show that there exists a seguence

of points on Y+[¢] whiqb converge to w(t1). Let T = t1_to' By

Theorem 1.5.1, provided x° and w(t1] are sufficiently close

i

lim ¢(tn+T]

n - o

Yt *)

i

w[tql.

as required.



We now return to system (4.2.1). The aim in this section is to
prove the Poincaré-Bendixson theorem which is one of the main theorems
in 2-dimensional systems.

A concept which plays a prominent role is that of a transversal.
A transversal with respect to f is a finite closed straight line

segment L with the following defining properties:-

{a) every point of L is a regular point of f;

{b) the vector field f is never tangent to L.

The following are other properties which can be proved (see

for example [3; pages392-3]):-

(1) Every regulaf point of f can be made an interior point
of some transversal.

(2) All orbits which meet a transversal’ cross it in the same
direction as t increases. |

(3) Given any interior point P of a transversal L and any
€ > 0, there exists a circle Cg centred at P such that
any orbit which passes through C€ at t = 0 crosses L for
some t, where H|<e.

(4) A finite closed arc B of an orbgt meeting a transversal L
does so in a finite number of points whose order on B is

the same as the order on L.

{5) A transversal meets a periodic orbit once.

Lemma 4.2.3

If all the points in Q(¢) are regular and the semi—orbits¥+[¢]

and Q(¢) have a point in common, then y(¢) is a periocdic orbit.

Proof
Let £y ($) M Q4. Let £ = ¢lt,). £ is regular and there-

fore can be made an interior point of a transversal L. Since



£eQ(¢), there exists a circle CE centred at £ such that for some
tn’ n = ¢[tn] e L and It1_tnl < €. OSuppose that n # £. The arc éﬁ
meets L in a finite number of points. Furthermore successful
intersections of the orbit of ¢ and L form a monotonic seguence
tending away from n. Hence n § Q(¢). This implies that the orbit
does nat meet L in any other point except at £. Therefore the

orbit is periodic.

Remark: The proof of Lemma 4.2.3 also shows that a’transversal

meets the limit set once only.

Lemma 4.2.4

If a limit set ¥ ¢) contains a periodic orbit y(P), then it is

- k3

identical with it.

Proof

Suppose that y(y) is properly contained in Q0. Let QUdI-y(y)
be the complement of y(y). Since Q(¢)tis connected, +y(y) must conts
a limit point of Q(¢)-y(y), say P. P is a regular point and hence
let L be a transversal through P. There exist a circle Cs around P
and a regular point Q in Q(¢)-y(Y) such that @ ¢ C. and Q € L.
An orbit through @ exigts and it is unigue. Furthermore this orbit
is entirely contained in Q(¢J). P and @ are distinct and Q(¢)

meets L at these two points. This contradicts the remark following

lemma 4.2.3.

Hence Q(¢) = y(y).



Theorem 4.2.5 {(Poincaré-Bendixson)

Let y+[¢] be a semi orbit contained in a closed and bounded

subset K of D. If Q(¢) contains regular points only, then either

Y{¢) is a periodic orbit in which case it is identical with

Qdl, or Q(d) 1s itself a periodic orbit. (In the case where

¢} is the periodic orbit, it is called a limit cycle.)

Proof

If the orbit of ¢ is periodic then there is nothing to prove.
Suppose therefore that Y+[¢] is not periodic. Since Q(¢) has
regular points only, there is an orbit vy (y) contained in Q(¢J.
let P be a limit point of y(y). Then P is in Q(¢). Let L be a
transversal through P. Then L meets Q(¢) at P only. Since P is a
limit point of YY), L meets*y () at P otherwise it would meet
$0(¢) twice. Hence P is a common point of y () and Q(¢). So
y({y) is periodic. But y(y) € Q(¢). Hence y() = Q(¢), as
required.

When Q(¢) contains a finite number of¢critica1 points, a third
possibility may arise. That is Q(¢) will contain orbits each of
these tending to one critical point.

There are a variety of ways of showing that a given region
has no closed orbits or limit cycles. One of them is known as the
Bendixson Criterion. It states that there are no closed orbits in a

simply connected region on which

(# 0) (4.2.4)

is of one sign. This is due to the fact that if C is a closed orbit

in a simply connected region R, by Green’s theorem



JJ P + % dqux = § F1dx1 - f2dx2
1 2
C
0

which is not compatible with the fact that the integrand on the

left hand side is nonzero and of one sign.

