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ABSTRACT

The work presented here is a survey of some known results in
functional analysis, particularly in the field of Operator theory.

The study begins with definitions of linear spaces and some
topological results which form the necessary background.

Chapter two 1is the heart of the work and deals with
operators defined on a Hilbert space with mention of operators
which are generalization of linear operators on finite dimensional
spaces.

Chapter three looks at two classes of nonlinear operators
known as Lipschitz and a-Lipschitz which frequently occur in
applications. The last chapter is a brief look at the spectral
theory of operators with no emphasis on a particular type of

operator.
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1. LINEAR SPACES AND TRANSFORMATIONS

1.1 INTRODUCTION
Linear transformations make it easier to study
abstract spaces. Linear transformations basically preserve the
operations of addition and multiplication by a scalar from one
space to another. Thus it 1is possible to study an abstract
space in terms of matrices if we can find a transformation between
two spaces.
Sometimes it 1is necessary to study transformations
between two abstract spaces. In such cases, the importance of
transformations will be in their applications to the study of

certain equations rather than the study of linear spaces.

LINEAR SPACES:
Let X be a non empty set. Assume elements of X can be
added and multiplied to yield an element of the same set. Then X

will be called a linear space over a field K if

(1) X +y=y+x X,y € X

(ii) x+ (y+2z)=(x+y)+2z X,¥,z € X

(iii) we can find a unique element 0 € X such that
X +0=x x € X

(iv) for each x € X, 3 a unique x’ € X such that

x +x’" =0
(v) alx +y) = ax +oty a €K, X,y € X
(vi) (¢ + B)x = ax + BX o, B €K, x € X
(vii) (eB)x = a(Bx)
(viii) 1.x =x 1 €K, x € X
The field of scalars K can be real or complex. A linear

space is also called a vector space.
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NORMED LINEAR SPACE:
A normed linear space is a linear space on which a norm is
defined i.e. a function which assigns to x in a linear space, a

real number lixll such that

(1) xit = 0 iff x =0

(ii) Ix#t = 0 Vx
(iii) Hoaxll = fa|. lxli

(iv)  Ix + yll s lix + yl

BANACH SPACES:
A normed linear space which is complete as a metric space is

called a Banach space.

1.2 LINEAR TRANSFORMATIONS
Let X and Y be linear spaces over a field K. A mapping

f:X—Y 1is called a linear transformation if

fix +vy) f(x) + f(y) X,y € X

flax) = af (x) xaekK, xe€X
In case of X and Y being normed linear spaces, linear
transformations can be identified by shaper results because of
the algebraic and metric structures on these spaces. The following
are well known equivalent results for haeas Yransfocmakivas { X—Y
(1) f is continuous
(ii) f is continuous at the origin
(iii)  weCadn = M-uxi for some scalar M, x € X
A transformation satisfying (iii) above is called a bounded

linear transformation or simply a linear operator.




NORM OF A TRANSFORMATION:

For a continuous linear transformation f, the norm Ilfll is

given by

NEll = sup{ N£(x)N : lixh = 1}
Alternatively, the norm is given by

£l = sup{ Hf(x)it : Ixl = 1}

provided the domain of f is non empty and does not contain the

origin only.

1.3 SPACES OF LINEAR OPERATORS

Let X and Y be linear spaces over the same field K. The set
of all linear operators T:X—Y form a linear space if we define
addition and multiplication as

(T + T")x = T(x) + T (x)
T(ax) = aT(x)

We denote the space of all continuous linear operators from X into
Y by B(X,Y). Thus T € B(X,Y) iff ITl < w . If X and Y are normed

linear spaces so is B(X,Y).

UNIFORM TOPOLOGY
Suppose (Tn) is a sequence of operators in B(X,Y) and T €
B(X,Y). Then
IITn -Th —- 0O

is equivalent to

HTn(x) - T(x)I — 0 Vx € X such that lxll =1
Thus the topology defined by

HTH = sup{ NT(x)NI : Ixh = 1}

is called the uniform topology for B(X,Y).
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If we can find a function P on a linear space X such that
P(x + y) = P(x) + P(y) Vx,y € X
Plax) = |a|-P(x) aeK, xeX

then P will be called a seminorm.

STRONG TOPOLOGY

The strong operator topology is the locally convex topology

defined by the family of all seminorms of the form

PX(T) = IT(x)H x € X.

It is interesting to note that B(X,Y) becomes a Banach space when
the norm is defined on it. For this reason, we shall henceforth

use the uniform topolgy.

PRINCIPLE OF UNIFORM BOUNDEDNESS:

Let X be a Banach space and B(X,Y) be a family of bounded
linear operators from X to the normed space Y. Suppose that for
each x € X we can find a constant C such that IT(x)Il = C,

T € B(X,Y). Then the operators in B(X,Y) are uniformly bounded i.e
we can find a constant M such that ITIl =M, T € B(X,Y). This is a

well known result and for an easy proof we refer to Royden [11].

REMARK: 1
(1) To avoid many braces, we will be writing Tx to indicate
the action of a function on an element instead of T(x).
(ii) If a transformation is acting on a space, say X, then we

will be writing B(X) instead of B(X,X).
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We define the product of two operators TT’ by
(TT’ )x = T(T'x) x € X, T,T’ e B(X).
Clearly, TT’ € B(X) and this turns B(X) into an algebra.
An operator T € B(X) is said to be invertible if it is

both one to one (injective) and onto (surjective).

1.4 CLOSED LINEAR OPERATORS
It is sometimes useful to consider 1linear operators which
are not continuous. Many operators which are discontinuous have

the property defined below which make up for this deficiency.

Definition 1.4.1
Let X and Y be topological spaces. A function f:X—Y is said
to be closed if its graph G(T) = { (x,f(x)) : x € X } is closed in

the product topology (X,Y).

REMARK: 2
Suppose X is a topological space and Y is a Hausdorff space.
If f:X—Y is continuous with a closed domain, then f is itself

closed.

Theorem 1.4.2

Let X and Y be normed linear spaces. Let Y be complete and D
be a subspace of X. If T:D—Y is a closed and continuous linear
operator, the;)D is closed.
Proof

Suppose x belongs to the closure of D. Then we can find a

sequence (xn) in D such that X, > X (Txn) is Cauchy for



MTx_ - Tx I = HTH-lIx_ - x W
n m n m
Thus (Txn) has a 1limit y € Y. Since T is closed, x € D and Tx = y. QD

Let C(X,Y) be the class of all continuous functions f:X—Y.

Theorem 1.4.3

Let X and Y be normed linear spaces. fe C(X,Y) iff f_l(B) is
an open subset of X whenever B ¢ f(X) is open.
Proof

Let f € C(X,Y). Let B be an open subset of f(X) and x €
f_l(B). Since f(x) € B and B is open, 3 € > 0 such that the open
ball So(f(x)),e) ¢ B where ¢ is the metric induced by the norm.
Alséia = 8(x,€) > 0 such that lIx - x‘Il < & implies Hf(x) - £(x’)Ii
<e 1l.e

5,0x, 8) ¢ f‘l(sé.,( f(x),e )

Hence Sp(x,a) € f_l(B) and so every point in f—l(B) is an interior
point. Thus f_l(B) is open.

Conversely, suppose f-l(B) is open in X and B open in X. For
x € X and € > 0 let N(g) = So(f(x),c). Then N(e) is open and
therefore f—l(N(e)) is open. But f(x) € N(g) » x € f—l(N(e)). So
we can find % > 0 such that Sﬁ(x,a) c f_l(N(e)) i.e

lx - x‘Il < & whenever HEf(x) - f(x’')Il < ¢

COMMENT

f:X—Y is an open mapping if f(B) is open in Y whenever B is
is open in X. If X and Y are Banach spaces and f is continuous
then f is an open mapping. This is the open mapping theorem ( see

[ 15 ] page 236 ).



