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ABSTRACT 

 

In the determination of an improved geoid over Zambia, the Modified Stokes’ formula 

employing the RCR technique was used. The formula combined EGM2008 data, terrestrial 

classical free-air gravity anomalies over Zambia, and the SRTM 3′′ DEM over Zambia 

which represent the long, intermediate, and short-wavelength geoid respectively. 

 

Preliminary accuracy evaluation of the proposed new geoid model termed ZG2016 at 4 

GPS/Leveling stations reveal a rms error of 7.0cm compared to 69cm for the old model 

(ZG96: Nsombo, 1996). The higher accuracy of the new model is attributed to its use of a 

higher resolution GGM and DEM. 

 

Suffice to mention that EGM2008-only gave a rms error of 12.2cm when evaluated at the 

4 stations. This suggests that EGM2008, though a global model, may optionally be used as 

a geoid model over Zambia. 

 

The evaluation of these two models using only 4 GPS/Leveling stations is not statistically 

acceptable. However, this is dictated by the fact that most of the established benchmarks 

in the country have been removed. More benchmarks will have to be found for better 

evaluation. If satisfactorily evaluated at more benchmarks, ZG2016 may play an important 

role in orthometric height determination by use of more efficient GNSS technology, 

thereby leading to minimisation of the use of the generally costly and labour intensive 

conventional leveling method in this regard. A good geoid model may also prove helpful 

to a number of earth-related sciences such as geology and geophysics. 

 

Key words: Geoid, RCR technique, GPS/Leveling, GNSS technology, EGM2008 
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CHAPTER 1         INTRODUCTION 

 

A vertical reference frame or datum forms the basis for all developmental projects in which 

heights are used. In particular any project involving the impounding, transport and 

distribution of water is critically dependent upon the appropriate vertical reference frame 

being used. Heights are generally considered to refer to mean sea level (MSL), and most 

vertical reference frames attempt to approximate mean sea level as the datum for heights. 

In principle, the geoid (a level surface which globally best fits MSL) is the ideal datum 

(Merry, 2003). The geoid is an equipotential surface of the earth’s gravity field that best 

fits to global mean sea level in a least squares sense (Jekeli et al., 2009). 

 

The geoid is used as a reference surface to which orthometric heights are referred, and the 

vertical datum is usually established using tide gauge measurements of mean sea-level in 

conjunction with geodetic leveling (Featherstone et al., 1998). 

 

The orthometric height of a point refers to its vertical height above the geoid. According 

to Heiskanen and Moritz (1967), spirit leveling combined with gravity measurements 

furnishes potential differences which are basic to the theory of orthometric heights, i.e., 

orthometric heights are derived from potential differences. To accurately determine the 

orthometric heights of points, we need to carry out precise leveling, and this should be 

coupled with gravity measurements. However, this would prove to be highly tasking, 

strenuous, and costly especially for large scale projects.  

 

Conversely, the orthometric heights can be determined from two data sets in the form of 

ellipsoidal heights and geoidal heights (geoidal undulation). The difference between the 

ellipsoidal height and the geoidal height at any given point gives the orthometric height of 

that point. The ellipsoidal heights can easily be obtained from Global Navigation Satellite 

Systems (GNSS) receivers whenever these are employed in point positioning. Thus the 

advent of GNSS technology provides a quicker means of obtaining orthometric heights by 

reduction of ellipsoidal heights. The fact that satellite surveying is quicker and hence 
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cheaper in the long term makes this method advantageous to classical terrestrial surveying 

techniques.  

 

The geoidal height required to reduce GNSS ellipsoidal heights can be determined 

gravimetrically. The geoid-WGS84-ellipsoid separation (geoidal height) can be computed 

from terrestrial gravity measurements in conjunction with a global geopotential model and 

a Digital Terrain Model (Featherstone et al., 1994). 

 

1.1 Problem background and research justification 

 

The geoid has been held by many as the fundamental reference surface of geodesy, and its 

precise determination has been and still is the centre of discussion for many geodesists. 

Traditionally, the geoid has served as the reference surface for orthometric heights and 

other vertical heights. The geoid represents in some way the Earth’s physical surface and 

more importantly, it is closely associated with the Earth’s gravity field (Nsombo, 1996).  

Most surveying measurements are made in relation to the geoid because the equipment is 

aligned with the local gravity vector, usually through the use of a spirit bubble. As such 

geodesists have chosen an oblate ellipsoid of revolution, flattened at the poles, to 

approximate the geoid in order to simplify survey data reduction and mapping. On a global 

scale, the geoid departs from the WGS84 ellipsoid by approximately ±100m (Featherstone 

et al., 1998). 

 

Due to the significance of the geoid as a reference surface for vertical heights, and the 

physical surface of the earth, and its close association to the earth’s gravity field, it is so 

necessary that this surface be precisely determined over Zambia. According to Nsombo 

(1996), prior to the year 1996, there were not any systematic computation of the geoid in 

Zambia, save only erratic computations in limited areas. Due to the need of knowledge of 

the geoid over Zambia, a preliminary geoid over Zambia (ZG96) was gravimetrically 

determined in 1996 (Nsombo, 1996, 1998). 
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Then, the geoid model was computed from available information; terrestrial gravity, 

Doppler and GPS data, gravity anomalies from geopotential coefficients (EGM96), and 

topographic height information.  

 

This research is aimed at computing a better geoid model taking advantage of 

improvements in data quality and quantity. The geoid still has to be determined using 

gravimetric means owing to the fact that this approach is cheaper and practically attainable 

compared to the method of geoid determination using leveling coupled with gravity 

measurements as the data sets required to compute an improved geoid using the gravimetric 

approach are readily available.  

 

It is 20 years now since the preliminary geoid over Zambia was computed from data 

available then. This research is aimed at closing the gap in knowledge between what was 

known about the geoid then, and what can now be known. The undertaking of this research 

has a number of advantages as given below 

 

1. The use of the higher resolution GGM produces a better geoid model. This time around 

the geoid was computed using the higher resolution EGM2008, as opposed to the 

EGM96. The EGM96 is a gravity model of the earth resulting from the spherical 

harmonic expansion of the geopotential up to degree and order 360, implying a spatial 

resolution of 30́ (30 angular minutes) whereas the EGM2008 is the expansion of the 

geopotential up to degree 2190, and order 2159 resulting in a spatial resolution of 5́ (5 

arc minutes) . Over EGM96, EGM2008 represents improvement by a factor of six in 

resolution, and by factors of three to six in accuracy depending on gravitational quantity 

and geographic area, (Pavlis et al.,2012).The use of such a model may help provide 

gravity anomalies in all areas where there is scanty terrestrial gravity data.   

  

2. Some corrections to terrestrial gravity anomalies are to be made with the use of a 

Digital Elevation Model (SRTM 3 ̋ /90m resolution) mostly to handle the effects of 

topographic masses above the geoid. This new model has a higher resolution than the 

previous models used back then. This helps improve the accuracy of the model. 
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3. To facilitate the practical utilisation of the determined geoid, a computer 

program/algorithm  is to be written in one of the latest programming languages (e.g 

Visual Basic, MATLAB, etc.) and to eventually be made available to surveyors, 

engineers, and other users, so that they will be able to compute orthometric heights of 

points by inputting geocentric coordinates into the program. Before this research such 

a computer program was not available. 

 

4. Nowadays most surveys (control, geodetic, and engineering) are established using 

satellite positioning systems such as GPS. The reference frame for GPS is the Geodetic 

Reference System 1980 (GRS80), where heights are referred to the GRS80 ellipsoid, 

and not to MSL. In order for Global Navigation Satellite Systems (GNSS) derived 

ellipsoidal heights to have any physical meaning in a surveying or engineering 

application, they must be transformed to orthometric heights.  

 

The Global Positioning System (GPS) provides surveyors with three-dimensional 

coordinates with respect to the geocentric World Geodetic System 1984 (WGS84). 

Before the GPS-derived positions can be used in the local reference frame however, 

two distinctly different coordinate transformations must be applied. The horizontal 

transformation from WGS84 latitude and longitude to the local horizontal datum is 

relatively straight-forward when using conformal or projective transformation models. 

In the future however, these horizontal coordinate transformations may become 

unnecessary as different countries move to the use of a geocentric datum for surveying 

and mapping (Featherstone et al., 1998). 

 

It is however, unlikely that ellipsoidal heights will ever be used for practical surveying, 

engineering, or geophysical applications as they have no physical meaning. For 

instance, when using ellipsoidal heights, there is the possibility that water will appear 

to flow up-hill because the physical force of gravity is not considered. Therefore, it will 

always be necessary to transform GPS-derived ellipsoidal heights to orthometric 

heights, using knowledge of the position of the geoid with respect to the WGS84 
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ellipsoid (Featherstone et al., 1998). Thus we see that in engineering survey 

applications such as in dam construction, the use of orthometric heights with a physical 

meaning, as opposed to the geometric ellipsoidal heights becomes necessary for correct 

design of dams. 

 

The author has also observed that in Zambia static GNSS measurements are used in 

international boundary surveys because of the advantages offered by GPS over 

conventional methods in carrying out surveys especially for large scale projects. Use 

of GNSS is generally cheaper, quicker, and more convenient.  However, the final 

adjusted coordinates of the boundary beacons, which have been built at an average 

spacing of 500m, are in WGS 84 coordinates with heights being ellipsoidal. The 

countries desire to have these heights referenced to mean sea level (orthometric 

heights). It would be very costly and difficult to determine the orthometric heights of 

these beacons on a very long and mountainous stretch using conventional leveling. It 

is for such reasons that a good geoid model becomes handy. It is ideal to have a model 

whose height accuracy is as close as possible to the vertical accuracy inherent in GNSS 

surveys. 

 

The aforementioned advantages emphasize the need for re-computation of the geoid 

over Zambia. 

 

1.2 Research objectives 

 

1.2.1 Main objective 

To gravimetrically determine an improved geoid over Zambia using the Earth Gravity 

Model of 2008 (EGM2008) and Digital Elevation Model (SRTM 3 ̋ /90m resolution) 

 

1.2.2 Specific objectives 

1. Assessment of the requirements and strategies required to come up with a better geoid 

model 

2. Computation of the geoid model in (1) above. 
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3. Evaluation of the determined geoid model in terms of accuracy 

4. Facilitation of the practical utilisation of the new model by way of an interpolation 

program 

 

1.3 Research questions 

 

1. What are the benefits of computing a gravimetric geoid model? 

2. What data is currently available, suitable, and obtainable to facilitate the gravimetric 

geoid determination over Zambia? 

3. What numerical /computational strategies will be employed in the gravimetric 

determination of the geoid? 

4. How will the accuracy of the newly determined geoid over Zambia be assessed? 

5. How will the new geoid model be practically utilised? 

 

1.4 Significance of study 

 

The new geoid model will ensure a quicker way of determining orthometric heights by 

utilising GPS/GNSS technology, but at the same time guaranteeing improved sub-metre 

accuracy (as seen in literature) in orthometric heights which is acceptable for many 

practical applications in surveying and mapping. The resulting geoid model from this study 

may also prove useful to a number of earth-related sciences, e.g. Geology, Geophysics, etc. 

This is because the position of the geoid below the topography reveals important truths 

about the structure and characteristics of subsurface materials. Information about the geoid 

provide manifestations about geologic conditions and geologic features. Variations in geoid 

pattern may result from different subsurface mass distributions. Finally, the current study 

may act as a platform for further study and model development 
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CHAPTER 2         LITERATURE REVIEW 

 

The geoid is an equipotential surface of the earth’s gravity field that best fits to global mean 

sea level in a least squares sense (Jekeli et al., 2009). The geometric quantities of the earth 

such as its size and shape can be determined from its physical quantities such as gravity. 

 

In this chapter literature is reviewed with a view to gaining understanding of the subject of 

gravimetric geoid determination. The requirements and strategies for gravimetric geoid 

determination are explored. Finally, some case studies of recent national/regional geoid 

models are presented. The data and methodologies/strategies used, together with the 

achieved model accuracies are presented with a view to taking a leaf from such studies. 

 

2.1 Geodetic boundary-value problems 

 

According to Heiskanen and Moritz (1967), the potential V satisfies Poisson’s equation: 

 

 

where 

 

 

The symbol 𝛥, called the Laplacian operator, has the form 

 

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

 

Outside the attracting bodies, i.e. in empty space, the density 𝜌 is zero and 2.2 becomes 

(Heiskanen and Moritz, 1967) 

 

 𝛥𝑉 = −4𝜋𝑘𝜌  (2.1) 

 
𝛥𝑉 =

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
  (2.2) 
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This is the famous Laplace’s equation whose solutions are called harmonic functions. For 

this reason the potential of gravitation is a harmonic function outside the attracting masses, 

but not inside the masses where the density 𝜌 is not zero. There it satisfies Poisson’s 

equation. 

 

Thus the gravitational potential is harmonic at all points where there are no attracting 

masses, and, consequently, so is the outer potential of the earth if we disregard the 

atmosphere and the centrifugal force. This is the reason for the basic importance of 

harmonic functions in physical geodesy (Heiskanen and Moritz, 1967). 

