DECLARATION

I, **Chisala Kapumpu** do hereby declare that the contents of the dissertation being submitted herein are my original work and they have not been previously submitted to any University for the award of a degree or any other qualification.

Signature.....Date.....

CERTIFICATE OF APPROVAL

This dissertation submitted by, Chisala KAPUMPU is approved as fulfilling the requirements for the award of the degree of Masters of Engineering in Thermo-fluids at the University of Zambia.

Supervisor		Signature
Supervisor		Signature
Examiner	· Sign	Date
Examiner	· Sign	Date
Examiner	- Sign	Date

ABSTRACT

The requirement for insolation models has been appreciated for many years in designing solar energy systems properly, for locations lacking insolation data base. Unfortunately, for most geographical areas in Zambia, insolation data is not available. This research thesis gives an account of global solar radiation measurements on a horizontal surface, mean daily maximum temperature, mean daily relative humidity, mean daily pressure, mean daily maximum dew point temperature, and hours of bright sunshine for seven selected locations in Zambia. The considered locations represent the different atmospheric weather conditions of Zambia. Kasama and Mansa are in the north, Lusaka and Ndola in the middle, and Livingstone and Mongu in the south, Mfuwe in the east of Zambia. Correlations between the daily measurements of global solar radiation. A common relationship for all Zambia was also established to estimate global solar radiation. The correlation and the regression coefficients and the standard errors of estimate were established. The values of correlation coefficients varied from 53% to 97% and the errors of estimation were between 0.24 and 0.84.

DEDICATION

I dedicate this thesis to: My late mum, Mwelwa Kapumpu; My wife, Mildred and; Our children, Mwelwa, Chimbali and Chisala.

ACKNOWLEDGEMENTS

There are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted.

To my supervisors Dr. P.C Chisale and Dr. N Kwendakwema, I would like to express my heartfelt gratitude for the useful comments, remarks and engagements through the learning process of this master thesis. Your advice on both research as well as on my career have been priceless. You continually and persuasively conveyed a spirit of adventure with regards to research and an excitement to teaching. Without your supervision and constant help this thesis would not have been possible.

To my family and friends, a special thank you. Words alone cannot express how grateful I am to my father, mother-in law and father-in-law, for all of the sacrifices that you have made on my behalf. Your prayer for me was what sustained me thus far. I would also like to thank all of my friends who supported me in writing, and incented me to strive towards my goal. Finally, I would like to express appreciation to my beloved wife Mildred whom I spent sleepless nights with and was always my support in moments when there was no one to answer my queries.

I would like to express the deepest appreciation to Professor F. D Yamba for having introduced me to many topics in Thermo-fluids, Mr. Edwin Luwaya for his ever unfailing encouragements; my colleague Adam Daka for being there for me when I felt like failing to do it. I would also like to express my gratitude to the Zambia Meteorological Department (ZMD) for their sincere cooperation in providing the files and documents available in their archive containing meteorological information. Without this information, this research would have not been successful. Special thanks to University of Zambia (UNZA) for the opportunity to pursue my studies.

Finally, but definitely not the least, I would like to express my appreciation to all the Lecturers in the Department of Mechanical Engineering and indeed the academic members of staff in the School of Engineering for their support.

TABLE OF CONTENTS

DECI	LARATION	i
CERT	TIFICATE OF APPROVAL	ii
ABS	TRACT	iii
DED	ICATION	iv
ACK	NOWLEDGEMENTS	V
TABI	LE OF CONTENTS	vi
LIST	OF TABLES	ix
LIST	OF FIGURES	X
LIST	OF ABREVIATIONS	xi
NOM	IENCLATURE	xii
СНА	PTER 1 INTRODUCTION	1
1.1	INTRODUCTION	1
1.2	WORLD ENERGY SENARIO	1
1.3	ENERGY SCENARIO IN ZAMBIA	4
	1.3.1 Electricity Generating Facilities for Private Companies	5
1.4	RENEWABLE ENERGY IN ZAMBIA	7
1.5	SOLAR ENERGY IN ZAMBIA	8
1.6	A BRIEF REVIEW OF SOLAR RADIATION MODELLING	9
1.7	PROBLEM STATEMENT	10
1.8	OBJECTIVES OF THE RESEARCH	11
	1.8.1. Research Questions to be answered	12
	1.8.2 Benefits of the Research	12
1.9	JUSTIFICATION OF THE RESEARCH	12
1.10	METHODOLOGY OF THE RESEARCH	15
1.11	BRIEF CHAPTERS OVERVIEW	16
1.12	CONCLUSION	16
CHA	PTER 2 SOLAR RADIATION MODELLING	17
2.1	INTRODUCTION	17
2.2	SOLAR RADIATION	
	2.2.1 Solar Constant	19