Theorem 1.4.4 ( CLOSED GRAPH THEOREM)
Let X and Y be Banach spaces and T:X—Y be a closed
operator. Then T is continuous.
Proof
Suppose X and Y are complete metric spaces. The product X x Y
is a Banach space if the norm is given by
I (x,y) H1= Ixi + lyll (x,y) e X xY
The graph, G(T) = { (x,f(x)) : x € X } of T is a closed linear
subspace of X x Y and therefore can be regarded as a Banach space.
Define a function A:G(T)—X as follows:
A(x,Tx) = x
Clearly A is linear. Since "A(X,TX)M = lIxll = H(x,Tx)Hi A is
continuous and thus closed (by remark 2 ). The inverse A
defined by
A_lx = (x,Tx)
exists and is clearly continuous. If B is defined by
B(x, Tx) = Tx
then B is continuous for HB(x,Tx)H1= Tl = H(x,Tx)Hf So T = BA--1

is continuous from X into Y.

1.5 CONJUGATE OPERATORS

Let X be an arbitrary normed linear space over a field K.
Denote by X* the set of all continuous linear transformations
T:X—K. Then X* is called the conjugate space of X and the
elements of X* are called functionals. X* is seen to be a Banach

space if we define addition and multiplication pointwise and the

»*
norm of T/ € X by




T IF = sup{ AT%¥ : lxll =1 }
Most of the theory of conjugate operators depend on the
Hahn-Banach theorem. This theorem says that any functional on a
linear subspace can be extended to the whole space without
altering its norm. Before proving the Hahn-Banach theorem we state

the analytic form which we will use.

Theorem 1.5.1

Let X be a linear space and h be a seminorm on X. Let M be a
subspace of X and h’ be a linear functional on M such that
Ih (x)| = h(x) if x € M. Then we can find a linear functional f

defined on X such that

If(x)] = h(x) if x € X and
f(x) = h' (%) ifxeM [see [16] page 131]
Theorem 1.5.2 (HAHN-BANACH)

Let M be a linear subspace of a normed linear space X and

let f be a functional defined on M. Then f can be extended to a

functional f’ defined on X such that Hf’ll = Wfll,and £/ (x) = f(x)
¥ xeM
Proof

Define P(x) = Ifll-lxl x € X. Then P is a seminorm and

[f(x)| = P(x) if x € M. Thus we can find a linear functional f’
on X that is an extension of f such that

[£/(x)] = Ufu-uxli x € X
by theorem (1.5.1). This implies that f’ is an extension of f. So

Ifll = Hf‘’Nl. Hence the result.



Theorem 1.5.3

If X is a normed linear space and x is a non zero vector in
X, we can find a functional h € X* such that h(x) = lixll and Ilhil = 1
Proof

Let M = { ax } be a linear subspace of X spanned by x.
Define f on M by

floax) = alixll

Then f is a functional on M such that f(x) = lixll and Ifll = 1. By
the Hahn-Banach theorem, f can be extended to h e X* with the

required properties.

If X is a normed linear space, then it is possible to form a

* *
conjugate space of X since X is itself a normed linear space.

* ¥ ¥
We denote the conjugate space of X by X and call it the second

* ¥
conjugate space. The importance of X lies in the fact that each

* ¥
vector x € X gives rise to a functional in X

*
Let x € X. Define a function TX on X by
T (f) = £(x)
X

Then Tx(af + Bg)

(af + Bg)x

af (x) + Bg(x)

aT (£f) + BT, (g)

and HTX(f)H < sup{ Tx(f) : IIfN =1}
= gup{ [f(x)| : Ifll =1}
=< sup{ Ifll-lItxh : WfN = 1 }
= fIxli

Hence HT I = lixl.  Using (1.5.3) it is easy to show that



- 10 -

IT N = lixi
X
Thus x——)Tx is a norm preserving linear operator. It is called
* ¥
the canonical mapping of X into X . Functionals of type Tx are
called induced functionals.
Also
Tx+y(f) = (TX + Ty)f
Tax(f) = aTx(f)
Thus the mapping x——>TX is an isometric isomorphism of X into
* ¥
X . This isometric isomorphism is called the natural imbedding of
* %
X into X . The space X can therefore be identified as a subspace

*
of X

Definition 1.5.4

* ¥
A normed linear space X is said to be reflexive if X = X

Definition 1.5.5
*
Let X and Y be normed linear spaces with conjugate spaces X
»*
and Y respectively. For a given bounded linear transformation

* * *
T:X—Y we define the conjugate (adjoint) T :Y —X by

¥*
T (f)x = £(Tx) fey, x € X.

The study of linear algebra involves the study of transformations,
between abstract spaces, which preserve linear structures. In
Banach spaces, use is made of the metric structure to study
transformations. Still Banach spaces are rather too general to
yield a really rich theory of operators. Spaces which possess

 useful additional structure are Hilbert spaces.
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Definition 1.5.6

A Hilbert space is a Banach space with an inner product

defined on it.

REMARK: 4

We denote the inner product of two vectors x and y in a
Hilbert space by <x,y>. In a Hilbert space it is possible to tell
whether two vectors are orthogonal or not. There is also a natural
correspondence between a Hilbert space and its conjugate making it
easy to understand the importance of operators which are related

to their adjoints in simple ways.

Let T be an operator on a Hilbert space H. We can find a unique
*
mapping T of H into itself which satisfies
L 3
<Tx,y> = <x,T y> X,y € H. (i)

*
Now, <x, T (ay + Bz)>

<Tx, ay + Bz>

<Tx,ay> + <Tx,Bz>

- * - *

o<x, T y> + B<x, T z>
* *

= <x,aT y> + <x,BT z>

#*# *
<x,aT y + BT z>

* * *
which implies that T (ay + Bz) = «T y + BT z. Also
* 2 * * * »* *
IIT xI™ = <T x, T x> = <TT x, x> =< UTT xN-lUxW =< HTH-UT xI-lxH
* *
implies that UIT xii =< ITH-Ixl > IT I = UTH.

*
Thus T as given in (i) is a linear operator called the ad joint

operator.
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Theorem 1.5.7

The adjoint operator has the following properties:

* %* *
p) = T +T,
- ¥

oT

(1) (T1 + T

»*
(ii) («T)

. * *
(iii) (T1T2) =T, T

21
3 %
(iv) T =T
*
(v) WTH = 0T 1l
* 2
(vi) IT T = NITN

- *
(vii) if T 1 or (T ) 1 exists, so does the other and
* _1 _1 »*

(T) " =(T")

Proof

We supply proofs for (iii) and (v) for other proofs use

essentially similar arguments.

%*
(iii) <x,(T1T2) y> <(T1T2)x,y>

*
<TZX’ij>

* *
< >
x,Tg Tiy

* * %
> (Tsz) =TT

271
* 2 * * * * ¥
(v) 0T xI™ = <T x,T x> = <TT x, x> = WTTx I-lxi
%*
< NTH-UT xI-Uxlt
*
> IT xI = UTH-lIxH
L 3
IT H = ITH
¥ ¥ *
Using (iv) we have IITIl = T I < NT |

The result then follows.



2. SOME OPERATORS ON HILBERT SPACE

There is an interesting analogy between the set B(H) of all
operators on a Hilbert space H and the set of all complex numbers.
Each is a complex algebra together with the mapping of the algebra
into itself. The only significant difference is that
multiplication in B(H) is in general not commutative. We now look

at some subsets of B(H).