 

2.1.1 Dirichlet’s problem (1st Boundary-value problem of potential theory) 

 

Stokes’ theorem states that a function V harmonic outside a surface S is uniquely 

determined by its values on S. In general, however, there are infinitely many mass 

distributions which have the given harmonic function V as exterior potential. 

 

According to Heiskanen and Moritz (1967) it is impossible to determine uniquely 

generating masses from the external potential. They state that the inverse problem of 

potential theory (determination of the masses from the potential) has no unique solution 

and that it occurs in geophysical prospecting by gravity measurements where invisible 

masses are inferred from disturbances of the gravity field. They also mention that the 

problem can be solved more completely, if additional information is furnished, for 

example, by geology or by seismic measurements. 

 

On the other hand, they mention that the direct problem of potential theory i.e. the 

determination of the potential from the masses does have a unique solution. 

 

 𝛥𝑉 = 0  (2.3) 
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Stokes’ theorem states that there is only one harmonic function V that assumes given 

boundary values on a surface S, provided that such a harmonic function exists. The 

assertion that for arbitrarily prescribed boundary values there always exists a harmonic 

function V that assumes on S the given boundary values is called Dirichlet’s principle 

(Heiskanen and Moritz, 1967).  

 

The problem of computing the harmonic function (inside or outside S) from its boundary 

values on S is Dirichlet’s problem, or the first boundary value problem of potential theory 

according to Heiskanen and Moritz (1967). Dirichlet’s problem can be solved by Poisson’s 

integral which can be an explicit solution of Dilichlet’s problem for the exterior of the 

sphere, which has many applications in physical geodesy. 

  

2.1.2 Nuemann’s problem (2nd Boundary-value problem of potential theory) 

 

In Nuemann’s problem, the normal derivative 𝜕𝑉/𝜕𝑛 is given on the surface S, instead of 

V itself. The normal derivative is the derivative along the outward-directed surface normal 

n to S. For a sphere the solution of this boundary value problem is easily expressed in terms 

of spherical harmonics. 

 

2.1.3 Robin’s problem (3rd Boundary-value problem of potential theory) 

 

In the third boundary-value problem a linear combination of V and its normal derivative 

 

ℎ𝑉 + 𝑘
𝜕𝑉

𝜕𝑛
 

 

is given on S. According to Heiskanen and Moritz (1967) and Sjöberg (1990), the third 

boundary-value problem is particularly relevant to physical geodesy, because the 

determination of the undulations of the geoid from gravity anomalies is just such a problem. 

This problem is called boundary-value problem of physical geodesy. Just as the first 

boundary-value problem can be solved directly by a surface integral (Poisson’s integral), 
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similar integral formulas also exist for the second and third problems. An integral formula 

that solves the boundary-value problem of physical geodesy is Stokes’ integral. 

  

The so-called the fundamental equation of physical geodesy which relates the measured 

gravity anomaly ∆𝑔 to the unknown anomalous potential T is given by (Heiskanen and 

Moritz, 1967; and Sjöberg, 1990) 

 

 

where ∆𝑔 is assumed to be known at every point of the geoid, then we see that a linear 

combination of T and 𝜕𝑇/𝜕𝑛 is given upon that surface. Here 𝜕𝛾/𝜕𝑛 is the normal gradient 

of normal gravity. Thus we see that the determination of T (the small difference between 

the actual gravity potential, W, and the normal potential U) is a third boundary-value 

problem of potential theory. If it is solved for T, then the geoidal height, which according 

to Heiskanen and Moritz (1967) is the most important geometric quantity in physical 

geodesy, can be computed by Bruns’ formula which is given by equation 2.7. 

 

Heiskanen and Moritz (1967) further state that the basic problem of physical geodesy, 

which is the determination of the geoid from gravity measurements, is essentially a third 

boundary-value problem of potential theory.  

 

2.2 Gravimetric determination of the geoid 

 

According to Amos (2010) the most common method of establishing a vertical datum has 

been to determine Mean Sea Level (MSL) at a tide gauge and then transfer the level to 

benchmarks in the hinterland by precise leveling. He mentions that precise leveling is a 

labour intensive and expensive method of transferring heights that only provides heighted 

benchmarks along the leveling routes. What this means is that where there are no roads it 

is not possible to efficiently implement a national vertical datum based on precise leveling 

alone. 

 −
𝜕𝑇

𝜕𝑛
+

1

𝛾

𝜕𝛾

𝜕𝑛
𝑇 = ∆𝑔 (2.4) 
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If the orthometric height of every point on the earth’s surface was known, then the geoid 

would precisely be modeled. According to Amos and Featherstone (2003, 2009) a geoid 

model can be computed using the gravimetric method, provided spatially dense and 

accurate gravity and terrain data are available. The gravimetric method furnishes the 

geoidal height (N) from gravity and terrain data. 

 

The primary practical application of the geoidal height N in land surveying and geodesy is 

to transform the geometric GNSS-derived ellipsoidal heights h to orthometric heights H 

which are related to the earth’s gravity field and as such have a physical meaning. The 

geoid can be obtained globally when the ellipsoidal height of every point on the earth’s 

surface is reduced by subtracting the geoidal undulation at that particular point (Refer to 

Figure 2.1). Thus the geoid is gravimetrically determined using the simple formula (Amos, 

2010) 

 

 

 

 

Figure 2.1: Orthometric, ellipsoidal, and geoidal height (Source: 

http://principles.ou.edu/earth_figure_gravity/geoid/index.html) 

 

 𝐻 = ℎ − 𝑁 (2.5) 

http://principles.ou.edu/earth_figure_gravity/geoid/index.html
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Amos and Featherstone (2003) emphasise that the use of a geoid model in conjunction with 

GPS provides a very attractive alternative to geodetic spirit leveling, especially over long 

distances and steep terrain. 

 

As can be found in most physical geodesy literature, a level ellipsoid is chosen to represent 

the earth because the gravity field of an ellipsoid is of fundamental practical importance 

because it is easy to handle mathematically and the deviations of the actual gravity field 

from the ellipsoidal “normal” field are so small that they can be considered linear. On the 

contrary, the geoid, which is supposed to be the reference for both heights and position 

(x,y) has rather disagreeable mathematical properties. It is a smooth, but complicated 

surface with discontinuities of curvature. Thus, it is not suitable as a surface on which to 

perform mathematical computations directly, as on the ellipsoid. 

 

The physical height H of a point above sea level (also called the orthometric height) is 

measured along the curved plumb line, starting from the geoid (Figure 2.1). On the other 

hand, the geometric (vertical) height of a point above the ellipsoid is called ellipsoidal 

height h, and it differs from the orthometric height H by the geoidal undulation N 

(Heiskanen and Moritz, 1967). Figure 2.1 illustrates the three heights. 

 

The ellipsoidal height is the elevation above the ellipsoid and it is measured by global 

navigation satellite systems (GNSS). Borge (2013) states that a satellite needs a reference 

for its measurements and uses a reference ellipsoid to give coordinates and heights. He 

mentions that a reference ellipsoid is used as reference for satellites so that they can give 

coordinates and heights in this system. He also makes the point that the ellipsoid is used 

because it is a good approximation to the earth's shape and also a mathematical surface. 

 

Once again, the important point coming out of literature is that if the geoidal height and 

ellipsoidal height is known at every point on the earth, then the geoid can be accurately 

determined using equation (2.5). 
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2.2.1 Stokes’ integral 

 

An integral formula that solves the boundary-value problem of physical geodesy (equation 

2.4) is Stokes’ integral. The disturbing potential T, can be computed from the famous 

Stokes’ formula (Heiskanen and Moritz, 1967) as 

 

 

Then by Bruns’ theorem,  

 

 

the geoidal height is finally obtained as (Heiskanen and Moritz, 1967): 

 

 

where 

R is the mean radius of the earth (6371km) 

𝛾 is the normal gravity on the reference ellipsoid 

∆𝑔 is the measured terrestrial gravity anomaly; which is the difference in magnitude 

between the actual gravity vector at a geoid point P, and the normal gravity vector at a 

corresponding point Q on the ellipsoid (P and Q lie on the same ellipsoidal normal through 

Q), i.e., 𝛥𝑔 = 𝑔𝑃 − γ𝑄 . Refer to Figure 2.2. 

d is the element of area in which the gravity anomalies are defined; the integration being 

performed over a unit sphere 𝜎 

 S() is the Stokes’ function written in full as: 

 

 𝑇 =
𝑅

4𝜋
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎

 (2.6) 

 𝑁 =
𝑇

𝛾
 (2.7) 

 𝑁 =
𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎

 (2.8) 
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This formula (2.8) was published by George Gabriel Stokes in 1849, and is therefore, called 

Stokes’ formula or Stokes’ integral. It is by far the most important formula of physical 

geodesy because it makes it possible to determine the geoid from gravity data. 

 

 

Figure 2.2 Geoidal undulation and gravity anomaly (Hofmann-Wellenhof & Moritz (2006) page 

91) 

 

According to Heiskanen and Moritz (1967) and Sjöberg (1990), Stokes’ integral in its 

original form (equation 2.8) holds only for a reference ellipsoid that  

1. Has the same potential Uo = Wo as the geoid, 

2. Encloses a mass that is numerically equal to the earth’s mass, and 

3. Has its centre at the centre of gravity of the earth 

 

 𝑆(𝜓) =
1

𝑠𝑖𝑛 (
𝜓
2)

− 6 𝑠𝑖𝑛 (
𝜓

2
) + 1 − 5𝑐𝑜𝑠𝜓

− 3𝑐𝑜𝑠𝜓 𝑙𝑛 (𝑠𝑖𝑛 (
𝜓

2
) + 𝑠𝑖𝑛2 (

𝜓

2
)) 

(2.9) 
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Finally, T is assumed to be harmonic outside the geoid. This means that the effect of the 

masses above the geoid must be removed by suitable gravity reductions. The reader is 

referred to Heiskanen and Moritz (1967), Sjöberg (1990), and Bajracharya (2003) for a 

detailed explanation on gravity reductions. 

 

2.2.2 Practical evaluation of Stokes’ integral 

 

In the previous section we have learned that the classical solution to the geodetic boundary 

value problem can be given by Stokes’ formula which is a surface integral. Since we do 

not know the exact analytical expression of the gravity anomaly ∆𝑔, Stokes’ integral (2.8) 

cannot be evaluated analytically. Furthermore, what we are able to obtain from 

measurements is 𝑔 (𝑜𝑟 ∆𝑔) at a finite number of discrete points, other than the continuous 

∆𝑔 at every point on the surface of the earth. Therefore, according to Heiskanen and Moritz 

(1967) and Fan (1989) the above analytical integral has to be approximated by numerical 

integrations in practical applications. They present two methods in physical geodesy for 

numerical integrations, depending on how the surface element 𝛥𝜎 is formed. The two are 

the template method and the grid method. The template method was mostly used for 

manual calculation in the earlier days when electronic computers were not available, while 

the grid method is particularly suitable for large computations by computers. For this 

reason only the grid method is described in this section. 

 

Assume that we have divided the whole surface of the earth (or the unit sphere) by parallel 

circles and meridian circles into a set of grid blocks (Figure 2.3).  

 

The size of each block is expressed by the latitude difference 𝛥𝜑 and longitude difference 

Δλ. This means that there are M1=360°/𝛥λ° blocks on each parallel circle and M2=180°/𝛥φ° 

blocks on each meridian circle.  

 

In practice, ∆𝑔 is often available only inside a regional area 𝜎o with minimum/maximum 

latitude φ min /φ max and minimum/maximum longitude λ min/ λ max. In this case the original 
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Stokes’ integral has to be truncated into integrations only over the area 𝜎o. Assume that 𝜎o 

is divided into blocks of size 𝛥𝜑 by Δλ and inside each block 𝛥𝜎𝑖𝑗 (Figure 2.3), the mean 

gravity anomaly Δ𝑔̅̅̅̅
𝑖𝑗 is given. Now the number of blocks on each meridian circle and 

parallel circle is M1 = (φ max - φ min)/ 𝛥𝜑 and M2 = (λ max - λ min)/ Δλ, respectively. The total 

number of blocks for the whole region 𝜎o is M1* M2. In this case the geoidal undulation 

can be calculated from ∆𝑔 inside 𝜎o as 

 

 

Figure 2.3: Grid method of numerical evaluation of Stokes’ formula 
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If we approximate ∆𝑔 in 𝛥𝜎𝑖𝑗 by Δ𝑔̅̅̅̅
𝑖𝑗 ( i = 1,2,…, M1; j = 1,2,…., M2) and S(𝜓) by 𝑆( 𝜓𝑖𝑗 ) 

(where 𝜓𝑖𝑗 is the spherical distance from the computation point P (φ, λ) to the centre of 

block 𝛥𝜎𝑖𝑗), then equation (2.10) becomes 

 

 

Simplifying this equation further gives 

 

 

where 𝐴𝑖𝑗  denotes the area of block 𝛥𝜎𝑖𝑗 and is given by 

 

 

i.e. 