When f, and f, are everywhere differentiable and (4.2.1)

1

can be transformmed into a polar coordinates system of equations

r = R(r,8)
{(4.2.5)
6 = 6(r,o)
where -

(a) R(0.8) =0 for all @

(b) 6(r,8) > 0 for all § and r # O,
3 R

(c) TS [éJ # 0 (r # 0)

then Lloyd [11] has shown that (4.2.5) has no limit cycles.

Another method used to establish nonexistence of a limit cycle
is based on the concept of an index number defined below.

If Cis a simply closed curve, the vector ffxq,xz) can be
observed changing in angle, say 6, as x = [xq,le traverses the

curve once s



Let the total change be A8. Certainly

A8 = 271,

where I is an integer. I 1s called the index of ¢ with respect to f.

The index of a simply closed curve is associated with the

critical points contained within it. If a curve C does not

enclose any critical point, its index is always zero. If two

closed curves enclose one and the same critical point, they have

the same index. The index of a critical point is the index of a

closed curve enclosing only that critical point. Thus, it has

been possible to work out the indices of thg critical points

classified in Chapter 2. A node, stable or unstable, has index 1,

a centre 1, a spiral 1 and a saddle -1.

When C is an orbit of a periodic solution of systym (4.2.1),

its index has been found to be +1. This implies that a periodic

orbit always encircles at least one critical point. In a region

where the only critical point is a saddle (4.2.1) cannot have a

periodic orbit.

4.3 n-dimensional Systems

While the Poincaré-Bendixson theorem, the Bendixson criterion,

etc., apply well to 2-dimensional systems, difficulties arise: when

higher dimensional systems are considered. This 1s mainly due to

the fact that some concepts applied to 2-dimensional systems,

like the Jordan curve principle applied in the Poincaré-Bendixson

theorem, fail to extend to higher dimensions.

Sell [15] successfully

)



obtains results which form a kind of extension of the Poincare-
Bendixson theorem to higher dimensional systems. Sell's theorem
also applies to 2-dimensional systems.

Let

x = fix] (1.2.5)

be an n-dimensional system where f is continuous and satisfies
the Lipschitz condition in Ix B. Let E be a subset of D. We
shall define a few concepts required in the proof of‘Sell’s
theorem.

E is called a minimal set relative to gystem (1.2.5) if it
is nonempty, closed and invariant and E has no proper subset with
these three properties: If in addition E is bounded, then it is
called a compact minimal set. *

A solution ¢(t) of (1.2.5) is recurrent if, given any e >0,
there exists a number T >0 such that for any two numbers t, and

1

t2 there is a number w such that t1< w <t,l + T and

fott,) - ¢twl] < .

That is, a solution ¢ is recurrent if an arc of the orbit of ¢ of
time length T approximates the entire orbit of ¢.
Let g be a real-valued function mapping IR into Rr". g is

almost periodic if for every € > 0 the set
{TeR : ||glt+T)-g(t)]] < € for all teR}

is dense in IR. This means that given € > 0 there exists a number L

such that any interval [td’to+L] contains a number T for which

lgt+Ti-gt) || <€

for all t in IR.



Theorem 4.3.1 (Sell)

If ¢(t) is a bounded phase asymptotically stable solu-

tion of (1.2.5), then there is a phase asymptotically stable

periodic solution P(t) of (1.2.5) such that y(Y) = Q(¢).

The proof of theorem 4.3.1 requires the following:

Theorem 4.3.2 (Sell-Deysach)

If ¢(t) is a bounded uniformly stable solution of (1.2.5),

then there exists an almost periodic uniformly stable solution

P(t) of (1.2.5) such that

Yy) € Q).

The proof of Theorem 4.3.2 follows through the following

®

lemmas and Birkhof+'s theorem.

Theorem 4.3.3 (Birkhoff)

Every orbit in a compact minimal set is recurrent.

Proof of Theorem 4.3.3

Let Y(¢) be an orbit of a solution ¢ (t) where y(¢) is contained
in a compact minimal set M but ¢(t) is not recurrent. Then given any

€ > 0 there exist sequences [E%) and [(tn,TnJ] such that
[o(E 1-0(t)] > e  for all t e (t ot *T e

The sequence (¢[E%]] has a convergent subseguence, say the sequence

itself conyerges. That is

¢[Eh) > X.