Definition 2.1.1
Let T be an operator on a Hilbert space H. T is said to

Self-ad joint or Hermitian if T =T

REMARK: 5
If T1 and T2 are self-adjoint and « and B are real numbers
* o % — %
(ocT1 + BTZ) = ocT1 + BT2 = aT1 + BT2
Thus aT1 + BT2 is also self-adjoint. If (Tn) is a sequence of

self-adjoint operators converging to T, then

* * *  * *
IT-T W = UT-T_I + UT -T I + T _-T Il WT-T It + W(T_~T) |l
n n n n n n

IT-T_I + IT_-TI
n n

2IT_-TH
n

As n o> w, HTn-TH > 0.
* ¥*
Therefore, T-T =0 or T=T
*
From this we conclude that the set of self-adjoint operators B (H)

is a closed real linear subspace of B(H).

- 13 -
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Theorem 2.1.2
Let operators T1 and T2 be self-adjoint on a Hilbert space

H. Then the product T1T2 is self-adjoint iff T1 and T, commute.

2
Proof
Suppose T1 R T2 and T1T2 are self-adjoint. Then
* * ¥* . )
(T1T2) =T, T, (using theorem 1.5.7
=10
*
Since T1T2 is self~adjoint, (T1T2) = T1T2 . Therefore T1T2 = T2T1
Assume T1 > = T2T1 . Then
* * *
(T1T2) = T2 T1 = T2T1 = T1T2

*
> (T1T2) = (T1T2)

COMMENT:

For an operator T on a Hilbert space H, <Tx,x> = 0O Vx € H
implies that T = 0. (See foc \nstance [1VS, Pasge 2.6"—1])

The next theorem shows a connection between self-adjoint

operators and real numbers.

Theorem 2.1.3
An operator T on H is self-adjoint iff <Tx,x> is real for
all x € H.
Proof
Suppose T is self-adjoint and let x € H. Then
<Tx,x> = <x,T*x> = <x, Tx> = <Tx, x>

% <Tx,x> is real since it equals its conjugate.
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Conversely, suppose <Tx,x> = <Tx, x> ,v x & H. Then

L 3
<Tx,x> = <x,T x> = <T x,x>

* * *
3 <Tx,x> = <T x,x> and <(T-T J)x,x> =0 Vx = T =T

So just as on real numbers, we can impose an order relation

on self-adjoint operators. Thus T1 = T2 will mean

<T,x,x> = <T_x, x> Vx€ H-

1 2

Self-adjoint operators obey the following 1linear and order

structure:
(1) T1 = T2 = T1 + T = T2 + T, VT self-adjoint.
(ii) T1 = T2 and a«z0 = aTl < aT2

Now, suppose we have T1 =T and T, = T where both operators

2 2 1
are distinct. This will imply that
<(T1—T2)x,x> =0 Vxe‘J

or T,-T, =0 > T1 =T

1 72 2

We can conclude then, that the real Banach space of all

self-adjoint operators is a partially ordered set.

Definition 2.1.4
An operator P on H is said to be positive if

<Px,x> =20 Vx € H

Clearly, a positive operator P on a Hilbert space is self-adjoint
¥
and so is the product P P since

*
<P Px,x> = <Px,Px> = IPxI = 0.
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Theorem 2.1.4

If T is a positive operator on H, then I+T is non singular,
and range of I+T is H.
Proof

Suppose that (I+T)x = 0. Since

<(I+T)x,x> = <x,x> + <Tx, x>

then <Tx,x> = —HxH2 =z 0 > Ixl =0 i.e x = 0.
The only vector mapped into the origin is zero implies that I+T is
one to one.

Now, suppose that the range M of I+T is not the whole of H.

Let Y, € M such that Yy 2V

Y, € M implies that Y, = (I+T)xn . Now
2

N(I+T)x #l <X+ Tx ,x + Tx >
n n n’“n n

lx H2 + 2<Tx_,x > + lTx II2 z lix H2
n n’'n n n

Therefore,
fix I = H(I+T)x Il
n n
So X, ?»xand y = (I+T)x. In this form, then y € M and as such M
is closed. Now M = H implies that we can find xo # 0 such that X
is orthogonal to M (i.e X .y> =0  VyeM) (see eq s, pasge 24al),
Now (I+T)X ,x > = <X ,x > + <Tx_,x > = 0
o' "o 0’7o o’ "o
2

= <Tx ,x >=-lx I =0 > x =0
o’ "o o o)

This is a contradiction. Thus M = H.

2.2 NORMAL AND UNITARY OPERATORS
Normal operators are generalizations of self-adjoint

operators. The concept of normality is very important in
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connection with the spectral theory of operators.

Definition 2.2.1

An operator T on a Hilbert space is said to be normal if and

* *
only if TT =T T.

REMARK: 6
If T is a normal operator and « is a real number, then
clearly aT is normal. If we take a sequence of normal operators
(Tn) converging to T then T: — T* also. Now,
*

*  * * * * * %
WTT -T T = NTT -T.T W + WT. T -T T Il + 0T T -T T I
n n nn nn

*

*
ITT -T_T 0 + WT
n

T-TTHh — O
n

o]
oI o]
*

* *
> TT =T T.

The following theorem is a consequence of the preceeding remark.

Theorem 2.2.2
The set of all normal operators on a Hilbert space H is a

closed subset of B(H) and contains the set of all self-adjoint

operators.

Under certain conditions, we can say something about the sum and
product of normal operators for it is not always automatic that
the sum and product are normal too. The following theorem

illustrates this.
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Theorem 2.2.3

Let T1 and T2 be normal operators such that each commutes

with the adjoint of the other. Then T1+ T2 and T1T2 are normal.

Proof

* * *
By hypothesis T1T2 = T2T1 and T2T1 = T1T2 . Now,
*

*
) (T1 + T2) (T1 + T,)

(T1 + T2) (T1 + T2
3

* *
T,T, + T, T, + T,T, + T, T

*
2
*
1

1T 115 2 2Ty e
and

* *

(T1 + T2) (T1 + Tz) = (T1 + TZ) (T1 + Tz)
* %* »* * ..
= T1T1 + T1T2 + T2T1 + T2T2 cee ... (i)

From (i) and (ii) we infer that T1 + T2 is normal. We can prove
that T1T2 is normal in a similar way.

We may wish to characterize a normal operator T by the norms

>
of Tx and T x. In this line, we have:

Theorem 2.2.4

An operator T on a Hilbert space is normal iff
*
0T xit = WTxI Vx € H

Proof

* * o 2 * *
IT xII = ITx#iff NIT xI™ = ITx iff <T x, T x> = <Tx, Tx>

* * * % * %
iff <IT x,x> = <T Tx,x> iff <(TT -T T)x,x> =0 & TT -T T =0

The analogy between self-adjoint operators and real numbers

suggest that for any operator T € B(H), we form
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T, = L (T+T )
1 2
T, = 3 (1-T)
2 2t
The operators T1 and T2 are self-adjoint and, T = T1 + iT2 . We
call the self-adjoint operators T1 and T2 real and imaginary

parts of T respectively. We now discuss T in terms of its real and

imaginary parts.

Theorem 2.2.5
If T is an operator on H, then T is normal iff its real and

imaginary parts commute.