 

 

 
Ñ (𝜑, 𝜆) =

𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

= ∑ ∑
𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝛥𝜎𝑖𝑗

𝑀2

𝑗=1

𝑀1

𝑖=1

 (2.10) 

 
Ñ (𝜑, 𝜆) ≅ ∑ ∑

𝑅

4𝜋𝛾
∬ 𝛥𝑔𝑖𝑗̅̅ ̅̅ ̅̅   𝑆( 𝜓𝑖𝑗 ) 𝑑𝜎

𝛥𝜎𝑖𝑗

𝑀2

𝑗=1

𝑀1

𝑖=1

  

 
Ñ (𝜑, 𝜆) =  (

𝑅

4𝜋𝛾
) ∑ ∑  𝛥𝑔𝑖𝑗̅̅ ̅̅ ̅̅   𝑆( 𝜓𝑖𝑗 )𝐴𝑖𝑗 

𝑀2

𝑗=1

𝑀1

𝑖=1

 (2.10′) 

 
𝐴𝑖𝑗 = ∬ 𝑑𝜎

𝛥𝜎𝑖𝑗

= ∫ ∫ cos 𝜑
λ𝑗+

1
2

𝛥λ

λ𝑗−
1
2

𝛥λ

𝑑𝜑𝑑λ
𝜑𝑖+

1
2

𝛥𝜑

𝜑𝑖−
1
2

𝛥𝜑

  

 𝐴𝑖𝑗 = 2𝛥λ sin (
1

2
𝛥𝜑) 𝑐𝑜𝑠𝜑𝑖 = 𝐴𝑖   (2.11) 
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where 𝜑𝑖 and λ𝑗 denote the latitude and longitude of the centre of the block 𝛥𝜎𝑖𝑗 and they 

can be calculated from the following formulae 

 

 

and 

 

Finally 𝜓𝑖𝑗 can be obtained from 

 

 

Stokes function can also be written in a much simpler form as 

 

 

where 

 

 

 

 𝜑𝑖 = 𝜑𝑚𝑖𝑛 + (𝑖 −
1

2
) 𝛥𝜑 (2.12a) 

 λ𝑗 = λ𝑚𝑖𝑛 + (𝑗 −
1

2
) 𝛥λ (2.12b) 

 𝑐𝑜𝑠𝜓𝑖𝑗 = 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜑𝑖 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜑𝑖cos (λ − λ𝑗)  

 
𝑆(𝑡) = 1 − 5𝑡 − 3√2 − 2𝑡 + √

2

1 − 𝑡
− 3𝑡 ln (√

1 − 𝑡

2
+

1 − 𝑡

2
) (2.13) 

 𝑡 = 𝑐𝑜𝑠𝜓  
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2.3 Modification of Stokes’ integral 

 

The surface integral in Stokes’ formula (2.8) has to be applied over the whole Earth. 

According to Nsombo (1996) and Abdalla (2009), the original Stokes’ formula has a major 

drawback since it calls for a continuous coverage of gravity anomalies. However, 

practically the area is limited to a small spherical cap 𝜎𝑜, around the computation point due 

to limited coverage of available gravity anomaly data. Hence, the surface integral cannot 

be extended all over the Earth. Accordingly the surface integral has to be truncated to 

gravity anomaly area 𝜎𝑜 , and then we get an estimator of the geoidal height:  

 

 

The difference between geoidal height in equation (2.8) and the new estimator in equation 

(2.14) δN is called the truncation error of Stokes’ formula (Abdalla, 2009):   

 

 

where  𝜎 − 𝜎𝑜 is called the remote zone (the area outside the gravity area). As a result of 

this truncation, the computed geoid undulation suffers from a truncation error (Nsombo, 

1996).  

 

It is explained that the truncation error of the remote zone can be reduced when Stokes’ 

formula combines the short-wavelength terrestrial gravity anomalies and long-wavelength 

(up to maximum degree M) Global Geopotential Model (GGM). When combining 

information from the GGM with Stokes’ integration over local gravity data, regional geoid 

models may be estimated. Abdalla (2009) highlights two components that are considered 

 Ñ (𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

 (2.14) 

  𝑁̂(𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎−𝜎𝑜

 (2.15) 
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in geoid modeling. These are the long-wavelength component provided by a GGM (using 

spherical harmonics) and the short-wavelength component from local gravity observations. 

He explains that by using local gravity data, Stokes’ formula will be truncated to an inner 

zone, and that this results in truncation errors due to the lack of gravity data in remote 

zones. 

 

Various other authors including Kuroishi (1995), Lemonie et al. (1996), and Smith and 

Milbert (1999) have discussed different approaches to the minimisation of the truncation 

error as well as the possible compensation for the lack of a global coverage of gravity data 

by employing, among other methods, a combination of terrestrial gravity with global 

geopotential models (GGM) through the modification of Stokes’ formula. 

 

In addition to these, Amos et al. (2003) mentions that a modern gravimetric geoid uses a 

combination of three primary input data sources (Amos et al., 2003): 

(i) A  global geopotential model which provides most of the long and intermediate 

wavelength geoid undulations 

(ii) Terrestrial gravity data (from land or ship-based observations, or derived from 

satellite altimetry in open and maritime areas) in and surrounding the area of 

interest, which supply most of the intermediate wavelengths. 

(iii)  A high resolution digital elevation model (DEM), which supplies most of the short 

wavelengths, and is also required to satisfy theoretical demands of geoid 

computation from the geodetic boundary- value problem 

 

2.3.1 The RCR technique 

 

According to Sjöberg (2005) the Remove-Compute-Restore (RCR) technique is the most 

well-known method for regional gravimetric geoid determination today. Its basic theory is 

the first-order approximation of either Molodensky’s method or the classical geoid 

modelling by Helmert’s second method of condensing the topography onto the geoid. He 

explains that the method involves the removal of the less precise long-wavelength 
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terrestrial gravity anomaly field from Stokes’ integral by utilising a higher order reference 

field represented by a more precise Earth gravity model (EGM) and the restoration of the 

EGM as a low-degree geoid contribution in order to produce a high accuracy geoid model. 

He explains that further improvement is achieved also by removing and restoring a residual 

topographic effect, which favourably smoothes the gravity anomaly to be integrated in 

Stokes formula. 

 

Sjöberg (2005) makes the important point that the use of terrestrial gravity data in a Stokes-

type solution has been improved for regional geoid determination by using a higher-order 

reference field taken from an EGM. In these combined solutions, the EGM is primarily 

intended to represent the long-wavelength gravity field, while a Stokes-type integral with 

residual gravity computes the high frequency signal. The removal and restoration of the 

high-frequency topographic effects is done with the help of a digital terrain model (DTM). 

 

In the RCR technique Stokes’ integral does not operate on the full gravity anomaly, but 

only on a residual gravity anomaly reduced by the EGM and DTM (Sjöberg, 2005). 

 

Bajracharya (2003) as well as Srinivas et al. (2012) indicated that a global geopotential 

model, local gravity information and digital terrain model represent the low, medium and 

high frequency part of the gravity signal, respectively. They explain that the residual 

gravity anomaly ∆𝑔𝑟𝑒𝑠 is obtained after the removal of the long-wavelength gravity 

anomalies (using a global geopotential model) and the topographic effect from the 

terrestrial free-air gravity anomalies. First, the gravity anomalies are reduced in a remove 

step using a mass reduction scheme to formulate boundary values on the geoid, which can 

be expressed as (Bajracharya, 2003):   

 

 

 ∆𝑔𝑟𝑒𝑠 = ∆𝑔𝐹 − ∆𝑔𝑇 − ∆𝑔𝐺𝐺𝑀 (2.16) 
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where ∆𝑔𝐹 represents the free-air anomalies, ∆𝑔𝑇 the direct topographical effect on gravity 

for a particular reduction method used, and ∆𝑔𝐺𝐺𝑀 is the reference gravity anomaly from 

a geopotential model.      

 

The direct topographical effect on gravity ∆𝑔𝑇 for each mass reduction scheme can be 

expressed as (Bajracharya, 2003):   

 

 

where 𝐴𝑇  is the attraction of all topographic masses above the geoid and 

𝐴(𝐼𝑛𝑣,𝐶𝑜𝑛𝑑,𝐶𝑜𝑚𝑝,𝑅𝑒𝑓) represents the attraction of either inverted topographical masses, or the 

condensed masses, or the compensated masses, or the reference topographic masses for the 

Rudzki, Helmert, Airy-Heiskanen or Pratt-Hayford, and Residual Terrain Model (RTM) 

reduction schemes, respectively. 

 

The reference gravity anomaly ∆𝑔𝐺𝐺𝑀   and geoidal undulation 𝑁𝐺𝐺𝑀  at a computation 

point P (𝑟, 𝜃, 𝜆) are expressed by (Heiskanen and Moritz, 1967; Pavlis et. al. (2012) and 

Srinivas et al., 2012): 

 

 

 

 

where 𝐺𝑀 is the geocentric gravitational constant referring to the total mass (earth’s body 

plus atmosphere), (𝑟, 𝜃, 𝜆) are the spherical polar coordinates of the computation point P 

 ∆𝑔𝑇 = 𝐴𝑇 − 𝐴(𝐼𝑛𝑣,𝐶𝑜𝑛𝑑,𝐶𝑜𝑚𝑝,𝑅𝑒𝑓) (2.17) 

 
∆𝑔𝐺𝐺𝑀 (𝑟, 𝜃, 𝜆) =  (

𝐺𝑀

𝑟2
) ∑ (

𝑎

𝑟
)

𝑛

(𝑛 − 1) ∑ 𝑃𝑛𝑚 ( 𝑐𝑜𝑠𝜃)[𝐶𝑛̅𝑚

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

𝑐𝑜𝑠 𝑚𝜆

+ 𝑆𝑛̅𝑚𝑠𝑖𝑛 𝑚𝜆] 

(2.18) 

 
𝑁𝐺𝐺𝑀 (𝑟, 𝜃, 𝜆) =  (

𝐺𝑀

𝑟𝛾
) ∑ (

𝑎

𝑟
)

𝑛

∑ 𝑃𝑛𝑚 ( 𝑐𝑜𝑠𝜃)[𝐶𝑛̅𝑚

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

𝑐𝑜𝑠 𝑚𝜆

+ 𝑆𝑛̅𝑚𝑠𝑖𝑛 𝑚𝜆] 

(2.19) 
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(geocentric radius, co-latitude, and longitude, respectively), 𝛾 is the mean normal gravity, 𝑎 

is the semi-major axis of the ellipsoidal earth model, 𝐶𝑛̅𝑚 and 𝑆𝑛̅𝑚 are the fully normalized 

spherical harmonic coefficients of a global geopotential model (GGM), 𝑃̅𝑛𝑚  are the fully 

normalized Associated Legendre polynomials, 𝑛 and 𝑚 are the degree and order, 

respectively, of the expansion of a GGM. 

 

In the compute step the Stokes’ integral with residual gravity ∆𝑔𝑟𝑒𝑠 computes the high 

frequency signal  𝑁∆𝑔 (residual geoid) using equation 2.14.  

 

The total geoid obtained as the result of the restore step can be expressed as (Smith and 

Roman, 2001; Bajracharya, 2003; Dumrongchai et al., 2012; Srinivas et al., 2012): 

 

 

where 𝑁∆𝑔 represents residual geoid obtained by using ∆𝑔𝑟𝑒𝑠 from equation (2.16) in 

Stokes’ formula, 𝑁𝐺𝐺𝑀  denotes the long wavelength part of the geoid obtained from a 

global geopotential model, and 𝑁𝑖𝑛𝑑 is the indirect effect on the geoid which depends on 

the mass reduction scheme used.  

 

The removal or shifting of masses which underly the gravity reductions changes the gravity 

potential and hence the geoid. This change of the geoid is an indirect effect of the gravity 

reductions. The surface computed by Stokes’s formula without considering the indirect 

effect on geoid is called the cogeoid, which is not the geoid. This surface is also called the 

regularized geoid since it is obtained by regularizing the external masses above the geoid 

surface as Stokes’s approach requires (Heiskanen and Moritz, 1967). Figure 2.4 shows the 

relation between geoid and the co-geoid. The vertical distance between geoid and co-geoid 

caused by the change in potential due to the gravimetric reduction process is called the 

indirect effect on geoid. The indirect effect for Helmert’s second method of condensation 

can be obtained in planar approximation as (Wichiencharoen, 1982; Smith and Milbert, 

1999; Smith and Roman, 2001)   

 𝑁 = 𝑁∆𝑔 +  𝑁𝐺𝐺𝑀 + 𝑁𝑖𝑛𝑑  (2.20) 
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where  ℎ𝑃 is the elevation of point P, 𝜌 is the density of the earth’s crust, 𝐺 is the Universal 

gravitational constant, and 𝛾 is the normal gravity. 