Also ¢(tn] has a convergent subseguence, say

¢(tn] > V.

let Y(t) be a solution of (1.2.5) such that Y(0)} = y. By Theorem

1.5.1, if z(t) is a solution such that
ly-z(o)|| < ¢

for § > 0, then
||xp‘(t1—z(t)|l <%

for all t e (0,T) where T > O.

Select n such that Tn >T,
2 (t ) 8
ly=oce )l <
and
- £
Ix-6E, )] < <.
Then
>
lpter-gt_+£)| < =
for a fixed t € (0,T). But for t e (0,T)

loGE 19t +t)| > e.



So
lwee)-x| = {|¢(t1-¢ttn+t3+¢(tn+tJ-qs(?nmp(?nJ-xll

> [6(E 1=+

[witd-o e+

- loz -«

tv

g
3"
It follows that
lvter-x| > £

for all t > 0. This regult means that Q{y) € M-Q(¢) CM. Since
Q) is nonempty, closed and invariant, it is a contradiction.

This completes the proof.
The proof of Theorem 4.3.2 follows now through the following

lemmas whose proofs can be found for instance in [4; pages 235-237].

Lemma 4.3.4

Ef_¢(t] is a bounded solution of (1.2.5), then there exists

a recurrent soclution Y(t) of (1.2.5) such that

Yy € Q).

Proof

Q(¢) 'is nonempty, closed and invariant and hence containa a
minimal set [13; page 374]. By Birkhoff’'s theorem every orbit in

Q(¢) is recurrent.



Lemma 4.3.5

If ¢(t) is a bounded uniformly stable solution of (1.2.5)

and y(t) is a solution of (1.2.5) such that y(¥) < Q(4), then Y(t]

is uniformly stable. Furthermore, if ¢(t) is phase asymptotically

stable then so is Y(t).

Proof

See [4; pages 235 and 238].

Lemma 4.3.6

If ¢(t) is a recurrent uniformly stable solution of (1.2.5)

then ¢(t) is almost periodic.

Proof

Since ¢(t) is recurregt, given § >0 there exists a relatively

dense set {w} such that
loC0)-¢wlf] < & . (4.3.1)

But ¢(t) is uniformly stable. So taking the § given in the
recurrence as our § in uniform stability, then (4.3.1) implies

that
lotewd-¢ (]| < € (4.3.2)
for all t > 0. Since {w} is dense in R, the result follows.

Thus Lemma 4.3.8 completes the proof of the Sell-Deysach

theorem.



Lemma 4.3.7

If ¢(t) is a recurrent solution of (1.2.5) such that ¢(t) is

not periodic, then

vl & Qo).

Proof

See for instance [4; page 240].

Proof of Sell’s theorem

By Sell-Deysach theorem and Lemma 4.3.5 there is a solution
P(t) which is phase asymptotically stable and almost periodic and
such that vy} C Q(¢). By almost periodicikty, we get
YyWIC QY. So by Lemma 4.3.7, ¢ is‘periodic. Since Y is
periodic QY) C vy )., Then QWY) C R($), which contradicts the

minimality of Q(3). Hence () = y(Y).

4.4 1- and 2-dimensional Nonautonomous Systems

Generally, the literature on nonautonomous systems is not as
prolific as that of autonomous systems. Within the nonautonomous
systems, prominence has been given to periodic systems, hence this

review is on periodic systems.

For a system
x = Flt,x), Flt+w,x) = £(t,x), 1.2.7)

what is required is to find out when it will have a periodic
solution of the same period w. This has the added advantage that
a period is fixed already, unlike in autonomous systems where a

period is unknown in the first place.



In %the case where (1.2.7) is 1-dimensional, the following
theorem due to Massera [12] holds. Suppose that f satisfies the

Lipschitz condition so that unigueness holds.

Theorem 4.4.1

If the 1-dimensional system (1.2.7) has a solution which

remains bounded as t - «, then the (1.2.7) has a periodic solution

with period w.

Proof

Let ¢(t) be a bounded solution of (1.2.7) for t > 0. Define

¢n(tl = ¢ (t+nw), n=1,2Z,...

with ¢n[D] = ¢(nw) as the initial value at t = O. ¢n(t] so defined

= E

is a solution of (1.2.7) since

@[t+nw]

RSl
il

i

f(t+nw, ¢ (t+nw))

1

£(t,¢(t+nw))

F[t,¢n).