Proof
*
let T = T1 + iT2. Then T = T1 - iT2 . Now,
TT = (T, + iT.)-(T, - iT,) = T2 + T> + i(T.T, - T.T.)
1 2 1 2 1 2 271 172
Also,
2 . 2
TT= T1 + 1(T1T2 T2T1) + T2
* *
If T1T2 = T2T1 then TT =T T.
* E 3
Conversely, if TT =T T then
T1T2 - T2T1 = T2T1 - T1T2
i.e T,T, = T.T

1°2 271

Definition 2.2.6
An operator T on a Hilbert space is said to be unitary if

* *
TT=TT =1

Clearly, wunitary operators are normal and we can infact

compare them to complex numbers with unit absolute value. In other
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words, Wwe can say, unitary operators are those non-singular

operators whose inverses equal their adjoints.

Theorem 2.2.7
The following statements are equivalent for an operator T on

a Hilbert space H

(i) TT=1
(ii) <Tx, Ty> = <x,y> Vx,y € H
(iii) Tt = lxl x € H

Proof
*
(1) = (ii) Assume T T = I. Then

*
<x,y> = <T Tx,y>

<Tx, Ty>

(ii) » (iii) If <Tx,Ty>

<X,¥>» and x = y , we have

<Tx, Tx> = <x,x> or IITxII2 = HxH2
Therefore ITxIl = lxl

s s s . 2 2
(1i1) = (1) ITxI™ = IxI™ = <Tx,Tx> = <x,X>

»* ¥*

> <T Tx,x> = <x,x> i.e <(T T-I)x,x> =0 vxeH
L 3
> TT=1

REAMRK: 7
An operator with property (iii) is simply an isometric

isomorphism of of H into itself.
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2.3 PROJECTIONS

We briefly look at operators which have a very simple yet
beautiful theory.

Let X be a linear space. Given two subspaces M and N of X we
define

M+N={mn: meM, neN}

The set M+N 1is called the sum of M and N and it is the smallest
subspace of X containing both M and N. When M A N = { 0 } we

write M @ N in place of M+N and call it the direct sum of M and N

Theorem 2.3.1

Let M and N be subspaces of a linear space X. Then

X=Me N iff each x € X can be written uniquely in the form
X=m+n m e M, n € N.
Proof

Suppose X = M @ N. Then X = M + N and x € X can be
written as x = m + n. If x = m, + n, = m,, + n, where
m1,m2 € M, nln2 € N then ml—m2 = n2—n1. This implies that ml—m2
belong both to M and N. But M A N = { 0 } implies m1—m2 =0 or
m, = m,. Similarly, n, = n,.

Conversely, suppose x € X has a unique representation m + n.
Then X =M 4.N .If y € M n N, then we can write y =y + 0 and

0 + y. By hypothesis these representations are the same. Hence

<
[

0. Therefore MAN={ 0} so that X =M e N.

<
it
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It follows that if X = M ® N, then dimX = dimM + dimN where dimX
denotes the dimension of X. When X = M o N, then M and N are

called complementary subspaces.

Definition 2.3.2

Let T:X—Y be a general mapping. Define

N(T) {xeX: T(x) =0}

R(T)

{yeY: y=TKx), xe X}

We call N(T) the nullity of T and R(T) the range of T. Clearly
N(T) and R(T) are subspaces of X and Y respectively. The
relationship on dimensions now becomes

dimX = dimN(T) + dimR(T)

Definition 2.3.3

A projection on a Hilbert space H is an opeartor P e B(H)
such that P2 = P.
NOTE: The term idempotent is also used for the relationship E2 = E

for an operator E.

Definition 2.3.4
Two vectors in an Hilbert space are said to be orthogonal if

their inner product equals zero.

If M\ is a subset of H, we will denote by N& the set of all
vectors in H orthogonal to M+ If M is a closed subspace of a

Hilbert space H, then N& is also a closed subspace and is disjoint
fiom M in te sense that

Mamt=bot,
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Moreover, H = M @ N% . Define a mapping P/:H—H by

P’xX =y where xe€eH, x=y+z andyeM, =ze€ Ml .
Theorem 2.3.5

If M is a closed subspace of H, then P’ is a projection
having range M. Also if P is a projection on H, we can find a
closed subspace M such that P = P’.
Proof

Suppose xl,x2 € H and «,B are complex numbers. Then

L

X, =Y + z, and X, = Y, + z, where Y0¥, € M and z,,2, € M.

axl + sz = (ay1 + By2) + (azl + BZZ)

By uniqueness of such a decomposition

P (ocx1 + sz) =ay, + BYZ

— ’ ’
= aP x1 + BP x2
and
L2 2 2 > 2
L e N
= "P'Xlu = "X1"
Hence P’ is a linear operator. Morecver

<P xl,x2> = <y1,y2 + 22> = <y1,y2> + <y1,22>

= <y1 + y2>

<Y1 + 21,y2>
= <x1,P x2>
and so P’ is self-adjoint. If x e M, X = x + 0 is the required

decomposition of x and hence

Since R(P‘) = M, then (P’)2 = P’ and so P’ is idempotent or P’
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is a projection with range M.
Next, suppose P is a projection on H. Set R(P) = M. If (Pxn)
is a Cauchy sequence in H such that (Pxn) —> y then

Covs o 1im Pow - ; -
y = lim Pxn = 1im P xn = P(lim Px )n— Py

n-> n-w N0
Soy € M implying that M 1is closed. For vy e M%,
2 2
IPyll™ = <Py,Py> = <y,P7y> =0
i.e Py = 0.
If x €e H, then x = Px + z where z € Ml and hence

- Px = P°x + Pz = Px

P’ = P.

The above result shows that a projection P on a linear space X
determines a decomposition

X=MeN (1)
where M = { P(x) : x e X} and N={ x : P(x) =0 }. On the
other hand, a pair of linear subspaces M and N such that (i) holds
determines a projection whose range and null spaces are M and N

respectively.

Theorem 2.3.6

Let P be a projection on H with range M and null space N.
Then M 1 N (read M is perpendicular to N) if and only if P is
self-adjoint. In this case N = Ml .
Proof

Suppose M L N. Let z = x + y, where x e M, y € N. Then

* > *
<P z,2z> = <z,P z> = <z,Pz>
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= <P 2,2> = <x + y,X> = <X, X> + <y, x>

= <X, x> a real number.
Therefore,

T

<P z,2z> = <Pz, 2>

%
> <P z,z> = <Pz, z>

¥

3 <(P -P)z,z> =0

* *
= P -P=0 or P =P.

**
Conversely, suppose P

P. For x e M, y € N,

<x,y> = <Px,y> <x,Py> = <x,0>

= M 1N
Clearly N € Ml . Suppose the inclusion is proper. Then we can find
X € Ml, x # 0 such that x 1 N. But by definition x € Ml implies
that x +t M. Thus x L N and x 1L M. Since H = M @ N then x 1 H.
This is impossible for a non zero x. Thus N = M‘L .
OBSERVATION

If P is a projection on M, then I-P is a projection on Ml .

Further more

Htz = IPx + (I-P)xll2 = HPxII2 + II(I—P)XH2
shows that
ipxi? = uxn?
or that Pxil = #ixll
So IPIl < 1.

Also for any x € H,

%*
<Px, x> = <PPx, x> <Px,P x> = HleI2 =z 0.
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Thus a projection is a positive operator. Since I-P is a
projection, we must have

I-p >0 i.e 0 =P < 1.

There is a relationship between the concept of invariance of a

subspace and projections which we now look at.

Definition 2.3.7
A closed linear subspace M is said to be invariant under an

operator T if T(M) ¢ M.

Theorem 2.3.8

A closed linear subspace M ¢ H is invariant under an
operator T iff Ml is invariant under T*.
Proof

Since T** =T and M = Mll it is sufficient to prove the
necessary condition only.