 

Finally, making use of equation 2.14, we see that the total geoid for the RCR technique is 

given by  

 

 

 

Figure 2.4: The indirect effect on the geoid (Bajracharya, 2003) 

 

 

 𝑁𝑖𝑛𝑑 = −
𝜋𝐺𝜌

𝛾
ℎ𝑝

2 (2.21) 

 𝑁(𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬ ∆𝑔𝑟𝑒𝑠 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

+ 𝑁𝐺𝐺𝑀 + 𝑁𝑖𝑛𝑑  (2.20′) 
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2.3.2 Terrestrial gravity measurements 

 

According to Fan (2002) terrestrial gravity measurements have been the main information 

source for geoid determination since Stokes derived his well-known formula. It is the direct 

measurement of the magnitude of the gravity vector. However, due to different reasons not 

all parts of the world are covered by gravity surveys. This lack of continuous global 

coverage of terrestrial gravity measurements makes it impossible to apply Stokes’ formula 

in its original form, hence its restriction to a spherical cap (with adequate gravity 

information) and modification to incorporate long-wavelength satellite-based gravity field 

measurements for the region outside the spherical cap. 

 

2.3.3 Global Geopotential Models (GGMs) 

 

GGMs are spherical harmonic models of the Earth’s gravitational potential. This is 

according to Fan (2002) who alludes to the fact that Global Geopotential Models are 

primarily derived from satellite orbit tracking data and that high degree GGMs also use 

mean values of terrestrial gravity measurements as well as gravity anomalies over oceans 

derived from satellite altimetry data. He mentions that a GGM can best describe the global 

structure of the gravity field and thus the global shape and form of the geoid. However, it 

lacks details of the gravity field and the geoid due to high altitude of the satellites and 

sampling of point gravity data. 

 

EGM2008 is a spherical harmonic model of the Earth’s gravitational potential (a GGM), 

developed by a least squares combination of the ITG-GRACE03S gravitational model and 

its associated error covariance matrix, with the gravitational information obtained from a 

global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular 

grid. This grid was formed by merging terrestrial, altimetry-derived, and airborne gravity 

data. Over areas where only lower resolution gravity data were available, their spectral 

content was supplemented with gravitational information implied by the topography 

(Pavlis et al., 2012).  
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According to Pavlis et al. (2012) EGM2008 is complete to degree and order 2159, and 

contains additional coefficients up to degree 2190 and order 2159. Over areas covered with 

high quality gravity data, the discrepancies between EGM2008 geoid undulations and 

independent GPS/Leveling values are on the order of 5 to 10 cm. EGM2008 vertical 

deflections over USA and Australia are within 1.1 to 1.3 arc-seconds of independent 

astrogeodetic values. These results indicate that EGM2008 performs comparably with 

contemporary detailed regional geoid models. EGM2008 performs equally well with other 

GRACE-based gravitational models in orbit computations. Over EGM96, EGM2008 

represents improvement by a factor of six in resolution, and by factors of three to six in 

accuracy, depending on gravitational quantity and geographic area. The reader is referred 

to Pavlis et al. (2008, 2012) for details on the EGM2008. 

 

It is important to note here the achievable accuracy of EGM2008 reported by Pavlis et al. 

(2012). This is very important because it is clear that the use of this high resolution 

EGM2008 is likely to improve significantly the accuracy of regional gravimetric geoid 

models. This is so because the contribution of the GGM to the total geoidal undulation 

solution is greater in the Modified Stokes’ formula compared to that of the terrestrial 

gravity field. The terrestrial gravity field which supplies most of the intermediate 

wavelength only contributes towards the residual cogeoid height 𝑁∆𝑔(see equation 2.20). 

 

2.3.4 Digital Terrain Models (DTM) 

 

DTMs are terrain heights in regular grid format. They provide detailed description of the 

surface of the earth on which gravity measurements are made and thus contribute to the 

determination of the high-frequency information of the gravity field and the geoid (Fan, 

2002). 

 

Stokes formula assumes that there are no masses outside the geoid and that the gravity 

anomalies are given on the geoid. These two assumptions are not true and gravity reduction 

is thus needed. As topographic masses near the point of geoid computation has direct and 

significant influences on the gravity and the geoid at the computation point, terrain data 
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can be used to model the high frequency details of the gravity field and the geoid (Fan, 

2002). 

 

2.4 Determination of the geoid from ground level anomalies  

 

It is by now clear that the reduction of gravity to sea level necessarily involves assumptions 

concerning the density of the masses above the geoid. This is so because it is impossible to 

determine the density of the masses at every point between the geoid and the ground. In 

practice an assumption that 𝜌 = 2.6𝑔/𝑐𝑚3 is usually made. 

 

To avoid this assumption, Molodensky in 1945 proposed a different approach. Figure 2.5 

shows the geometrical principles of this method.  

 

 

Figure 2.5: The height anomaly (Hofmann-Wellenhof & Moritz (2006) page 297) 

 

The ground point P is projected onto the ellipsoid according to Helmert. However, the 

geometric height h is now determined by (Heiskanen and Moritz, 1967): 
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where  𝐻∗is the normal height replacing the orthometric height H, and the height anomaly 

𝜁 replacing the geoidal undulation N. The vertical distance from the ellipsoid to the 

telluroid is the normal height 𝐻∗. The height anomaly is given by (Heiskanen and Moritz, 

1967): 

 

 

closely corresponding to the geoidal undulation N = h – H, which is the difference between 

the geometric and the orthometric height. 

 

The gravity anomaly (According to Molodensky’s theory) is now defined as (Heiskanen 

and Moritz, 1967; Abdalla, 2009): 

 

 

It is the difference between the actual gravity as measured on the ground and the normal 

gravity on the telluroid. 

 

Molodensky anomalies are referred to ground level, whereas the classical gravity 

anomalies are referred to sea level. A direct formula for computing 𝛾 at Q is (Heiskanen 

and Moritz, 1967; Abdalla, 2009):  

 

 ℎ = 𝐻∗ + 𝜁 (2.22) 

 𝜁 = ℎ − 𝐻∗ (2.22′) 

 ∆𝑔 = 𝑔𝑃 − 𝛾𝑄 (2.23) 
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where 𝛾𝑜 is the corresponding value on the ellipsoid, a is the ellipsoid’s semi-major axis, 

and m is as given in Heiskanen and Moritz (1967, page 75). 

 

The height anomaly is given by the equation (Heiskanen and Moritz, 1967; Sjöberg, 2005): 

 

 

The reader is referred to Heiskanen and Moritz (1967) as well as Sjöberg (2005) for a 

description of the terms in equation 2.25. 

 

Finally, Heiskanen and Moritz (1967) and Sjöberg (2005) state that the geoidal undulation 

N, can be obtained from the height anomaly 𝜁 as follows: 

 

 

where 𝑔̅ is the mean gravity along the plumb line between geoid and ground, and 𝛾̅ is the 

mean normal gravity along the normal plumb line between ellipsoid and telluroid, and the 

term 𝑔̅ − 𝛾̅ is approximately equal to the Bouguer anomaly ∆𝑔𝐵. 

 

 

 

 
𝛾 = 𝛾𝑜[1 − 2(1 + 𝑓 + 𝑚 − 2𝑓𝑠𝑖𝑛2𝜑)

𝐻∗

𝑎
+ 3 (

𝐻∗

𝑎
)

2

] (2.24) 

 𝜁 = 𝜁0 + 𝜁1 =
𝑅

4𝜋𝛾𝑄
∬ ∆𝑔 𝑆(𝜓) 𝑑𝜎

𝜎

+
𝑅

4𝜋𝛾𝑄
∬ 𝐺1 𝑆(𝜓) 𝑑𝜎

𝜎

 (2.25) 

 𝑁 = 𝜁 + 𝐻∗ − 𝐻 = 𝜁 +
𝑔̅ − 𝛾̅

𝛾̅
𝐻 ≅ 𝜁 +

∆𝑔𝐵

𝛾̅
𝐻 (2.26) 
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2.5 Case studies 

 

1. Mozambique geoid model (MOZGEO 2002) 

 

To develop the MOZGEO 2002, various data sets related to geoid determination were 

collected. Terrestrial gravity measurements made in Mozambique during the period of 

Portugal rule and later by UK Military Service, as well as gravity measurements made in 

Malawi, South Africa, Tanzania, Zambia, and Zimbabwe were used. Digital terrain heights 

in Southern Africa from the 30′′ by 30′′ GLOBE digital terrain model were secured. A 

global geopotential model GPM98C, complete to degree and order 1800 was used in geoid 

determination by Modified Stokes’ formula (Fan, 2002). 

 

5′ by 5′ mean gravity anomalies were derived from the terrestrial gravity measurements. It 

turned out, however, that only about 12 percent of the 5′ by 5′ blocks were covered by 

gravity measurements in Southern Africa. Within Mozambique, the northern part of the 

country lacked gravity measurements except 59 UK gravity data points, while the southern 

part was relatively better surveyed. The remaining empty blocks were filled by GPM98C-

derived gravity anomalies, leading to a complete set of 5′ by 5′ for the data area. 

 

As a test of MOZGEO 2002, geoid heights were computed at 13 GPS/Leveling stations in 

the Mozambique GPS network. The gravimetrically computed geoid heights were 

compared to GPS/leveling derived geoid heights. For the total of 13 stations, an average 

difference of 16cm, with a standard deviation of 1.467 metres was found. At 5 GPS stations 

located in Southern Mozambique, the differences were all below one metre, while large 

differences existed in the poorly surveyed Northern Mozambique (Fan, 2002). 

 

The Modified Stokes’ formula after Smith and Milbert (1999) and Smith and Roman 

(2001) was employed as follows 

 

𝑁(𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬(∆𝑔 − ∆𝑔𝐺𝐺𝑀) 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

+ 𝑁𝐺𝐺𝑀 + 𝑁𝑖𝑛𝑑  
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where 

 

∆𝑔 = ∆𝑔𝐹 + 𝐶𝑃 + 𝐴 

 

Here ∆𝑔 is the reduced terrestrial free-air gravity anomaly, ∆𝑔𝐹 is the terrestrial free-air 

gravity anomaly, 𝐶𝑃 is the terrain correction, and 𝐴 is the atmospheric correction. The 

terrain correction is given by 

 

𝐶𝑝 =
1

2
𝐺𝜌𝑅2 ∬

(𝐻 − 𝐻𝑃)2

𝑙𝑜
3  𝑑𝜎 

𝜎

 

 

where  

R = mean earth radius 

𝜌 = mean crustal distance 

𝑙𝑜 = 2𝑅𝑠𝑖𝑛 (
𝜓

2
) = spherical distance between computation and running point 

𝐻𝑃 = orthometric height of computation point 

𝐻 = orthometric height of running point 

𝐺 = Universal gravitational constant 

 

The atmospheric correction is given by 

 

𝐴 = 0.8658 − 9.727 ∗ 10−5 ∗ 𝐻𝑃 + 3.482 ∗ 10−9 ∗ 𝐻𝑃
2 

 

∆𝑔𝐺𝐺𝑀 is as given in equation 2.18 

𝑁𝐺𝐺𝑀 is as given in equation 2.19 

𝑁𝑖𝑛𝑑 is as given in equation 2.21 
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2. The Uganda geoid model (UGG2014) 

 

According to Sjöberg et al. (2015) the remove-compute-restore (RCR) is perhaps the most 

well-known approach to gravimetric geoid determination and has been applied in most 

parts of the world. They further mention that, as an alternative, the Least Squares 

Modification of Stokes formula (LSMS) with additive corrections (AC), commonly called 

the KTH method, has been gaining prominence since winning the geoid modeling 

competition at the International Hotine-Marussi Symposium in 2009. The method was 

developed at the Royal Institute of Technology (KTH) Division of Geodesy by Sjöberg. 

Sjöberg et al. (2015) reveal that, compared to other methods, this method is superior 

because it is the only method that minimizes the expected global mean square error of the 

estimated geoid height. They state that in contrast to most other methods of modifying 

Stokes’ formula, which only strive at reducing the truncation error, the KTH method 

matches the errors of truncation, gravity anomaly and the Global Geopotential Model 

(GGM) in a least squares sense. 

 

The computation of a gravimetric geoid model over Uganda (UGG2014) was done by 

Sjöberg et al. (2015) using the KTH Method who mentions that for many developing 

countries such as Uganda, precise gravimetric geoid determination is hindered by the low 

quantity and quality of the terrestrial gravity data. With only one gravity data point per 65 

square kilometres, gravimetric geoid determination in Uganda appears an impossible task. 