By uniqueness of solutions, if ¢n(DJ = ¢n+1(0] then

¢n[t] = ¢n+1(t] for all t. Hence 1f ¢n(U) < ¢n+1[O] then

o (t) < ¢ ,,(t) for all t. Similarly if ¢ ., (0) < ¢,(0),

(t) < (t) for all t. Since (¢_) is a bounded monotonic seqguence
n+1 n n

it has a uniformly convergent subseguence. Assuming that [¢n] is



itself convergent, say to ¢ (t), then Y(t) is a solution of (1.2.7)
since the convergence is uniform and f in (1.2.7) is continuous.

Now P (0) = 1lim ¢n(DJ = lim ¢ (nw),

N - o« n > oo
also Y(0) = 1lim ¢ +1[D] = lim ¢ (nw+w).
n—>oon n = o

Hence Y (t) is periodic with period w, as reguired.

For 2-dimensional systems, Massera [12] gave the following
example to show that a system may have a bounded solution yet fail

to have a periodic solution of the same period.

Example
. 2 .
x = flu,vlcos™nmt - glu,v)sin 7t cos 7t - TY
. 5 (4.4.1)
vy = glyu,vlicos ™t + flu,vlsin 7t cog mt + Tx
where
X,y € IR
U= x cos mt + y sin 7t

V =y cos it - x sin 7t

and f and g satisfy the following conditions: -
(1) f,g have continuous first partial derivatives;
(2) £(-u,-v) = f(u,v), gl-u,-v) = glu,v);

(3) f(1,0) = g(1,07 = 0,

f(0,v]) = 0, g(0,v) > 0 for &11 v.

© {
1 2
(4) J_oo lm dv < F .



In (u,v) coordinates [4.4.1] is

flu,vlcos Tt,

=
1}

(4.4.2)

glu,vlcos Tt.

<
1

The orbits of (4.4.2) are the integral curves of solutions of

dv _ glu,v)
m ?TGTVT . (4.4.3)

Now, system (4.4.1) is periodic with period 1. Since u= #1, v =0
are solutions of (4.4.2) then x = *cos Tt, y = *sin 7t  are solutions
of (4.4.1) and they are definitely bounded. Of course, they are
periodic, but with period 2. The question is: can there be a
solution with period 17

u =0 1is an orbit of (4.4.3) and because of uniqueness if at
some point t = to’ u(tOJ >0, then u(t]) >0 for all t. Such a
solution when reverted to the original coordinates cannot give rise
to a periodic soclution of period m since u would change sign.

Indeed

u = x cos w(t+1) + y sin w(t+1)

= -x cos Tt - y sin 7wt

= -(x cos wt -+ vy sin mwt).

Similarly if u(tO) <0, the same argument holds. Finally, if u = O

and v(t) is a solution of (4.4.2) then v(t) is given by



v(t) t
_dv___. = dT
L/[t ]g[U,V] [ COsS TT

@]

1-[sin Tt - sin mwt ] .
T o
Letting t vary between -1 and +3i then

rv{+§jfbi——— = l[ in L - sin(- E-]]
}VGl]g(O,VJ e 2

2
w

which contradicts (4) above. Hence v(t]) cannot be defined for all t.
Therefore it cannot give rise to a periodic solution in (x,y)
coordinates.

Massera [12] however has the following theorem:

e =

Theorem 4.4.2

If all solutions of a 2-dimensional system (1.2.7) exist in

the future and one of them is bounded in the future, then (1.2.7)

has a periodic solution of period w.

The proof uses a topological lemma due to Brouwer recast as a
fixed point theorem. The lemma states that given a simply connected
plane-open domain G and a homeomorphism T of G into itself, T being
orientation-preserving and there exists a point X5 in G and a sub-
seqguence of its successive images Xy = Txo, Xy = qu,. Xp = Txn_1,...

which converges to a point in G, then T has a fixed point in G.