If M is invariant under T, x € M and y € Ml , then

<x,T*y> = <Tx,y> =0

* *
1 i . . .
2> TyeM. Hence M is invariant under T

If both M and Ml are invariant under T we say that M reduces
T. From the above theorem it follows that M reduces T if and only
if M is invariant under both T and T*. The next theorem
demonstrates the relationship between an operator and a

projection.
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Theorem 2.3.9

Let P be a projection on a closed linear subspace M and T be
any operator. M is invariant under T iff TP = PTP.
Proof

Suppose M is invariant under T. Let z € H. Then

TPz e M

and TPz = PTPz > TP = PTP

Conversely, let TP = PTP and x € M. Then

Tx = TPx PTPx

P(Tx)

Thus M 1is invariant.

Theorem 2.3.10
If M and N are closed subspaces of H with projections P and

Q respectively, then the following statements are equivalent.

(1) P=Q
(i1) iIPxll = 1Qxil ¥x € H
(ii1) McN
(iv) QP =P
(v) PQ =P
Proof
If P = Q then HPXH2 = <Px,x> = <Qx,x> = IIQXII2 Vx € H,
If IPxil = NQxl Vx, consider x € M. Then
lixlh = UPxIl = WQxN = Nxll (since QI = 1)
i.e IoxI = lixll and K3 Qx = x or x € N.

If M ¢ N, then Px € N and QPx = Px for all x.
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IfQp =P then forming adjoints on both sides,
PQ = P.
Lastly, if PR= P then

<Px,x> = HPXH2 = HPQXHZ = NQXH2 = <Qx, x> vx.

We can express the orthogonality of Sulspaces in terms of

projections.

Theorem 2.3.11

Let P and Q be projections on a closed linear subspaces M
and N respectively. Then M 1L N iff PQ = 0.
Proof

Suppose M L N. Then N c M'L so that for all x, Qx € Ml and
hence (PQ)x = P(Qx) = 0, i.e PQ = 0.

Conversely, suppose PQ = 0. Let x e N. Then

0 1

PQx = P(Qx) = Px > X €M

Therefore N ¢ M . Hence N 1 M.

Theorem 2.3.12

Let P1 and P2 be projections with ranges M1 and M2

respectively. Then P = Pl-P2 is a projection with range M iff

P2 = P1 and M = Ml—MZ .

Proof

Assume P is a projection. Then

2 >

<P1x,x> - <P2x,x> = <Px,x> = IIPxIl 0 Vx
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implies
<P1x,x> z <P2x,x> or P1 = P2
On the other hand, if P2 =< P1 then P1P2 = P2P1 = P2 by
theorem 2.3.10. So
2— — — 1 —
(P1 - P2) = P1 P1P2 P2P1 + P2 = P1 P2
Now P1 =< P2 = P1 commutes with I—P2 since P1—P2 = Pl(I_PZ)'
The range of I-P is M2 and therefore
. 'L_ —_
M= M1 o) M2 = M1 M2

A projection defined on a closed subspace behaves exactly
like an identity operator on that subspace. The next theorem shows
that under certain conditions, a sum of projections defines an

identity operator on H.

Theorem 2.3.13

If H 1s a Hilbert space, Mi (i=1,2,3,...,n) are closed
subspaces of H and Pi (i=1,2,3,...,n) are projections onto the
Mi’s then P1 + P2 + ...+ Pn = I iff the subspaces [Mi] are

pairwise orthogonal and span H.

Proof
If P1 + P2 + .. Pn =1 then each x € H has a unique
representation x = Plx + sz + ...+ an. Hence Mi span H.
Conversely, suppose Mi’s span H and P1 + P2 + ...+ Pn is a
projection. To show that P1 + P2 + ..+ Pn is an identity

operator, it is sufficient to show that P1 + P2 + ...+ Pn is

projection iff [Mi] are pairwise orthogonal.
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Suppose PI’PZ and P, + P2 are projections. For x € M, we have

1 1

2
<(P1+P2)x,x> <(P1+P2) X, X>

= <P1x,P1x> + <P1x,P2x> + <P2x,P1x> + <P2x,P2x>
= <P1x,x> + <x,P2x> + <P2x,x> + <P2x,x>
= <(P1+P2)x,x> + 2<x,P2x>
which implies that <x,P2x> = 0. But
2 _ -
MPZXH = <P2x,P2x> = <P2x,x>.
Thus for x # 0, we conclude that M1 1 M2 . If P1 and P2 are such
that R(Pl) 1 R(PZ), then
2, _
(P1 + Pz) X = (P1 + P2)P1x + (P1 + PZ)sz
_ 52 2
= Plx + P2x
= (P, + P)x (since PP x = VP1P2X= o)
By induction we conclude that P1 + P2 + ...+ Pn is a projection.

REMARK: 8

The previous theorem conétituteswhat is called the spectral
theorem. We have seen that for any closed linear subspace M of a
Hilbert space H we can always find a projection on H whose range
will be this closed subspace and H=M @ M* . This is not usually

the case for any general Banach space.

2.4 COMPACT OPERATORS

Linear operators on finite dimensional spaces are easy to
study because they can be represented by matrices whose theory is
well understood. There is a class of bounded operators called

compact operators which are in many respects analogous to
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operators on finite dimensional spaces. Even closer to finite
dimensional 1linear operators is a subclass of compact

operators known as degenerate operators.

Definition 2.4.1

A set is said to be relatively compact if its closure is
compact.

Since compact - gets® are always closed, it follows that

compact sets are relatively compact.

Definition 2.4.2
Let X and Y be Banach spaces and T:X—Y be a continuous
operator. T 1is said to be compact if T(S) is a relatively

compact subset of Y whenever S is a bounded subset of X.

REMARK: 9

Since Y is a complete metric space, we say T is compact if
for any bounded sequence (xn) in X the sequence (Txn) contains a
Cauchy subsequence in Y.

Many operators that arise in the study of integral equations
are compact and this accounts for their importance from the

application point of view.

The <paces conmidered in Ve tegk

ok ALK gecion ce
(:)e(\@(a(\\s %C\\\C\C'\,\ &PC\C‘QS.
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Theorem 2.4.3

The set K(X,Y) of all compact operators from X to Y is a
closed linear subspace of the Banach space B(X,Y).

Proof

If T is a compact operator, and « is a scalar then obviously
«T 1s compact. Let T and S be compact operators. Let (xn) be a
sequence in X and (x;) be a subsequence of (xn) such that (Tx;)
is Cauchy in Y. Take a subsequence (xi) of (xi) such that (Sxi)
is Cauchy. Then { (T+S)xi } is a Cauchy sequence. Thus T+S is
compact and K(X,Y) is a linear subspace.

Now, let (Tk) be a sequence of operators such that HTk-TH—+0
as k—o . We show that T is compact. Take a subsequence (xi) of
(xn) such that (Tlxi) is Cauchy. Take a subsequence (xi) of
(xi) such that (szi) is Cauchy. Continuing in this way, we get a
diagonal sequence (xﬁ) =W such that (ann) is Cauchy. Since ¥a K<
is a subsequence of every sequence (xﬁ), each (Tkwn) is Cauchy for
fixed k. For € > 0 take k so large that HT,- Tl < € and then

k

take N so large that IITkwn - Tkwn+pu < e n>N, p>0. Then

1A

ITw -~ Tw I
n

n+p (T - Tk)(wn - wn+p)" + Hqéwn -w ]

n+p

1A

2(M + 1)e
where M = sup HwnH < w. The above is true whenever n e N and so

(Twn) is Cauchy. Thus T is compact.
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REMARK: 10
The product of a compact operator with a bounded operator is
compact as continuous operators take bounded and relatively

compact sets into bounded and relatively compact sets.