However, recent advances in geoid modelling techniques coupled with the gravity-field 

anomalies from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) 

satellite mission have opened new avenues for geoid determination especially for areas 

with sparse terrestrial gravity. UGG2014 was derived from sparse terrestrial gravity data 

from the International Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digital 

Elevation Model from CGIAR-CSI and the GOCE-only global geopotential model 

GO_CONS_GCF_2_TIM_R5. To compensate for the missing gravity data in the target 

area, the surface gravity anomalies extracted from the World Gravity Map 2012 were 

employed. Using 10 Global Navigation Satellite System (GNSS)/levelling data points 

distributed over Uganda, the RMS fit of the gravimetric geoid model before and after a 4-
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parameter fit is 11 cm and 7 cm respectively. These results show that UGG2014 agrees 

considerably better with GNSS/levelling than any other recent regional/global gravimetric 

geoid model. The results also emphasize the significant contribution of the GOCE satellite 

mission to the gravity field recovery, especially for areas with very limited terrestrial 

gravity data. With an RMS of 7 cm, UGG2014 is a significant step forward in the modelling 

of a “1-cm geoid” over Uganda despite the poor quality and quantity of the terrestrial 

gravity data used for its computation (Sjöberg et al., 2015).  

 

The Least Squares Estimator of the KTH method is given by Sjöberg et al. (2015) as 

 

Ñ (𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬ ∆𝑔 𝑆𝐿(𝜓) 𝑑𝜎

𝜎𝑜

+ 𝑐 ∑(𝑄𝑛
𝐿

𝑀

𝑛=0

+ 𝑠𝑛 )∆𝑔𝑛
𝐺𝐺𝑀 + 𝛿𝑁𝑐𝑜𝑚𝑏

𝑇 + 𝛿𝑁𝑑𝑤𝑐 + 𝛿𝑁𝑡𝑜𝑡
𝑎

+ 𝛿𝑁𝑡𝑜𝑡
𝑒  

 

where 𝜎𝑜 is the spherical cap, R is the mean Earth radius, γ is mean normal gravity on the 

reference ellipsoid, 𝑆𝐿(𝜓) is the modified Stokes’ function, c = R/2γ, 𝑠𝑛 are the 

modification parameters, M is the maximum degree of the GGM, L is the maximum degree 

of modification, 𝑄𝑛
𝐿 are the Molodensky truncation coefficients, ∆g is the unreduced 

surface gravity anomaly, ∆𝑔𝑛
𝐺𝐺𝑀 is the Laplace surface harmonic of the gravity anomaly 

determined by the GGM of degree n. The estimator in the equation is the so-called 

combined estimator, which means that the truncated Stokes’ formula is applied to the 

unreduced surface gravity anomaly after which the final geoid height is determined by 

adding a number of additive corrections, i.e. , 𝛿𝑁𝑐𝑜𝑚𝑏
𝑇  - the combined topographic 

correction, 𝛿𝑁𝑑𝑤𝑐  the downward continuation correction, 𝛿𝑁𝑡𝑜𝑡 
𝑎 - the total atmospheric 

correction and 𝛿𝑁𝑡𝑜𝑡
𝑒 - the total ellipsoidal correction. For details regarding the additive 

corrections, the reader is referred to Sjöberg et al. (2015). 
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i. Global geopotential model used 

 

For the computation of UGG2014, the GOCE-only model GO_CONS_GCF_2_TIM_R5 

up to degree 280 was used, whose standard deviations of 37 cm and 29 cm before and after 

the 4-parameter fitting respectively are the lowest for the satellite-only GGMs. This was 

preferred in order to guard against correlations that may arise between the errors in the 

GGM and the terrestrial gravity anomalies in the case of the combined model. However, 

these results also highlight the contribution of the GOCE satellite mission to the gravity 

field recovery as the difference in standard deviations between the GOCE-only model to 

degree and order 280 and the combined model (EGM2008) complete to degree and order 

2159 is approximately only 17cm. 

 

ii. The DEM used 

 

The 3 arc second SRTM ver4.1 Digital Elevation Model from CGIAR-CSI was used in 

geoid computation. Height information was used in the computation of the Bouguer 

correction, which was used in the conversion of the surface free-air anomalies to Bouguer 

anomalies which were then used in the gridding procedure. In addition, heights were 

required in the computation of the combined topographic correction and the downward 

continuation (DWC) effect, which are additive corrections to the approximate geoid height.  

 

3. The Sudan gravimetric geoid model  

 

Abdalla (2009) determined a gravimetric geoid model of Sudan using the method of the 

Royal Institute of Technology (KTH) developed by Professor L.E Sjöberg as in the case of 

the Uganda geoid model. He reports that the method is based on least-squares modification 

of Stokes’ formula (LSMS).  Herein the modified Stokes’ function is applied instead of the 

original one, which has a very significant truncation bias unless a very large area of 

integration is used around the computation point. 
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In the KTH method, the surface gravity anomaly and GGM are used with Stokes’ formula, 

providing an approximate geoid height. Previously, several corrections must be added to 

gravity to be consistent with Stokes’ formula. In contrast, here all such corrections 

(Topographic, Downward Continuation, Ellipsoidal and Atmospheric effects) are added 

directly to the approximate geoid height. This yields the corrected geoid height, which may 

be tested against geometrical geoid height derived from the GPS/levelling data, so as to 

assess the precession of the gravimetric geoid model. 

 

Finally, the assessment of the new gravimetric geoid was done in absolute sense by 

computing the global mean square error as an internal accuracy, while the external 

accuracy determined by comparing with GPS/levelling in term of relative sense. The 

standard deviation is served as an indication of accuracy in absolute sense, and in the study 

the standard deviation of the agreement between the new geoid and 19 GPS/levelling points 

after 7-parameter fitting was estimated to 0.29 m. The additive corrections had improved 

the standard deviation of the final gravimetric geoid height after using 7-Parameter fitting 

to become 0.29 m instead of 0.42m of the uncorrected geoid heights. 

 

The computation formula applied here is the same as that applied in the case of Uganda 

above (KTH Method). 

 

4. Gravimetric geoid of a part of South India 

 

Srinivas et al. (2012) computed a geoid model for a part of South India using the RCR 

technique. Computed geoid undulations are compared with geoid obtained from global 

geopotential models such as EGM2008 and EIGENGRACE02S and measured GPS-

levelling records at 67 locations. Statistical analysis of comparison suggested that the 

computed gravimetric geoid model had a good match with the geoid determined from GPS-

levelling with rms of 0.1 m whereas EGM2008 has 0.46 m. The differences of GPS-

levelling with EGM2008 at majority of stations fell in the range of ±0.5 m, which indicates 
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that EGM2008 may be used for orthometric height determination with an accuracy of <0.5 

m in the south Indian region and offers a reasonably good transformation platform from 

ellipsoid to local datum. However, Srinivas et al. (2012) insist that local determination of 

geoid is necessary for better accuracy of orthometric height from GPS. The gravimetric 

geoid calculated from the available gravity data showed considerable improvement to the 

global model and can be used to achieve orthometric height with an accuracy of 0.1 m. 

 

They also mention that hybrid global geopotential models such as EGM2008 use long 

wavelength data from satellites and short wavelength data from available terrestrial gravity, 

and that these models provide fairly good information over a region of small geoidal 

anomalies, or when substantial data from that region are used in developing the model; 

which is not the case for South India (and here geoidal height decreases up to -106 m in 

the Indian ocean). 

 

The geoidal undulations were computed as in equation (2.20′) and this is repeated here: 

 

𝑁(𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬(∆𝑔𝑟𝑒𝑠) 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

+ 𝑁𝐺𝐺𝑀 + 𝑁𝑖𝑛𝑑  

 

where ∆𝑔𝑟𝑒𝑠 is as given in equation (2.16). 

 

5. The Thailand geoid model (THAI12G) 

 

According to Dumrongchai et al. (2012), the non-tidal EGM2008 global geopotential 

model from degree 2 to 2190, and 3949 terrestrial gravity measurements were used to 

contribute long and medium-scale information of geoid structure for THAI12G gravimetric 

model using the RCR technique. 

 

They mention that since the gravimetric determination of the geoid requires adequate and 

accurate gravity data over the area of computation, significant errors may result from where 

there are data gaps in gravity measurements. Therefore, in the mountainous terrains devoid 
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of gravity measurements, topography-implied gravity anomalies were simulated using high 

resolution residual terrain model (RTM) data from a three-arcsecond digital elevation 

model (DEM). The Shuttle Radar Topography Mission (SRTM) three-arc-second DEM 

contributed high frequency gravity field signals and was also used to generate terrain 

corrections for the computation of Faye anomalies (free air anomalies plus terrain 

corrections). EGM2008-only gravity anomalies were used to pad coastal and marine areas 

as well as neighbouring countries to reduce spurious features during gridding of the areas.  

 

Fits of 200 GPS/leveling reference points to THAI12G showed a 60.6cm root mean square 

(rms).  

 

It was also noted that THAI12G performs equivalently to EGM2008, i.e. there is no 

significant difference between the two models and that this may indicate that EGM2008 

can be used alone over Thailand. They further claim that these numerical findings signify 

that the addition of Thailand local gravity data does not deteriorate the long-and-medium 

wavelength structures of EGM2008 in THAI12G. Finally, they conclude that the accuracy 

of THAI12G can be significantly improved if more terrestrial gravity data becomes 

available (Dumrongchai et al., 2012). 

 

The computation formulae in this case is as given in equation (2.20′). The reduced free-air 

anomalies are Faye anomalies. 

 

These appropriate case studies (research) together with the other literature herein reviewed 

provided the enlightenment required for geoid determination over Zambia. These case 

studies and literature were specifically referred to for the following reasons 

i. They reveal important and practical principles in gravimetric geoid determination 

ii. They reveal the recent and popular methods in geoid determination across the world 

iii. They help give an insight into the levels of accuracy that may be expected in 

gravimetric geoid determination in different scenarios 

iv. They reveal the not so obvious techniques required for geoid determination 

especially in areas like Zambia with scarce gravity data. For instance, they reveal 
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how to overcome such a challenge through void-filling and good interpolation 

techniques in order to come up with a gridded data set which is a prerequisite in 

geoid determination using Stokes’ formula. 

v. They highlight the strength or accuracy of the GGMs in regional gravity modeling. 

It is for this reason that even for areas like Zambia, with scanty gravity data, there 

is hope that the few terrestrial gravity measurements can help improve the already 

practically accurate EGM2008, albeit by a small margin. 

 

The methodology and strategies for geoid determination over Zambia will now be 

presented. 
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CHAPTER 3         RESEARCH METHODOLOGY 

 

In this chapter the research approach and design is discussed. Basically, the strategy, data 

and steps required to determine a better geoid model for Zambia are outlined.  

 

3.1 Study area 

 

The research aimed at coming up with a geoid model over Zambia, i.e. between 18°S ≤ φ 

≤ 8°S and 22°E ≤ λ ≤ 34°E. Figure 3.1 shows the study area. 

 

 

Figure 3.1: Study area (Zambia: 18°S ≤ φ ≤ 8°S and 22°E ≤ λ ≤ 34°E) 
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3.2 Research approach and design 

 

As discovered in literature review, the Remove-compute-restore (RCR) is the most 

common technique for gravimeric geoid determination in the world at the moment. This 

method has served its purpose so well thus far.  

 

According to Sjöberg et al. (2015), the Least Squares Modification of Stokes formula 

(LSMS) with additive corrections (AC), commonly called the KTH method is an 

alternative to the RCR technique. They mention that the KTH method is superior because 

it is the only method that minimizes the expected global mean square error of the estimated 

geoid height i.e. in contrast to most other methods of modifying Stokes’ formula, which 

only strive at reducing the truncation error, the KTH method matches the errors of 

truncation, gravity anomaly and the Global Geopotential Model (GGM) in a least squares 

sense. 

 

Sjöberg (2005) argue that the RCR technique must employ the modified Stokes’ kernel 

technique and all the refined topographic, atmospheric, and other corrections to gravimetric 

geoid determination available today. They mention that if this is not taken care of, a precise 

EGM that in future will result from the satellite gravity and gradiometry missions, in 

combination with the RCR technique will most probably not achieve today’s demands for 

a 1-cm geoid model. 

 

For this study, however, the well-known RCR technique described in Section 2.3.1 and 

employed in geoid determination by the likes of Smith and Milbert (1999), Fan (2002), 

Srinivas et al. (2012), and Dumrongchai et al. (2012) was adopted by the author for its 

simplicity and convenience. The KTH method which is beginning to gain prominence may 

be theoretically superior to the RCR technique, but it will not be used for now as it requires 

much study. As has been noted in literature review, accuracies of geoid models in the range 

of 10cm are achievable in certain parts of the world using the RCR technique.  
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3.2.1 Computation formula  

 

The geoid computation formula employed in this study is the Modified Stokes’ formula 

based on the RCR technique as described in Section 2.3.1. The formula is given by equation 

2.20′, and is repeated here. 

 

 

All the terms are as described in Sections 2.2.1 and 2.3.1.  

 

Suffice to mention that the geoidal undulations were also approximated using surface free-

air anomalies by employing equations 2.25 and 2.26. However the small correction term 

containing 𝐺1 (equation 2.25) which represents the effect of the topography (or the terrain 

correction) was neglected. The major reason for its exclusion is the complication associated 

with its computation. According to Heiskanen and Moritz (1967) and Dumrongchai et al. 

(2012) the terrain correction computation method requires the use of rectangular prisms or 

templates and fast fourier transforms (FFT), a method which at present is a challenge. 