	2.2.2	Extra-terrestrial Solar Spectrum	19
	2.2.3	Extra-terrestrial Solar Irradiance	20
2.3	BASI	C RADIATION LAWS	21
	2.3.1	Max Planck's Law	22
	2.3.2	Stefan-Boltzmann Law	22
	2.3.3	Wien's Law	22
	2.3.4	Inverse Square Law	23
2.4	SOLA	R RADIATION DERIVED FROM SATELLITE OBSERVATION	23
	2.4.1	Satellite Based Models for Deriving Solar Radiation	25
2.5	PREV	YOUS RESEARCH IN SOLAR RADIATION MODELLING	27
2.6	CRIT	IQUE OF THE THEORY AND RESEARCH LITERATURE	31
CHA	PTER 3	3 METHODOLOGY	32
3.1	INTR	ODUCTION	32
3.3	SUM	MARY OF THE SOLUTION	34
3.4	SOLA	R RADIATIONS AND GGAM DATA SETS	35
3.5	SATE	LLITE DERIVED SOLAR RADIATION DATABASES	37
	3.5.1	Heliosat	37
	3.5.2	SolarGIS	37
	3.5.3	NASA Surface Meteorology and Solar Energy (SMSE 2012)	
3.6	ADVA	ANCED COMPUTER PROGRAM MATLAB 2011B	
	3.6.1	Linear Regression in Matlab	
	3.6.2	Residuals and Goodness of Fit	
	3.6.3	Correlation Analysis	39
3.7	MEAI	N BIAS ERROR, MEAN OF ABSOLUTE DEVIATIONS, AND ROOT	MEAN
	SQUA	ARE ERROR	40
3.8	SAMI	PLE CALCULATIONS FOR SOLAR RADIATION MODELS	41
CHA	PTER 4	4 RESULTS AND DISCUSSIONS	44
4.0	INTR	OUCTION	44
4.1	GGAN	M Parameters, ground based and satellite-derived solar radiation data	a sets at
	selecte	ed sites in Zambia	44
	4.1.1	Variations of measured Global Solar Radiation and GGAM Parameters	

APPE	INDIX	71
REFE	CRENCES	68
5.2	RECOMMENDATIONS	66
5.1	CONCLUSIONS	66
CHAF	PTER 5 CONCLUSIONS AND RECOMMENDATIONS	66
	radiation at selected locations	62
4.4.	Comparison between ground measured and estimated values of g	global solar
4.3	Model to estimate solar radiation for all Zambia	61
	GGAM Parameters for the Selected Locations	
4.2	Models for estimating Monthly Mean Global Solar Radiation intensities usi	ng Relevant
	4.1.2 Comparison between ground measured and satellite derived solar data	sets55

LIST OF TABLES

Table 1.1	World Total Energy Consumption in 2005 and the three Scenarios for 2005	3
Table 1.2	World Fossil Fuel Production Rate	4
Table 1.3	Three Major Hydropower Plants in Zambia	5
Table 1.4	ZESCO's Small Hydro Power Plants	5
Table 1.5	ZESCO's Diesel Power Plants	6
Table 1.6	Existing Micro-Hydro Power Plant	7
Table 1.7	Availability and Potential for Utilization of Renewable of Energy Resource	s and
	Technologies in Zambia	7
Table 1.8	Percentage Distribution of Households by Main Source of Energy for	
	Lighting	13
Table 1.9	Percentage Distribution of Households by Main Source of Energy for	
	Cooking	14
Table 3.1	Recommended Average days for Months and Values of n by Months	33
Table 4.1	Comparison of ground measured and satellite derived global solar radiation	s55
Table 4.2	Geographic location of the selected stations and regression and correlation	
	coefficients of estimate for model	60
Table 4.3	Comparisons of ground measured and estimated values of global solar radia	ation at
	selected locations	62

LIST OF FIGURES

Figure 1.1	Energy consumption by sector in 2005 and the three scenarios
Figure 1.2	Primary Energy Productions by Source4
Figure 1.3	Solar Radiation Map of Zambia9
Figure 2.1	Standard extraterrestrial solar spectral irradiance curves
Figure 2.10	Schematic diagram of the method for calculating26
Figure 2.11	Illustration of the processed images by using the Helisat-2 model27
Figure 3.1	Climatological Zones in Zambia
Figure 4.1	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at KASAMA Station
Figure 4.2	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at LIVINGSTONE Station
Figure 4.3	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at LUSAKA Station
Figure 4.4	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and n/N (c) Relative Humidity, R_{h} and (d)
	Pressure at MANSA Station
Figure 4.5	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at MFUWE Station
Figure 4.6	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at MONGU Station
Figure 4.7	Monthly mean daily variations of the considered parameters (a) $T_{\text{max}},$ Cloud
	Cover C, T_{dpmax} and H_{o} (b) $H\!/\!H_{o}$ and $n\!/\!N$ (c) Relative Humidity, R_{h} and (d)
	Pressure at NDOLA Station
Figure 4.8	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Kasama

Figure 4.9	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Livingstone
Figure 4.10	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Lusaka
Figure 4.11	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Mansa57
Figure 4.12	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Mfuwe
Figure 4.13	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Mongu
Figure 4.14	Comparisons of ground measured and satellite derived global solar radiation data
	sets at Ndola

LIST OF ABBREVIATIONS

SE	Standard Error
CC	Coefficient Correlation
GGAM	Geographical, Geometrical, Astronomical and Meteorological
UNZA	University of Zambia
ZMD	Zambia Meteorological Department
IEA	International Energy Agency
EIA	Energy Information Administration
WEC	World Energy Council
ZESCO	Zambia Electricity Supply Corporation
LHPC	Lunsemfwa Hydropower Company
RMSE	Root Mean Square Error
MAPE	Mean Average Percentage Error,
MBD	Mean Bias Differences
MBE	Mean Bias Error
MAD	Mean Absolute Deviation
MPE	Root Mean Square Error

NOMENCLATURE

a, b, c, d, e, f, g, h, i	Regression Coefficients
H _o	Mean daily extraterrestrial solar radiation,
n/N	Average daily ratio of sunshine duration,
R_h	Mean daily relative humidity,
T _{max}	Mean daily maximum air temperature
T _{dp,max}	Mean daily maximum dew point temperature
Р	Mean daily atmospheric pressure
С	Cloud cover,
Н	Mean Daily monthly global solar radiation at earth's surface
n^*	Hours of measured sunshine
n	Day of year
Ν	Potential astronomical sunshine hours
I _{sc}	Solar constant
Io	Extraterrestrial Solar irradiance
Ø	Latitude angle
ω	Hour angle
ω_s	Sunset hour angle
$ heta_z$	Solar zenith angle
δ	Solar declination angle