Definition 2.4.4
A subset F of B(X) is equicontinuous if {cv every e > 0 and
x € X, we can find a neighbourhood N = N(x) of x sch -Unak,

sup sup HIf(x) - £(L)I < ¢ .
feF teN

If F contains only one element , equicontinuity is the same
as continuity. The continuity of an element of F is a consequence
of the equicontinuity of F.

We recall that a subset F of a metric space is said to be
totally bounded if F is contained in the union of a finite number
of open balls of radius € > 0. Note that a relatively compact
subset of a complete metric space is totally bounded and

vice-versa.

Theorem 2.4.5 (Arzela-Ascoli)
1 X wempact con Fe 60,0 ¥ is relatively compact iff is
bounded and equicontinuous.
Proof
Let F c¢ B(X) be equicontinuous and bounded. For & > 0, we
can find a finite number of neighbourhoods N1,N2,...,Nm which
covers X (since X is Ccmpackt  .). Thus
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Since

sup sup Hf(xi) - f(x)Il < ¢
feF xeNi

‘ikefk F is relatively compact.

Conversely, let F be relatively compact. Then F is totally

bounded and hence bounded. If ¢ >0, 3 fl’f2""’fn in F such
that f € F has distance < g from one of fl’f2""’fn' For x € X
choose N(x) such that
€
- < = =
Hfi(x) fi(t)H 3 teN, i 1,2, ,

Then

If(x) - £(t)I = Nf(x) - fi(X)H + Nfi(x) - fi(t)ﬂ + Hfi(t) - f(t)

£ £ £ _
<3+§+3—8

for each f e F, t e Nand i = n. Hence F is equicontinuous.

Theorem 2.4.6 ( Schauder )
An operator in B(X,Y) is compact iff its adjoint is compact.

Proof

* o ) o |
Suppose T is compact. Let (yn) be a sequence in Y Sucwh that WY “é I anc
N b Lol \s , N
. ! JQQ’L ‘(\\,\ \,(LL( \nN Xg Be*’(iﬂe ,.(n A '\( > ‘\4 \Ov)

§$y) = <y,y:> y € Y (to mean image of y under y:)
Since an(y) - fn(y’)H = lly - y’H) (fn) is equicontinuous.
Also, since T(N) has a compact closure in Y, Arzela-Ascoli theorenm
implies that (fn) has a subsequence (fn.) that converges
i
uniformly on T(N). Now

* ¥ * % * %*
T yn.—T yn.H = supH<Tx,yn.—yn.>H = sup"fn.(Tx)—fn-(Tx)H
i J i J i J
*
the sup taken over x e N. Completeness of X implies that

* ¥ *
(T yn ) converges. Hence T is compact. The reverse can be
i
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proved similarly.

Let us call the dimension of R(T) the rank of T.
Definition 2.4.7
An operator T € B(X,Y) is said to be degenerate if rank T

is finite.

Since a finite dimensional space 1is locally compact, a
degenerate operator is compact. The set of all degenerate
operators is a subspace of B(X,Y) though not generally closed.

Also, the conjugate of a degenerate operator is degenerate.

2.5 FREDHOLM OPERATORS

We may want to classify an operator in terms of the
dimension of its null space and range. Fredholm operators are
identified in this way

Let T € B(X,Y). A complex number A is called an eigenvalue
of T if 3 x e X such that

Tx = Ax X=#0

Here x is called an eigenvector belonging to A. The zero vector
together with all eigenvectors of T is called the eigenspace of T.
The dimension of the eigenspace is called the (geometric)

multiplicity of A.
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Definition 2.5.1
The nullity, n(T) of an operator T :X—Y is defined as the

dimension of the null space of T.

Since N(T) is the geometric eigenspace of T for the
eigenvalue zero, n(T) 1is the geometric multiplicity of this

eigenspace.

Definition 2.5.2

The defect d(T) of T is the codimension in Y of R(T).

Note that each of n(T) or d(T) can take on values 1,2,...0r « .

Definition 2.5.3
If at least one of n(T) or d(T) is finite, we define the
index i(T) of T to be

i(T) = n(T) - d(T)

Definition 2.5.4

An operator T € B(X,Y) is said to be Fredholm if n(T) <

and d(T) < o.
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For a Fredholm operator T, the solution of the equation
Tx =y
is usually equivalent to determining the orthogonality of y to the
finite subspace of the kernel of the conjugate operator. It is

easier to study boundary value problems which are formulated in

this way.

Definition 2.5.5

An operator T is said to be semifredholm if the range of T

is closed and at least one of n(T) or d(T) is finite.

?Jtis worth noting that every bijective operator in B(X,Y) is

}

Fredholm.




3. NON LINEAR OPERATORS

3.1 INTRODUCTION

The need to study nonlinear functions and nonlinear
equations in particular stems from the fact that most equations in
real life are nonlinear. Some examples can be cited in fields like
elasticity, acoustics, fluid dynamics and oscillations. Though
most of the equations have been solved by linearization, there are
cases When this process is unsatisfactory. Therefore other methods
of solving nonlinear problems ought to be employed, for instance
the use of fixed point theorems. The results thus obtained reveal
properties which are closer to real situations. So we now look at

the class of important nonlinear operators, namely: Lipschitz.

3.2 LIPSCHITZ OPERATORS

Let X and Y be linear spaces over a field of real or complex
numbers K. We denote by Op(X,Y) the class of all functions T:X—Y
and call members of Op(X,Y) operators. In the case where X = Y,
we will write Op(X). The rules of addition, multiplication,
scalar multiplication, inverse etc. follow as in the case of linear
operators.

Let D be a subspace of X and denote by F(D,Y) the class of
all operators T € Op(X,Y) such that the domain of T ( D(T) = D )
is a linear space over K. We will denote by F(D) the set of all
T € F(X,X) such that Tx € D, x € D. We note that if D is not a

linear subspace of X, then F(D) is no longer a linear subspace.
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Definition 3.2.1
Let X and Y be normed linear spaces. Denote by Lp(X,Y) the
class of all members T € F(D,Y) such that
ITh = sup{ ITx-Tyll / lx-yll : X,y €D, x#y } <o,
We call members of Lp(D,Y) Lipschitz operators and ITI the
Lipschitz constant of T. Thus T e Lp(D,Y) if there exists a
constant L = 0 such that

ITx-Tyll = Llix-yll Vx,y € D

Since linear operators also satisfy the above condition, the
class of Lipschitz operators include linear operators as well. The

following relations are immediate consequences of the definition

of IITH
(1) T = 0 iff T is constant on D
(ii) HT1 + T2H = HT1H + HTZH
(iii) laTH = Ja|NTH o € K.
In particular, we can say that -l is a seminorm on Lp(D,Y).

Suppose we have an infinite sequence (Tn) in Lp(D,Y) such that

lim WT -T 0 =0 and lim IT x'-T x’'l =0 , where x’ e D.
n'm n m
n, m->o n, m->w
Then
lim T x—meH = 0, uniformly over D where D is bounded.
n, m->o

If Y is a Banach space then lim TnX = Tx each x € D, uniformly.
n->

Thus T € Lp(D,Y) and 1lim MTn—TH =0 . For x € D we define v, by
n->m

UX(T) = ITxN + ITIl T € Lp(D,Y).
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vx(') is a norm on Lp(D,Y). If Y is a Banach space, then Lp(D,Y)
is complete. If T comes from the class B(X,Y) of linear members of
Lp(D,Y) , then
ITIH = sup{ ITxIl / lIxll : x # 0 }

Since Lp(X,Y) is a vector space and B(X,Y) has been extracted from
Lp(X,Y), then B(X,Y) is a vector subspace. B(X,Y) is also closed
in Lp(X,Y). The J%o\\owmg veMOr R (owmpares %CY,Y) wsihy \_P(XQY,\;
REMARK: 11

Uniform boundedness does not hold in Lp(X,Y) as the example

below ( see Martin [7] ) shows.