Proof of Theorem 4.4.2

Let ¢ be a solution of (1.2.7). Define T as
T xD-*¢[w,D,xDL

T so defined is orientation-preserving and maps 3?2 into itself. If ¢
is abounded solution, then its successive images ¢ (wl), ¢(2,w),... forn
a bounded sequence and therefore has a convergent subseguence. Apply-
ing Brouwer's lemma, T has a fixed point. That is, there is a point

X € ﬂ?z such that

Tx = X

or

[t}

¢ (w,0,x] X

@

1

$(0,0,x).

Hence a periodic solution exists.

4,5 n-dimensional Nonautonomous Systems

We first define one boundedness concept to be used in a theorém
to follow.

Solutions of (1.2.4) are said to be ultimately bounded if there
exist a positive number B which is independent of a particular
solution, and T > 0 which may depend on a particular solution, such

that every solution ¢(t,to,£] satisfies

lott,t .8l < B  for all t >t +T.



The following theorem (see for instance Yoshizawa [16, page 1721)

holds for the case where n is any positive integer.

Theorem 4.5.1

If the solutions of (1.2.7) are ultimately bounded for bound B,

then there exists a periodic solution ¢(t) of period w such that

lott)| < B for all t.

The proof uses Browder's fixed point theorem (see [16, page 183].
A mapping

T><O = x(w,O,xDJ

is shown to have a fixed point in suitable convex sets which are

chosen using the property of boundedness enjoyed by the system (1.2.7

*

4.6 Perturbed Nonautonomous Systems

Consider the system
% = glt,x) + phlt,x,u). (4.6.1)

Suppose that for u = 0 (4.6.1) has a periodic solution Y(t]) of period
Conditions are sought under which (4.6.1) with [u| sufficiently small
has a periodic solution, say ¢(t,u) which as u » O approaches Pt).
A frequently used’device employs an eguation commonly called
the variational equation derived as follows:-
Suppose
x = Flt,x) (1.2.4)

is a system of differential eguations where f 1s continuous and has



first partial derivatives with respect to Xs» i=1,...,n in a region A

containing the solution u(t). Let ¢(t) be another solution of (1.2.4

and let
y = ¢(t) - ult).
Then
v = at) - Gt)
= flt,y+u(t)) - £(t,ult))
= f E,ult))y + offy]). (4.6.2)
The equation
y = £ (t,ult))y, (4.6.3)

-

is called the variational equation of (1.2.4) with respect to u(t).
L is a matrix

-

or.y | :
Wl, Li=1,2,...,n.
L J

For convenience, consider (4.6.1) in the form
X = £lt,x,u), , (4.6.4)

and suppose that f is continuous and has first partial derivatives.
We suppose then that when p=0 (4.6.4) has a periodic solution P (t).

The following theorem is due to Poincarég.

Theorem 4.6.1

If the variational equation of (4.6.4) with respect to a periodic

solution Y(t) has no solution of period w for u=0, then for sufficient.

small |y (4.6.4) has a periodic solution ¢ (t,u) which is such that

lim ¢ (t,u) = ().
[lull +o



Proof

Let ¢(t) be a solution of (4.6.4) whiwh has the value Y(0) + o,
na" sufficiently small, at t = 0. Thus ¢(t) can be written as ¢(t,a,ul.

If ¢(t,a,u) is periodic with period w, then

¢lw,a,u) = ¢(0,a,ul. (4.6.5)
But ¢(0,a,u) = ¥(0) + a. Hence

¢lw,a,u) - p(0) + o = O. (4.6.6)

Equation (4.6.8) has a trivial solution when p=0 which is o=0. By the
Implicit Function theorem (see [14, page 2241]), o is a function of u if

at (y,o) = (0,0) the Jacobian

a(F;,...,F )
» n
a (o

*

# 0, (4.6.7)

1,...,un]

where Fi = ¢i[w,a,ul—ai—wi(03, i=1,...,n. But at (0,0), (4.6.7) is
the determinant

detl¢,(w,0,0)-E], ® (4.6.8)

where E is a unit matrix.

Thus if (4.6.8) does not vanish, then there exists a unigue
function o = a(u) such that (4.6.6) holds. This precisely means
that ¢(t,alpul,u) is perioaio.

How does the variational equation relate to the existence of
periodic solutions in the above case? Consider the solution ¢{f,o,u)l

above. Since it is a solution of (4.6.4) we have

blt,a,u) = Flt,¢0t,0,u),u). (4.6.9)



Differentiating (4.6.9) with respect to o s i=1,...,n, gives

¢u(t,a,u] = fx(t,¢[t,u,ul,u)¢u[t,a,u]. (4.8.