Nevertheless, Heiskanen and Moritz (1967) argue that the terrain correction is a small 

correction, and that even for mountains 3000 metres in height, the terrain correction is only 

of the order of 50 mgals. Hence, for practical geoid determination, it may be neglected, but 

theoretically it is important. 

 

3.2.2 Computation procedure 

 

The surface integral in equation 2.20′ above was solved numerically using the technique 

described in Section 2.2.2. The integration was restricted to the study area i.e. between 

18°S ≤ φ ≤ 8°S and 22°E ≤ λ ≤ 34°E. 

 𝑁(𝜑, 𝜆) =
𝑅

4𝜋𝛾
∬ ∆𝑔𝑟𝑒𝑠 𝑆(𝜓) 𝑑𝜎

𝜎𝑜

+ 𝑁𝐺𝐺𝑀 + 𝑁𝑖𝑛𝑑  (2.20′) 
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Determination of the geoid requires that an appropriate grid of geoidal undulations over a 

study area be computed. The task was to compute this grid of geoidal undulations N at a 

set of pre-defined computation points forming a 5′ by 5′ grid over Zambia. With this grid 

of geoidal undulations, the geoid over Zambia could be well described, and interpolation 

at any other point would be possible. The geoid determination procedure was as follows: 

 

1. Creation of a 5′ by 5′ grid over Zambia corresponding to the 5′ by 5′ resolution of the 

EGM2008 used in the geoid computation. The grid intersections are the computation 

points at which the geoidal undulations 𝑁(𝜑, 𝜆) are to be calculated. Between 18°S ≤ 

φ ≤ 8°S and 22°E ≤ λ ≤ 34°E we get a grid of 121 rows and 145 columns corresponding 

to 17,545 computation points. 

 

2. Creation of a set of coordinates for each 5′ by 5′ block (grid centres) at which gravity 

anomalies are to be provided (both terrestrial free-air anomalies and free-air anomalies 

calculated from a global geopotential model (EGM2008). The block centres are 

calculated using equation 2.12. Between 18°S ≤ φ ≤ 8°S and 22°E ≤ λ ≤ 34°E we have 

a total of 17,280 block centres. 

 

3. Computation of mean heights at each block centre using the SRTM 3′′ DEM 

 

4. Determination of mean terrestrial free-air gravity anomalies at the block centres in 

order to produce a gridded data set required for numerical evaluation of Stokes’ 

integral. 

 

5. Computation of residual gravity anomaly ∆𝑔𝑟𝑒𝑠 at each block centre by using equation 

2.16. However, in this study the direct topographical effect (or terrain correction) was 

not applied due to the reasons already alluded to in Section 3.2.1.  
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6. Application of Stokes’ formula on the residual free-air gravity anomaly at each 

computation point to obtain the residual co-geoid height 𝑁∆𝑔 

 

7. Finally, the total geoidal undulation at each computation point is obtained by adding 

the contribution of the GGM and the indirect effect (equation 2.20′ above) 

 

All computations were done in MATLAB (Student version R2016a). All the inputs into 

the formula (2.20′) were matrices. The computations were performed using diverse matrix 

manipulations. 

 

3.2.3 GPS observations at benchmarks 

 

The research required static GPS observation of as many benchmarks as possible to 

facilitate evaluation of the determined geoid model through the criteria found in Section 

3.5. These benchmarks which are currently so few in Zambia had to be found for this 

purpose. Benchmarks in Zambia were established along the main roads starting from the 

main reference benchmark that was located in Chirundu. Unfortunately, it is very hard to 

find benchmarks as most of them have been removed during road works or for some other 

reasons. This is a very sad state of affairs. The Zambia Survey Department some 5 years 

ago undertook an exercise to take stock of the remaining benchmarks along the main roads 

from Livingstone to Kapiri-Mposhi via Lusaka. Only a few benchmarks were found intact. 

Nevertheless four (4) benchmarks were found intact along the Lusaka-Mazabuka and 

Lusaka-Kabwe road. Table 3.1 below gives the details of the benchmarks utilised in model 

evaluation.  
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Table 3.1: Benchmarks used for model evaluation 

BENCHMARK 

WGS84 

LONGITUDE 

WGS84 

LATITUDE LOCATION 

BM18M5 28.19315556° -15.74516389° Kafue 

BM19M5 28.19537500° -15.89355000° Along Mazabuka road 

BM10M15 28.21038611° -15.05557778° Along Kabwe road  

BM10M20 28.22565278° -15.12163611° Along Kabwe road  

 

Figure 3.2 below is a location map of the benchmarks BM18M5 and BM19M5 whereas 

Figure 3.3 is a map showing the location of benchmarks BM10M15 and BM10M20. Figure 

3.4 is a location map showing all the 4 benchmarks together, but at a smaller scale. 

 

 

Figure 3.2: Location map of benchmarks BM18M5 and BM19M5 
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Figure 3.3: Location map of benchmarks BM10M15 and BM10M20  

 

It is still expected that more benchmarks can be found in other parts of the country. 

However, due to time and financial constraints the search for benchmarks could only be 

limited to the area around Lusaka province. 
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Figure 3.4: Location map of the 4 benchmarks used for Model evaluation 
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Figure 3.5 below displays a summary of the geoid determination procedure 

 

 

Figure 3.5: Geoid determination procedure 

 

3.3 Data 

 

As already highlighted three sets of data are required for regional gravimetric geoid 

determination: terrestrial gravity anomalies, global geopotential model coefficients, and 

elevation information supplied by a digital elevation model (DEM). The three data sets 

used in this study are briefly described in the following sections.  
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 3.3.1 Terrestrial gravity anomalies over Zambia 

 

The gravity measurements over Zambia are scanty with an average density of 1 gravity 

measurement per 97 square kilometres (Nsombo, 1998). This poses a challenge in 

gravimetric geoid determination. The author was able to secure a data set of 12560 point 

free-air anomalies from the research supervisor. This data set originated from the Zambia 

Geological Survey Department. Figure 3.6 shows the distribution of these gravity 

anomalies. Note the gaps in data over the study area. Table 3.2 gives the statistics of these 

terrestrial point free-air anomalies over Zambia 

 

In this study, surface free-air anomalies over the study area were also acquired from the 

International Gravimetric Bureau (BGI) via their official website http://bgi.omp.obs-

mip.fr/data-products/Gravity-Databases. The overall task of BGI is to collect, on a world-

wide basis, all measurements and pertinent information about the earth’s gravity field, to 

compile them and store them in a computerised data base in order to redistribute them on 

request to a large variety of users for scientific purposes. BGI has a global gravity database 

(which combines terrestrial gravity measurements and EGM2008 gravity data) from which 

grids of surface free-air anomalies can be extracted and downloaded. These were used to 

determine the geoidal undulations via the height anomaly. Figure 3.7 shows the distribution 

of these gravity anomalies. 
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Figure 3.6: Terrestrial point free-air anomalies over Zambia (Source: Zambia Geological Survey) 

 

 

Table 3.2: Statistics of point terrestrial free-air anomalies over Zambia. Unit is mGals. No. of 

points = 12560 

Maximum 181.13 

Minimum -477.44 

Mean -1.77 

Standard deviation 43.63 
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Figure 3.7: BGI land gravity data over Zambia (Source: http://bgi.omp.obs-mip.fr/data-

products/Gravity-Databases) 

 

3.3.2 Global geopotential model 

 

EGM2008 was the global geopotential model selected to be used in this study owing to its 

higher resolution when compared with other existing models. EGM2008 is complete to 

degree and order 2159, and contains additional coefficients up to degree 2190 and order 

2159. EGM2008 was used to supply the long-wavelength part of the gravity field. 

 

3.3.3 Digital elevation model (DEM) 

 

The Shuttle Radar Topography Mission (SRTM) 3′′ (or 90m) DEM was used to represent 

the high-frequency part of the gravity signal. The data covering the study area was 

downloaded from http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa. SRTM boasts 

the most complete near-global high-resolution database of the Earth’s topography. The 

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa
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Shuttle Radar Topography Mission is an international project spearheaded by National 

Geospatial-Intelligence Agency (NGA) and National Aeronautics and Space 

Administration (NASA).  

 

The data was downloaded in tiles (.hgt zip files) and was loaded into Global Mapper 

(Version 10.01) for visualization and extraction of XYZ grid i.e. latitude, longitude, and 

elevation text file. Figure 3.8 reveals the characteristics of the SRTM heights over Zambia 

whereas Table 3.3 shows the statistics of the SRTM heights over Zambia. 

 

 

Figure 3.8: Relief over Zambia (SRTM 3′′ DEM-generated) 
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Table 3.3: Statistics of SRTM heights over Zambia. Unit is metres.  

Maximum 2741 

Minimum 110 

Mean 1077 

Standard deviation 282 

 

3.4 Data preparation 

 

In order to use the formula for geoid computation, a gridded data set over the entire study 

area is required. The void areas or the gaps in terrestrial free-air gravity anomalies (See 

Figure 3.6) needed to be filled and a 5′ by 5′ grid of terrestrial gravity anomalies generated 

over the entire study area. Thus there was need to prepare the data sets going into the 

calculations. These data sets were prepared as follows: 

 

1. Terrestrial gravity anomalies 

 

A total of 12560 point free-air gravity anomalies over Zambia (Figure 3.6) were available. 

As can be clearly seen, the density and distribution of these anomalies is not good enough 

for geoid determination. Densification to a 5′ by 5′ grid corresponding to the resolution of 

EGM2008 was required. Void areas were filled with EGM2008-only gravity anomalies 

following the principle used by Fan (2002), Abdalla (2009), Dumrongchai et al. (2012), 

and Sjöberg et al. (2015). This is important in order to diminish interpolation errors in geoid 

determination. Infact, interpolation of gravity anomalies to void areas (based on terrestrial 

gravity anomalies alone) gave results that produced large errors in geoidal heights when 

the evaluation was done at the GPS/leveling points. The void or sparsely-filled areas are in 

7 blocks (B1 to B7): see Figure 3.9 below.  

 

The EGM2008-derived Bouguer anomalies were generated at a spacing of 5′ in these 

blocks using the online calculation service of the International Centre for Global Earth 
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Models (ICGEM) at http://icgem.gfz-potsdam.de/ICGEM/. The ICGEM is mainly a web 

based service and provides a web-interface to calculate gravity functionals (such as height 

anomaly, gravity anomalies, and geoidal undulations) from spherical harmonic models on 

freely selectable grids. 

 

 

Figure 3.9: Fill-in gravity anomaly areas 

 

The original 12560 point free-air anomalies were converted to Bouguer anomalies using 

the elevations of the gravity stations by application of the Bouguer plate 

reduction (−2𝜋𝐺𝜌𝐻). Then the Bouguer anomalies in the 7 blocks were added to the 

12560 terrestrial Bouguer gravity anomalies. The result was a data set of 27423 point 

Bouguer gravity anomalies which were used in interpolation to create a 2.5′ by 2.5′ gridded 

http://icgem.gfz-potsdam.de/ICGEM/
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data set over the study area. The Bouguer anomalies have good interpolatory properties 

whereas free-air anomalies are extremely dependent on topography, so that their 

interpolation is very inaccurate (unless their correlation with height is removed). This 

procedure is followed in light of what is discussed in literature (Heiskanen and Moritz 

(1967), Smith and Milbert (1999), Featherstone and Kirby (2000), Smith and Roman 

(2001), Dumrongchai et al. (2012) and Sjöberg et al. (2015)).  

 

The 2.5′ by 2.5′ grid of interpolated Bouguer anomalies was later converted to free-air 

anomalies by restoration of the Bouguer plate (+2𝜋𝐺𝜌𝐻). The SRTM DEM was very 

useful in this regard in providing the elevations at the gravity anomaly points. From the 

2.5′ by 2.5′ grid of free-air anomalies, a coarser grid of 5′ by 5′ mean free-air anomalies 

was generated.  This resulted in a grid of 17280 mean free-air anomalies which were used 

for geoid computation. 

 

The interpolation was performed in Surfer software (from Golden Software Inc., Colorado) 

using Kriging interpolation method. Kriging is one of the most flexible methods and is 

useful for gridding almost any type of data set. With most data sets, Kriging with a linear 

variogram is quite effective. In general this is the method that the manufacturer (Golden 

Software Inc.) most often recommends. Kriging is the default gridding method in Surfer 

because it generates the best overall interpretation of most data sets. Kriging attempts to 

express trends that are suggested in data, so that, for example, high points might be 

connected along a ridge, rather than isolated by bull's-eye type contours. For large data 

sets, however, it can be very slow.  