Let X =Y = R. Define Tx = vx if 0=x=1
Tx = 0 X =<0
Tx = 1 xz1

Let (Tn) be a sequence of polynomials that converge uniformly to
vx on [0,1]. Extend T~ to R by defining

Tx=T -1 if x=z1

n n

Tx=T -0 ifx=20
n

Clearly, Tn is bounded on the real line and lim Tnx = Tx X € R.
n->0

However the sequence (HTnH) is not bounded and even T does not

belong to Lp(R, R).

We recall that for any two operators S and T, multiplication

is defined as

(S-T)x = S(Tx)
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Now if S,T € Lp(X,Y) then

H(S-T)x - (S-Thyll = IS(Tx) - S(Ty)l = ISI-NTx - Tyl

IA

HSH-NTH- hx=yil.

Thus ST € Lp(X,Y) and WS-TIl =< ISI-UTI

We deviate a 1little and discuss B(X,Y).

Suppose X is a

Banach space and (Tn) is a sequence in B(X,Y) such that
lim Tnx = Tx exists for all x € X. Then T € B(X,Y) and
n->w
0TI = 1lim ianTnH . This follows since { Tnx :nz11} 1is bounded
n->o0
in Y for each x € X. Thus we can find a constant C such that
Hyy =C, nz 1. Hence 1lim inf HTnH =L for some limit L.
n->o
Now if x € X,
ITxH = 1lim HTnXH < lim ianTnH'HxH = L-lIxH
n->w n-yw

Therefore, T € B(X,Y) and ITH = lim ianTnH .

n->00

Theorem 3.2.2
Let X be a Banach space, T € Lp(X) and UTI < 1. Then

is invertible in Lp(X) and

1(1-1)"n = (1-nmy?
Proof
It follows from
W(1-T)x = (1-T)yll = x - ylIl = 0Tx - Tyl = (1-0TH)-x - yH

X,y € X that 1-T is injective. Now, define BO = 1 and

B =1+ TB n=123,...
n n-1

lim an = Lx exists . Ckn1§

N>

Lx = 1im B x = 1im(1-TB Jx = x + TLx
n n-

n-> n-»0

1

1-T

Since NITI < 1 and X is complete
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Then L =1 + TL or (1-T)L = 1. So L is the inverse of 1-T and
hence 1-T is surjective. We get the estimate from

1

-0 - a-m s = (-t e - s1, s € R(L-T).

Note that this result holds even in the case of linear operators.

3.3 o-LIPSCHITZ OPERATORS

Let X and Y be normed linear spaces over a field K. Suppose
- U is a bounded subset of X. Define a diameter &[:] on X as

8[U] =sup { Ix -yl : x,y € U }.

Define a[-] also by

«[U] = inf { € > 0 : U can be covered by a finite number of

sets with maximum diameter less than € }

We call a[+] the measure of non compactness. Note that 8[U] = 0 if

and only if U consists of exactly one point and 0 = 8[U] < o .

Definition 3.3.1
A mapping T:D—Y is said to be a-Lipschitz if
(i) T is continuous
(ii) T is bounded
(iii) We can find K = 0 such that «[T(U)] = Kal[U] for all

bounded U D

We denote by oa-Lp(D,Y) the class of a-Lipschitz mappings.
If T € a-Lp(D,Y) the a-Lipschitz constant, ITHx is the smallest

number K such that condition (iii) above holds.



The class a-Lp(D,Y) can be shown to be a linear subspace of

F(D,Y). Suppose that «[BT(U)] = |B|alT(U)]. Then the following
properties of a-Lipschitz operators follow
(1) BT = |B]-NTlHa
(i1) T + Tl = ITl + T ll
If X and Y are infinite dimensional, «-Lp(D,Y) is precisely the

class of bounded continuous operators T such that HTla = O.

Let T:D—Y and K 2 0 be such that
8[T(U)] = Ks&[U] for all bounded UcD (a)
If we take U = {x,y} then &8[U] = iix-yl and S[T(U)] = ITx - Tyll.
Thus if (a) holds then T € Lp(D,Y) with UTI = K. On the other
hand, let T € Lp(D,Y). Choose two sequences (xk) and (yk) in U
such that

SIT(U)] = 1im IlTxk - Tka
koo

Then S[T(U)] = 1lim HTH-ka -yl s ITH-8[U] . Thus T € Lp{(D,Y)
implies that (a) holds for K = IITI. It follows that if T € Lp(D,Y)
then, T € «~Lp(D,Y) with NITlle = NTI. Apart from Lp(D,Y), there is

another class of operators contained in «a-Lp(D,Y).

Definition 3.3.2
A mapping is said to be completely continuous if it is both

continuous and compact.
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The class of completely continuous operators is a subspace
of a-Lp(D,Y). We actually identify completely continuous operators

with operators T € a-Lp(D,Y) such that ITha = O.

Finally,
Definition 3.3.3

A function ¢ :X—Y is Frechet differentiable at x € X if we
can find a linear continuous function dy(x, -): X—Y called the
F-differential of ¥ at x, such that

lim ﬁlﬁ W (x+y) - @(x) - dy(x,y)ll =0 y € X
hyllso Y

Usually dy(x, ) is identified with dy(x) or simply Y’ (x).
The class of all operators y:D—Y such that F-derivatives exists
for each x € D with Udy(x)}ll < » is a vector space over K. In this

case the F-derivative mappings are identified with Lp(D,Y).



4. SPECTRAL THEORY

4.1 INTRODUCTION
Given an operator T, the inverse of T and AI-T (I is the
identity operator) if they exist exhibit very interesting
properties. For instance, if the inverse of AI-T exists, then the
equation
AX - Tx =y
has a solution of the form x = (A—T)_ly. Spectral theory as we
shall see is the study of such functions together with certain
sets. We have seen that if A is a scalar and x is a nonzero vector
such that
Tx = Ax
then x has been called an eigenvector and A the eigenvalue of T
corresponding to x. We briefly examine some of the results in

spectral theory.

4.2 SPECTRUM AND RESOLVENT
Given A, either AI-T is invertible or not. Hence scalars of

such type can be grouped into disjoint sets.

Definition 4.2.1
For any operator T, the resolvent set of T isvgiven by
P(T) ={ a2 eK: (AI-T)"! exists in Lp(X) }
The complement of p(T) is called the spectrum of T and is denoted
by o(T). To simplify our notation, instead of AI-T, we will be
writing A-T.
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Definition 4.2.2

Let T be an operator and p(T) be non empty. The resolvent of
T is a function R(.,T): p(T)—Lp(X) defined by

R(A,T) = (A-T) " for all A € p(T).

It follows that A belongs to the resolvent set in the case
the resolvent belongs to Lp(X) and HIR(A,T)HI = H(A-T)_IH. If the
resolvent set is non empty, then T is necessarily closed.

We recall that if T € Lp(X) and HTHI < 1, then the inverse of

(I-T) exists in Lp(X) and

n(r-1)" 1y = (1-utmy~1 .