Hence ¢a[t,a,u) satisfies the variational equation with respect to

¢(t,o,ul. At u=0, a =20 (4.6.10) gives
$,(t,0,0) = £, (£,6(£,0,00,0)9_(¢,0,0).

Realising that

¢(t,0,0)

i

pltl,

then

-

9, (£,0,0) B0 (8,006 (t,0,00. (4.6.11)

Hence the matrix o .

o(t) = ¢,(t,0,0)

satisfies the variational equation with respect to the periodic
solution @(t). Furthermore ¢ is a fundamental matrix since ¢(0) = E,

Consider now
det[d(w)-XE] = 0. (4.6.12)

The roots of (4.6.12) are the characteristic multipliers associated
with the variational eduation with respect to Y(t). (4.6.12) is (4.8
when A = 1. Thus (4.6.8) vanishes if and only if X\ = 1 is a root of

(4.8.12)., Since A = 1 is a root of (4.6.12) if

y = £, (t,p0t),0)y (4.6.13)

has a periodic solution of period w, then the theorem is proved.



Theorem 4.6.2

I+ the characteristic multipliers associated with (4.6.13) are

all less than one in magnitude, then (4.6.4) has a periodic solution

6(t,1) which is asymptotically stable provided lul is sufficiently

small.

Proof
The existence of ¢(t,u) as a periodic solution ig evident from
the previous theorem.

Let
y = £ (E,¢0t,), Wy (4.6.14)

be the variational equation with respect to oplt,w). If Y(t,u) is a
fundamental matrix of (4f8.1§) with ¥(0,u} = E, then the characteristic
multipliers of (4.6.14) are the characteristic roots of ¥(w,u). Since
the characteristic roots of Y(w,0) are less than one in magnitude

and ¥(t,u) is continuous in p for sufficiently small lull, the
characteristic roots of ¥(t,u) are also legs than one in magnitude

for sufficiently small Hu”. Using Theorem 3.3.1 and recalling that
(4.6.14) is a linear equation of (4.6.2), the theorem is proved

after realising that the real parts of the characteristic exponents

are negative if and only if the characteristic multipliers are less

than one in magnitude.

4,7 Perturbed Autonomous Systems

In the case of

X = £lx,1), (4.7.1)

a slight modification is called for. This is because if Y(t) is a

periodic solution of period w when | = 0, its derivative &[t] is a



’

solution of the variational equation with respect to (t). This can
easily be seen from the fact that if ¢(t) is a solution of (4.7.1)
when p = 0 then

b= flp,0). (4.7.2)

Now, differentiating (4.7.2) with respect to t gives

d o .
Sb = f (.00 (4.7.3)

But @ is periodic with the same period w. Hence Theorem 4.6.1 cannot
apply. This situation is resolved by the following theorem whose
proof follows similar steps as that in the proof of Theorem 4.6.1.

-

Theorem 4.7.1

If the variationai eguation

y = £ p,0)y (4.7.4)

with respect to the periodic solution i has 1 as a simple character-

istic multiplier, then for sufficiently small ”u”, there exists a

solution ¢ (t,u) of (4.7.1) with period w such that ¢(t,0) = p(t].

If n-1 of the characteristic multipliers associated with the

variational equation (4.7.4) of (4.7.1) are less than one in

magnitude, then ¢(t,u) is phase asymptotically stable for sufficientl

small |-

One other theorem called Hopf-Bifurcation Theorem is used
to show that periodic solutions exist for the case where p is real.

Hsu [7] recasts the theorem in the following way:-



91.

Theorem 4.7.2

Let f be analytic in D % [-c,c], ¢ >0 and suppose that there exists

a vector function g defined on [-c,c] such that f(g(ul,u) = O.

f(x,u) can be expanded as

flx,ul

n

Flg),u) + x-g(lf, (glud,u + 0Clx-g(w1°)

i

[x-g (1£, (g0, + 0(Ix-g()1°).

If there exist exactly two complex conjugate characteristic roots

alp) and aly) gf.fx[g(ul,p] with the properties

Rela(0)] = 0 and Re[n’(0)] # 0, (' = =)

then there exists a periodic solution ¢(t,e) of period wle) # glulel)

for all sufficiently small € # O.

- £
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