 

Actually, this Kriging with linear variogram method has been used by Abdalla (2009), 

Ulotu (2009), and Sjöberg et al. (2015) for gravity anomaly interpolation in areas with 

sparse gravity data (South Sudan, Tanzania, and Uganda respectively). 
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2. Global geopotential model (EGM2008) data 

 

The Modified Stokes formula requires as input long-wavelength gravity anomalies and 

geoidal undulations generated by means of GGM spherical harmonic coefficients. The 

ICGEM online calculation service was used to compute a 5′ by 5′ grid of both gravity 

anomalies and geoidal undulations. The long-wavelength gravity anomalies were 

computed at all block centres, whereas the long-wavelength geoidal undulations were 

computed at all computation points (grid intersections). These grids were loaded as 

matrices in the MATLAB program.  

 

Suffice to mention that the long-wavelength gravity anomaly grids computed included both 

the classical free-air anomalies and the surface (Molodensky) free-air anomalies. This is 

so because an attempt was made to calculate the geoid using both the classical Stokes’ 

approach (using classical free-air anomalies referred to the geoid) and the Molodensky 

approach (using surface free-air anomalies referred to the ground). 

 

3.5 Geoid model evaluation 

 

The accuracy of the gravimetric geoid model was tested at the four stations (benchmarks) 

with well-known orthometric heights H. To accomplish this, the ellipsoidal height h for 

each benchmark needs to be well-known. GPS static observations were made at the 

benchmarks and the results were post-processed using online processing services. The 

Online Positioning User Service (OPUS) provided by the National Geodetic Survey 

(United States), Australian Positioning Service (AUSPOS) provided by Geoscience 

Australia, and the Canadian Spatial Reference System Precise Point Positioning Service 

(CSRS-PPP) provided by Natural Resources Canada were used. AUSPOS and CSRS-PPP 

results agreed well (similar results) and provided more information regarding the 

measurement errors, so were adopted as the final post-processing coordinates for these 
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stations. The processed ellipsoidal heights for these GPS/leveling stations were then used 

for geoid model evaluation. The obtained ellipsoidal height of each benchmark was 

reduced to orthometric height 𝐻𝑀𝑜𝑑𝑒𝑙 by subtracting the geoidal undulation 𝑁𝑀𝑜𝑑𝑒𝑙 

provided by the geoid model i.e. 

 

 𝐻𝑀𝑜𝑑𝑒𝑙 = ℎ − 𝑁𝑀𝑜𝑑𝑒𝑙 

 

The computed orthometric height 𝐻𝑀𝑜𝑑𝑒𝑙 at each benchmark was then compared with the 

known orthometric height H, the error 𝜀 being given by  

 

 

Finally, the root mean square error (RMS) was used to evaluate the absolute error of the 

model as follows: 

 

 

For comparison’s sake the rms was computed for the model based on the classical Stokes’ 

solution as well as that based on surface free-air anomalies. In fact, the rms obtained by 

EGM2008 as a model on its own was also determined to check if the regional models 

utilising terrestrial gravity anomalies performed better than the EGM2008 over Zambia. 

 

The research findings and their discussion will now follow. 

 

 𝜀 =  𝐻𝑀𝑜𝑑𝑒𝑙 − 𝐻 (3.1) 

 

𝑟𝑚𝑠 = √(
1

𝑛
∑ 𝜀𝑖

2

𝑛

𝑖=1

) (3.2) 
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CHAPTER 4         FINDINGS AND DISCUSSION 

 

In this chapter the findings of the research are presented and discussed. 

 

4.1 Geoid model comparisons 

 

In chapter 3 it was made clear that an attempt was made to compute the geoid over Zambia 

using the RCR technique, but in two different ways. Firstly, the geoid model was computed 

by the RCR technique using classical free-air anomalies in equation 2.20′. For convenience 

this model will be referred to as ZG2016. Secondly, a geoid model based on Molodensky’s 

surface free-air anomalies was computed using equations 2.25 and 2.26. For convenience 

the model will be referred to as ZG2016M.  

 

In addition to the two regional gravimetric geoid models, the EGM2008 only (global 

model) is analysed and compared with the two models in the accuracy evaluation based on 

equation 3.2. This is a deliberate move aimed at checking how the two regional models, 

utilising terrestrial gravity data, perform when compared with EGM2008 (which gives the 

intermediate to long-wavelength geoid over Zambia). 

 

Tables 4.1 through to 4.3 below show the results of the fit of the three geoid models at the 

four GPS/Leveling points (benchmarks) already presented in Table 3.1 (Section 3.2.3). The 

evaluations are based on equations 3.1 and 3.2. 
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Table 4.1: Evaluation of geoid model ZG2016 

Benchmark Measured h (m) Model N (m) Model H (m) Known H (m) Error (m) 

BM18M5 1021.008 1.305 1019.703 1019.841 -0.138 

BM19M5 1031.503 1.524 1029.979 1029.975 0.004 

BM10M15 1124.189 -0.208 1124.397 1124.411 -0.014 

BM10M20 1101.612 -0.053 1101.665 1101.643 0.022 

        RMS 0.070 
 

Table 4.2: Evaluation of geoid model ZG2016M 

Benchmark Measured h (m) Model N (m) Model H (m) Known H (m) Error (m) 

BM18M5 1021.008 0.986 1020.022 1019.841 0.181 

BM19M5 1031.503 1.168 1030.335 1029.975 0.360 

BM10M15 1124.189 -0.515 1124.704 1124.411 0.293 

BM10M20 1101.612 -0.357 1101.969 1101.643 0.326 

        RMS 0.298 

 

Table 4.3: Evaluation of EGM2008 (only) 

Benchmark Measured h (m) Model N (m) Model H (m) Known H (m) Error (m) 

BM18M5 1021.008 1.363 1019.645 1019.841 -0.196 

BM19M5 1031.503 1.574 1029.929 1029.975 -0.046 

BM10M15 1124.189 -0.105 1124.294 1124.411 -0.117 

BM10M20 1101.612 0.040 1101.572 1101.643 -0.071 

        RMS 0.122 

 

To begin with, it can readily be noted that, of the three models analysed, ZG2016 model 

has the best accuracy as indicated by its lower rms error value (7.0cm). In these preliminary 

tests, it is quite amazing to see such high accuracies for EGM2008-only as geoid model 

over Zambia. It highlights the possibility of using this global model alone for geoid 

modeling over Zambia with errors of up to 12cm. The national/regional model combining 

an Earth Gravity Model (EGM2008) data and terrestrial gravity measurements betters 

EGM2008-only by only about 5cm. Things might get even better in future with the 

development of higher resolution GGMs. It is clear that the accuracy of regional 

gravimetric geoid models is highly dependent on the accuracy of GGMs used in their 
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computation. This is expected because the contribution of the GGM to the total geoidal 

undulation solution is greater in the Modified Stokes’ formula compared to that of the 

terrestrial gravity field. The terrestrial gravity field which supplies most of the short 

wavelength only contributes towards the residual cogeoid height 𝑁∆𝑔(see equation 2.20). 

 

These preliminary findings offer support to the claim by Pavlis et al. (2012) that over areas 

covered with high quality gravity data, the discrepancies between EGM2008 geoid 

undulations and independent GPS/Leveling values are of the order of 5 to 10 cm. Pavlis et 

al. (2012) state that EGM2008 performs comparably with contemporary detailed regional 

geoid models. Furthermore, they indicate that over EGM96, EGM2008 represents 

improvement by a factor of six in resolution, and by factors of three to six in accuracy, 

depending on gravitational quantity and geographic area. This is a very important piece of 

information as in this study an attempt was made to determine a better geoid model 

compared to ZG96 which was based on EGM96. Nsombo (1996) found at best an rms of 

0.69m when evaluating ZG96 at 17 GPS/Doppler points. The accuracy of these points may 

not have been so good, but still the preliminary results seem to conform to what Pavlis et 

al. (2012) suggest about the accuracy of EGM2008 in comparison with EGM96. Thus the 

improvement in the new models over ZG96 would mostly be attributed to the use of this 

higher resolution EGM2008, and higher resolution SRTM 3′′ DEM. 

 

It is so important to mention that further evaluation of the models is required using more 

benchmarks which should also have a good spatial distribution over the study area. This is 

important for the results to have statistical significance. 

The errors in ZG2016 may be attributed to the fact that some corrections to the geoid 

solution were not considered. The terrain correction, even if it may be small, would have 

to be computed to meet theoretical demands. Even the modification of Stokes’ kernel 

suggested by Sjöberg (2005) might further improve the results.  
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If after more evaluations of these models (in future), their accuracy does not significantly 

change, then the models would be good enough for orthometric height determination for a 

number of engineering, surveying, and geodetic applications. 

 

Of the three models analysed, ZG2016M gives the lowest accuracy. The errors may be 

attributed to neglecting the term containing 𝐺1in equation 2.25 which represents the effect 

of the topography. This term was avoided due to computational challenges. However, 

Heiskanen and Moritz (1967) refer to it as a small correction, together with the geoid-

quasigeoid separation represented by the second term in equation 2.26. In this study only 

the geoid-quasigeoid separation was computed even though it did not improve the result 

(rms = 29.8cm). The rms for the model obtained by neglecting the two corrections was 

18.6cm which is better. This difference may originate from the fact that only one correction 

is applied omitting the other with which they may cancel out. This may be the case because 

according to Heiskanen and Moritz (1967) the terrain correction is always positive (page 

131) whereas the geoid-quasigeoid separation is usually negative on the continents (page 

328). Some of the errors in ZG2016M model may also have originated from the errors in 

surface free-air anomalies downloaded from the BGI website. 

 

4.2 Description and discussion of the geoid over Zambia 

 

In estimating and describing the geoid over Zambia, use is made of the ZG2016 model. 

Table 4.4 gives the statistics of the geoid over Zambia. 

 

Table 4.4: Statistics of the geoid over Zambia (ZG2016). Unit is metres.  

Maximum 12.959 

Minimum -16.943 

Mean -3.434 

Standard deviation 7.110 
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The geoid over Zambia (based on the Intenational Gravity Standardisation Net of 

1971(IGSN71) and GRS80) rises from north-east to south-west. This implies that the 

international reference ellipsoid (GRS80 in particular) is above the geoid in the northern 

and eastern parts of the country, but is below the geoid in the southern and western parts 

of the country, while it coincides with the geoid in areas between these two regions. This 

implies that in areas around Lusaka, for instance, the geoid and the reference ellipsoid 

coincide. This means that in such areas the geoidal undulations are zero or close to zero.  

 

Such regions possess an advantage in that ellipsoidal heights from GNSS measurements 

may be treated as orthometric heights (assuming elevation datum bias is negligible) owing 

to the fact that the geoidal undulations required to reduce the ellipsoidal heights to 

orthometric heights are zero or close to zero in such a region.  

 

Information about the geoid (such as the undulations of the geoid) provide manifestations 

about geologic conditions and geologic features. Variations in geoid pattern may result 

from different subsurface mass distributions. Thus a good geoid model will be of value to 

a number of earth-related sciences such as geology and geophysics. 

 

Figure 4.1 is a contour plot of the geoidal undulations over Zambia (based on GRS80) with 

1m contour interval while Figure 4.2 is a three-dimensional depiction of the geoidal 

undulations over the country. 
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Figure 4.1: Geoidal undulations contour map over Zambia (Based on ZG2016) 

 

 

 

Figure 4.2: 3D depiction of geoidal undulations over Zambia (Based on ZG2016) 
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4.3 ZG2016 Interpolation Program 

 

A program in MATLAB has been written to estimate the geoidal undulation at any point 

over Zambia given the point’s latitude and longitude in decimal degrees. The program 

interpolates geoidal undulations from the computed grid of 17545 geoidal undulations over 

Zambia (ZG2016). The 17545 values forming a 5′ by 5′ grid of geoidal undulations over 

Zambia are used as sample points for the prediction of values at any point over Zambia. 

The cubic interpolation method is employed. The reader may refer to Appendix A for the 

interpolation program code, and to Appendix B for a sample of the results given by the 

interpolation program. 

 

A text file for the grid of computed geoidal undulations over Zambia is also available in 

case someone wants to come up with an independent interpolator. Furthermore, a complete 

set of all MATLAB program codes and raw data pertaining to ZG2016 computations are 

available on data CDs prepared for safe keeping and archiving. The CDs also contain a 

user manual for the various computations relating to geoidal undulations computation over 

Zambia. 

 

To summarise this study, the research conclusion and recommendations will now follow. 
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CHAPTER 5        CONCLUSION AND RECOMMENDATIONS 

 

In this chapter the thesis conclusion and recommendations are presented 

 

5.1 Conclusion 

 

The geoid over Zambia has been estimated gravimetrically using the RCR technique, 

employing three sets of data, namely; terrestrial gravity data over Zambia, EGM2008 data, 

and the SRTM 3′′ DEM data over Zambia. 

 

A proposed geoid model termed ZG2016 is in place. This model is based on the use of 

classical free-air anomalies. Preliminary evaluation of this model at 4 GPS/Leveling 

stations reveals a rms error of 7.0cm. Thus ZG2016 can tentatively be said to be ten times 

more accurate than ZG96 (rms error of 69cm) owing to the higher accuracy EGM2008 and 

SRTM 3′′ DEM used in its computation. EGM2008-only gave a rms of 12.2cm when 

evaluated at the same stations. Thus based on preliminary findings, ZG2016 model is an 

improvement on EGM2008-only resulting from the use of the terrestrial gravity anomalies 

over Zambia in conjunction with EGM2008. This indicates that terrestrial gravity data, 

even of low density, may offer a little improvement in geoid modeling when combined 

with a GGM in regional gravimetric geoid modeling. However, the confidence level will 

only go up if more evaluations are done at more GPS/Leveling stations country-wide. 