Under the same conditions for T, it can be shown that

- @
(I-T) = §% T (a)
n=o

Now suppose T € Lp(X) and A, p € p(T). Then

u-T (A-T) + (n - A)

[I + (p=2)R(QA,TI (A-T) (b)
Multiply (b) on the left side by R(A,T) and then by R(u,T) on
the right, on both sides in each case. What we get is an equation
known as the nonlinear resolvent:

R(A,T) = R(p, T) [I - (u-A)R(A,T)] (c)
With the given background, we are now in a position to prove our

main theorenm.
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Theorem 4.2.3

Let T be a member of Lp(X). Then p(T) is an open set and,
o (T) being its complement, is therefore closed.

Proof

Let A € p(T) and pu € K be such that

A - pl < uR(;\,T)u"1

Then IA = ul-IR(A,TIN < 1 and therefore 1-(A-p)R(A, T) is

invertible. Hence

1 1

I [1-(A-wROA, T T = (1-A-plUR(A, T)N)

It now follows from (b) ,if we invert it, that

R(g,T) = R, T)[ 1-(A-p)R(A, T)] X (d)
which implies that p(T) contains the neighbourhood
{ p € K IA- gl < IRADITY }. Hence p(T) is open and its

complement ¢(T) is closed.

Let (um,¥) and (A,x) € p(T) x X. Let |A-p| = WR(g,T)I L. Then
IR(A, T)x - Ry, T)yll = UR(A,T)X - R(p, T)x + R(p, T)x - R(u, Tyl
= IR(A, T)x = R(u, TIxN + 0 [R(u,T)X = R, T)yl (*)
Now, using (d), we have

IR(A, T)x - R(u, T)xI

IR, T 1-(A-p)R(, T 1 % - Ry, T)xll -

1A

IR, -1 [1-A-p)RET 1 1% - xI

Substituting this in (*) we get

HR(A, T)x-R(p, T)yll = HR(u,T)H-H[1—(A-u)RQﬁT)]—1x-xH+HR(u,T)H'Hx—y"

= [A-p |- UR(u, T)x- MR (p, T [1= 1A= | IR (u, YN ™Y + WR(p, T 0 - ix=yl

Thus lim R(A,T)x = R(p, Ty .
(A, x)>(u,y)

So the function (A,x)—R(A,T)x is continuous.
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The next result shows that the resolvent set is a subset of the

complex plane which contains the set { z : [z]| > WTIl }.

Theorem 4.2.4

Let T € Lp(X). Then p(T) > { A € K: |[A|>ITI } and
R(A, TN < (|A] - IITII)_1 for all A € K such that [A] > HTH.
Proof

Now, IAl > UTH implies 1 > IA"ITH . So (127 1)™! is a
member of Lp(X) and

1

-2~ ity < (1-|>C1|-||T||)'1

Thus A € p(T). Also A-T = A(1-A"'T) and therefore

no-1) N = 1-a" Ty
= 27 a-ntarn Tt
= (Ja] - 1T)~?

4.3 LINEAR RESOLVENT
The results we have looked at for general operators hold for
“the jesult
linear operators too. In particular we haveAﬁhat the resolvent set
is open and the spectrum is closed and bounded.
We now assume that the space X is complete and the operators
dealt with are closed. This condition makes the resolvent to be

linear as well. We can therefore rewrite (c) as

R(A,T) - R(p, T} = (u-A)R(u, TIR(A,T)
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Given an operator T, on a space X, there are various reasons
why A-T may fail to be invertible. May be
(1) A-T is not one-one which means that we can find a non
zero vector x such that (A-T)x = 0.
(ii) A-T is one-one and though (?t--T)_1 is defined on the
dense subspace of X, it fails to be continuous.
(iii1) (7&—T)_1 exists but its domain is not dense in X.

The three cases above lead us to the following definitions:

Definition 4.3.1
The point spectrum op(T) of an operator T € B(X) is the set

of all eigenvalues of T.

Definition 4.3.2
The continuous spectrum GC(T) consists of all A € K such
that A-T is a one-one mapping of X onto a denser proper subset of

X, where (7&—T)—1 is discontinuous.

Definition 4.3.3
The set of all A such that the domain of (7\—T)-1 is not

dense in X is called the residual spectrum and is denoted by or(T)

REMARK: 12
The spectra op,oc and oL divide the spectrum o into three

parts. In a finite dimensional space however, ¢(T) = 0p(T).
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Definition 4.3.4

Let T € B(X). The spectral radius of T denoted by r(T) is
given by

r(T) = sup{ |Al: A € o(T) }.

The above number exists since we well know that o(T) is non
empty. There is a strong relationship between the spectrum and a

sequence of powers of an operator.

Theorem 4.3.5
n n
For any operator T, (T ) = [o(T)] .
Proof
Suppose A € ¢(T). Then
AT - T = a-Ty AN e AP,
The factors in the above equation commute and so A" has :no

inverse. Thus A" e G(Tn).

If p e o(T™) and A is an nth root of pu, factoring A"

shows that A € ¢(T) for at least one A.

The previous theorem implies that r(T™) = [r(T)]™. Now

r(T") = WT™I. Hence r(T) = IITnlll/n which implies that

r(T) = 1im inenT™™ .

n->0

Let r(T) <1 and ITN 5 0. If we take n so large, IT™ < 1 and

n,1/n <

T i 1. Thus

lim supi™™nl’™ < 1

nN->00
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Define S = ( r(T) + c)_lT where T is any operator. Then r(S) < 1

and lim suphs™ii’® = 1
n->0w
> lim suplT™1™ = r (1)
n->00

Combining all the steps above, we have

n.1/n n.1/n

r(T) = lim inflT il = lim suplT | = r(T)
or that r(T) = 1im T /™
nN->o00

What we have above is just another way of defining the
spectral radius r(T) of any operator T. We have actually shown

that the series { IITnHI/n } is convergent.

The following example ( Martin [7] ) shows that it is not
for any operator that the mapping : A—R(A,T) 1is continuous.
Example

Take T to be an operator over R and D(T) = R itself. Define

Tx = x , X =2

Tx = 2 , Xz 2

Then T is bounded, ITIl = 1 and p(T) {2AeR: A ¢ [0,1] }.

Case of A < 0.

R(A, Tx = (1-2) " 'x if x = 2(1-2)
R, T)x = A~ 1 (2-x) if x > 2(1-2)
Case of A > 1.
R(A,T) = A~ (2-x) for x = 2(1-A)
R(AL,T) = (1-0) 'x | for x = 2(1-1)

Thus the map A—R(A,T) is not continuous since

lim suplR(A ,T) - R, Tl = 1

2
n->o
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We have previously seen that r(T) = lim IITnlll/n exists and

that r(T) = ITIH. We can now give the series form of the

resolvent. Since R(A,T) is analytic when |A| > r(T), it must have
a Laurent expansion convergent outside the circle of radius r(T).
Therefore

R(A,T) = § a % r¥71

Al > r(T)
It is interesting to note that for self-adjoint operators,
the eigenvectors corresponding to different eigenvalues are

orthogonal. For suppose that A, # A, and Tx, = A,X, , TX. = A.X

1 2 1 171 2 272
Then
A1<x1,x2> = <Tx1,x2> = <x1,Tx2> = A2<x1,x2>
which can only happen if <x,,x.> = 0 implying that the two

1’72

vectors are orthogonal.

The calculation of r(T) for self-adjoint operator T is

also simple. We know that HT2N = HTH2 and

T = IIT2l|1/2 = IIT4II1/4 = ,..
Therefore r(T) = ITI.

The above result is true for a normal operator T over the

space of complex numbers.
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