Evaluation at only 4 stations is not statistically acceptable, but this has been dictated by 

challenges already highlighted in Section 3.2.3. More evaluations can be done as more 

benchmarks are found. It is still expected that more benchmarks can be found in other parts 

of the country. However, due to time and financial constraints the search for benchmarks 

could only be limited to the area around Lusaka province. 
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The accuracy of EGM2008 obtained in this study (12.2cm) is close to the accuracy (5 – 

10cm) claimed by the EGM2008 developers (Pavlis et al., 2012). They reported that this 

accuracy is achievable over areas covered with high quality gravity data. Therefore, based 

on literature and initial findings in this study, EGM2008 can also be used, as a second 

option, to estimate orthometric heights over Zambia to accuracies of about 12cm. 

 

A better geoid for Zambia can be obtained with improvements in both the quality and 

quantity of terrestrial gravity data, as well as the use of a higher resolution GGM which is 

anticipated in future as satellite missions aimed at modeling the earth’s gravity field 

intensify. Secondly, corrections such as the terrain correction which was omitted in this 

study owing to reasons provided in Section 3.2.1 will have to be added in future. In 

addition, the use of the modified Stokes’ kernel suggested by Sjöberg (2005) might further 

improve the results. 

 

Once ZG2016 model is satisfactorily evaluated, it may be used to determine orthometric 

heights at any point in Zambia in a more convenient way. The model may be used to reduce 

geometric GNSS ellipsoidal heights to the physically meaningful orthometric heights, 

which are so important in surveying, geodesy, and engineering. By so doing the usual 

dependence on spirit leveling which is a labour intensive and expensive method may be 

minimized or completely eliminated. By use of a geoid model which furnishes geoidal 

undulations, we can take advantage of the advent of efficient GNSS technology to 

determine orthometric heights by use of equation 2.5. The model may also prove helpful 

to a number of earth-related sciences such as geology and geophysics 

 

Finally, ZG2016 model has been used to describe the geoid over Zambia. The maximum 

and minimum values of the geoidal undulations over Zambia are about 13m and -17m, 

respectively, implying a range of 30m. The mean geoid over Zambia (8°-18°S and 22°-

34°E) is -3.434m with a standard deviation of 7.11m. The geoid over Zambia (based on 
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GRS80 and IGSN71) rises from north-east to south-west, and coincides with the GRS80 

ellipsoid in areas between these two regions. 

 

5.2 Recommendations 

 

The following are the recommendations at the end of this study 

1. There is need for continued evaluation of ZG2016 model, as well as EGM2008, 

whenever new benchmarks are found and observed with GNSS receivers. These 

benchmarks should preferably have a good spatial distribution over the study area. 

2. The Zambia Survey Department is urged to take stock of all the remaining benchmarks 

country-wide, and ensure proper maintenance of these survey infrastructure which are 

also very important for academic exercises like this research. 

3. Based on initial findings, ZG2016 may be used in the determination of orthometric 

heights of international boundary pillars whose heights are ellipsoidal (GPS-measured 

heights). 

4. More terrestrial gravity surveys need to be undertaken in Zambia to aid the 

development of a high accuracy geoid model. 

5. Further studies in geoid modeling are encouraged in order to develop the best possible 

geoid model. The author is convinced that there is still much to be learnt and improved. 
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APPENDICES 

 

Appendix A: ZG2016 Program Code 

 

The following is the MATLAB code for the interpolation program used to compute geoidal 

undulation of points over Zambia (ZG2016_3options.m): 

……………………………………………………………………………………………… 

function [ N ] = ZG2016( LONGITUDE,LATITUDE ) 

%This function program computes geoidal height at a point by prompting 

for 

%latitude and longitude input of a single point.  

  

fprintf('This program computes geoidal heights in Zambia at points 

whose latitude and longitude are given. Option 1: Geoidal height of a 

single point, Option 2: Geoidal heights of points saved in an Excel 

file (lat,lon), Option 3:Geoidal height at a user-defined grid of 

points \n')  

  

OPTION=input('Enter the option number (1,2 or 3):\n'); 

  

if OPTION==1   %Option 1 selected then proceed with commands coming 

immediately below 

  

  

[xq,yq]=meshgrid(22:0.0833333:34,-8:-0.08333:-18); 

  

filename1='N_EGM2008_GRID.xlsx'; 

filename2='ZG2016 RESIDUAL GEOID_GRID'; 

filename3='IndirectEffect_GRID.xlsx'; 

  

  

Negm=xlsread(filename1); 

NRes=xlsread(filename2); 

IEOT=xlsread(filename3); 

TotalGeoid=NRes+Negm+IEOT; 

Z=(xq+yq)*0+TotalGeoid; 

  

  

fprintf('This program computes geoidal height in Zambia at a point 

whose longitude and latitude are given\n') 

LONGITUDE=input('Enter the longitude of the point in decimal 

degrees:\n'); 

LATITUDE=input('Enter the latitude of the point in decimal 

degrees:\n'); 

  

zi=griddata(xq,yq,Z,LONGITUDE,LATITUDE,'cubic');   %Interpolation to a 

single point 

N=zi; 
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dlmwrite('myFile3.txt',[N],'delimiter',' ','precision',4)% writes 

results to a text file called myFile3 

elseif OPTION==2 

%This function program computes geoidal height at a set of points by 

%prompting for a file with longitude and latitude pairs of points 

  

%ENTERING DATA FILE NAME 

fprintf('This program computes geoidal heights at a set of points by 

prompting for an Excel point coordinates file\n ') 

filename0=input('Enter Excel data file name below. It must be between 

quotes. The data file must be saved within the Matlab environment in 

the Matlab folder on the PC. The data file must be a matrix of two 

columns without headers. The first column is for latitude values given 

as negatives south of the Equator, while the second column is for 

longitude values:\n') 

  

  

%THE CODE BELOW IS CONCERNED WITH PRINTING THE RESULTS TO A TEXT FILE  

fprintf('Printing to a file\n'); 

fprintf('==================\n'); 

filename=input('This function computes geoidal heights at a given set 

of points whose latitude and longitude pairs are given in an Excel file 

and writes the results to a text file created by user on this PC. 

Specify file path. Enter file to write to(between quotes):\n'); 

u=fopen(filename,'w');   %open output file 

  

  

fprintf('========================================================\n') 

fprintf(u,'\n====================================================\r'); 

fprintf('LATITUDE       LONGITUDE       Geoidal Height (m)\n'); 

fprintf(u,'\n LATITUDE      LONGITUDE    Geoidal Height (m) \r'); 

fprintf('========================================================\n'); 

fprintf(u,'\n====================================================\r'); 

  

  

[xq,yq]=meshgrid(22:0.0833333:34,-8:-0.08333:-18); 

  

filename1='N_EGM2008_GRID.xlsx'; 

filename2='ZG2016 RESIDUAL GEOID_GRID'; 

filename3='IndirectEffect_GRID.xlsx'; 

  

  

Negm=xlsread(filename1); 

NRes=xlsread(filename2); 

IEOT=xlsread(filename3); 

TotalGeoid=NRes+Negm+IEOT; 

Z=(xq+yq)*0+TotalGeoid; 

  

  

M=xlsread(filename0); 

  

lat=M(:,1); 

lon=M(:,2); 

L=length(lat); 

  

for n=[1:L] 

     



72 
 

    LATITUDE=lat(n,1);     

    LONGITUDE=lon(n,1); 

     

  

zi=griddata(xq,yq,Z,LONGITUDE,LATITUDE,'cubic');   %Interpolation to a 

set of (lat,lon) points contained in specified Excel data file 

N=zi; 

  

  

dlmwrite('myFile3.txt',[LATITUDE, LONGITUDE,N],'delimiter',' 

','precision',7)% writes results to a text file called myFile3 within 

MATLAB 

  

  

fprintf('%+0.5f       %+6.5f     %+10.3f\n',LATITUDE,LONGITUDE,N); 

fprintf(u,'\n%+0.5f       %+6.5f     %+10.3f\r',LATITUDE,LONGITUDE,N); 

  

end 

  

fprintf('===============================================\n'); 

fprintf(u,'\n================================================\r'); 

fclose(u);               %close output file 

  

 

elseif OPTION==3 

%This function program computes geoid height at a grid of points by 

%prompting for a user-generated grid  of computation points between -8 

and 

%-18 deg. South and 22 to 34 deg. East. 

  

  

%GRID GENERATION  

fprintf('This program computes geoidal heights at a grid of points by 

prompting for a user-generated grid  of computation points between -8 

and-18 deg. South and 22 to 34 deg. East\n') 

phimin=input('Enter the minimum latitude for the grid in decimal 

degrees. NOTE: Latitudes are negative south of the equator:\n'); 

phimax=input('Enter the maximum latitude for the grid in decimal 

degrees:\n'); 

deltaphi=input('Enter the grid latitude separation in decimal 

degrees:\n'); 

lambdamin=input('Enter the minimum longitude for the grid in decimal 

degrees:\n'); 

lambdamax=input('Enter the maximum longitude for the grid in decimal 

degrees:\n'); 

deltalambda=input('Enter the grid longitude separation in decimal 

degrees:\n'); 

  

%THE CODE BELOW IS CONCERNED WITH PRINTING THE RESULTS TO A TEXT FILE  

fprintf('Printing to a file\n'); 

fprintf('==================\n'); 

filename=input('This program computes geoidal heights over Zambia at 

points given by a user-defined grid and writes the results to a text 

file created by user on this PC. Specify file path. Enter file to write 

to(between quotes):\n'); 

u=fopen(filename,'w');   %open output file 

  



73 
 

fprintf('========================================================\n') 

fprintf(u,'\n====================================================\r'); 

fprintf('LATITUDE       LONGITUDE       Geoidal Height (m)\n'); 

fprintf(u,'\n LATITUDE      LONGITUDE    Geoidal Height (m) \r'); 

fprintf('========================================================\n'); 

fprintf(u,'\n====================================================\r'); 

  

  

[xq,yq]=meshgrid(22:0.0833333:34,-8:-0.08333:-18); 

  

filename1='N_EGM2008_GRID.xlsx'; 

filename2='ZG2016 RESIDUAL GEOID_GRID'; 

filename3='IndirectEffect_GRID.xlsx'; 

  

  

Negm=xlsread(filename1); 

NRes=xlsread(filename2); 

IEOT=xlsread(filename3); 

TotalGeoid=NRes+Negm+IEOT; 

Z=(xq+yq)*0+TotalGeoid; 

  

  

mlon=(lambdamax-lambdamin)/deltalambda; 

nlat=(phimax-phimin)/deltaphi; 

m=[1:mlon]; 

n=[1:nlat]; 

  

    

for phi=phimax-(n-0.5)*deltaphi; % Latitude of computation point 

for lambda=lambdamin+(m-0.5)*deltalambda;% Longitude of computation 

point  

  

LATITUDE = phi; 

LONGITUDE = lambda; 

  

zi=griddata(xq,yq,Z,LONGITUDE,LATITUDE,'cubic');   %Interpolation to a 

set of lat,lon points contained in user-specified grid 

N=zi; 

  

  

fprintf('%+0.5f       %+6.5f     %+10.3f\n',LATITUDE,LONGITUDE,N); 

fprintf(u,'\n%+0.5f       %+6.5f     %+10.3f\r',LATITUDE,LONGITUDE,N); 

  

end 

end 

  

fprintf('===============================================\n'); 

fprintf(u,'\n================================================\r'); 

fclose(u);               %close output file 

  

   

       else 

            error ('No option selected. Please select an option') 

             

end 

  

end 
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Appendix B: ZG2016 Interpolation Program Sample Result 

 

 

The MATLAB geoidal undulation interpolation program (Section 4.3) is termed 

ZG2016_3ptions.m. It provides three options for the calculation of geoidal undulations. 

OPTION 1: For a single point input 

OPTION 2: For an Excel file containing (lat,lon) coordinates of computation points 

OPTION 3: For a grid of points input 

 

The figure below shows a sample result for the Model value of geoidal undulation for 

BM19M5 (Using Option 1 above). The value of the geoidal undulation at BM19M5 is 

1.5199m. This differs by 4mm from the value shown in Table 4.1 due to interpolation 

errors. Direct computation without interpolation gives a geoidal undulation value of 

1.524m.  

 

 

 

 

For options 2 and 3 of the program, the results are printed to a user-specified text file whose 

file path must be specified within quotes at the command prompt. For example as: 

‘C:\Users\elitebppk\Desktop\MATLAB_Results\geoidheights.txt’. The results are printed 

in the format (Latitude, Longitude, Geoidal Height) for each computation point. 


