EPIDEMIOLOGICAL CHARACTERISTICS OF PATIENTS
WITH MYELOMENINGOCOELES PRESENTING TO
UNIVERSITY TEACHING HOSPITAL - LUSAKA

By

MARTHA MWEWA LUNGU, B.Sc. (HB); MB ChB (UNZA).

A dissertation submitted in partial fulfillment of the requirements for the award of Master of Medicine (Surgery) degree of the University of Zambia

UNIVERSITY OF ZAMBIA
SCHOOL OF MEDICINE

September 2004
APPROVAL FOR EXAMINATION

This Dissertation is ready for examination

Date 30/03/05 Supervisor

Mr. T.K. LAMBART
The Dissertation of Dr Martha Mwewa Lungu is ready for examination.

Signed (Supervisor)...

Signature

MR T. K. LAMBART
Honorary Lecturer
School of Medicine
University of Zambia

Signed (Co supervisor). ..

Signature

PROFESSOR ODIMBA
Honorary Professor
School of medicine
University of Zambia
Approval

The University of Zambia approves this dissertation by Dr Martha Mwewa Lungu in partial fulfilment of requirements for the award of the degree of the Master of Medicine in General Surgery.

Signature

Date

[Signatures and dates]
DECLARATION

I hereby declare that this dissertation herein presented for the degree of Master of Medicine (Surgery) has not been previously submitted wholly or in part for any other degree at this or any other university, nor is it being currently submitted for any other degree.

Signed... (Candidate)

Signed... (Supervisor)

Signed... (Co-supervisor)
DEDICATION

This work is dedicated to the following people without whose assistance and encouragement this work would not have been completed: my husband, Dr Shadrick Lungu who believed that I could do it and looked after our children. My children whom I seldom saw during this period of study/research and who, I am certain, wondered why mummy was not visiting so frequently. I do not forget to thank both Mr. Lambart and Professor Odimba for the patience shown when I “troubled” them for direction and advice whenever I got stuck. Above all I thank the Almighty God for seeing me through all this work.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC</td>
<td>ANTENATAL CLINIC</td>
</tr>
<tr>
<td>NTD</td>
<td>NEURAL TUBE DEFECT</td>
</tr>
<tr>
<td>UTH</td>
<td>UNIVERSITY TEACHING HOSPITAL</td>
</tr>
<tr>
<td>USA</td>
<td>UNITED STATES OF AMERICA</td>
</tr>
<tr>
<td>MA</td>
<td>MASSACHUSETTES</td>
</tr>
<tr>
<td>NY</td>
<td>NEW YORK</td>
</tr>
<tr>
<td>CDC</td>
<td>CENTRES FOR DISEASE CONTROL</td>
</tr>
<tr>
<td>M: F Ratio</td>
<td>MALE: FEMALE RATIO</td>
</tr>
</tbody>
</table>
TERMINOLOGIES

Encephalocele

Protrusion of a variable amount of meninges and brain parenchyma through a defect in the cranial bones.

Meningocele

Closely related to myelomeningocele but less severe form of spinal defect in which only meninges herniated through abnormally formed vertebral arches.

Myelomeningocele

A neural tube defect characterized by herniation of meninges and spinal cord through a posterior vertebral defect.

Neural Tube Defect

Developmental aberrations related to abnormal closure of the neural tube. Includes myelomeningocele, meningocele, encephalocele, and anencephaly.

Spina Bifida

Spinal neural tube defects where there is an absence or hypoplasia of one or more vertebral arches, with variable abnormalities in the underlying meninges and/or spinal cord.
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Bar graph showing prevalence of myelomeningoceleles between 1994 and 2002</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Pie chart of sex distribution of myelomeningoceleles</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Pie chart of socio-economic status of myelomeningoceleles</td>
<td>26</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Bar graph of maternal education</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Table showing comparison of maternal tribe and myelomeningoceleles</td>
<td>28</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Table showing sites of occurrence</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Table showing province of origin</td>
<td>30</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Pie chart showing folic acid consumption</td>
<td>31</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Table showing antenatal visits.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Graph showing maternal age distribution</td>
<td>33</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Pie chart showing parental occupation</td>
<td>34</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Abstract</td>
<td>2</td>
</tr>
<tr>
<td>3. Objectives</td>
<td>4</td>
</tr>
<tr>
<td>4. Rationale</td>
<td>5</td>
</tr>
<tr>
<td>5. Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>6. Patients and Methods</td>
<td>21</td>
</tr>
<tr>
<td>7. Results (Graphs and Tables)</td>
<td>23</td>
</tr>
<tr>
<td>8. Discussion</td>
<td>35</td>
</tr>
<tr>
<td>9. Conclusion and recommendations</td>
<td>39</td>
</tr>
<tr>
<td>10. References</td>
<td>41</td>
</tr>
<tr>
<td>11. Photograph</td>
<td>46</td>
</tr>
<tr>
<td>12. Appendices:</td>
<td></td>
</tr>
<tr>
<td>Appendix 1: Consent form</td>
<td></td>
</tr>
<tr>
<td>Appendix 2: Unified questionnaire</td>
<td></td>
</tr>
</tbody>
</table>

x
Introduction

Myelomeningocele is a complex malformation of the spinal cord, nerve roots, meninges, vertebral bodies and skin. This neural tube defect is a common congenital anomaly and typically referred to as spina bifida. It results from failure of the neural tube to close in the developing fetus (1,2). Medical, surgical and rehabilitation issues arise in the patient with myelomeningocele from birth through adulthood. Ninety per cent (90%) of these patients also have hydrocephalus. It also occurs with multiple system congenital anomalies e.g. facial clefts, heart malformations and genitourinary tract anomalies (3). Mortality rates reported for infants who are untreated for myelomeningocele range from 90-100% based on several series of studies dating from the turn of the century through recent years. Most untreated infants die within the first year of life. Death in the first 2 years of life for those untreated usually results from hydrocephalus or intracranial infection. The likelihood that a 2-month-old infant untreated for myelomeningocele lives to be 7 years is only 28% (3).
ABSTRACT

This study was carried out to highlight epidemiological characteristics that children with cranio – spinal dysraphism such as myelomeningoceles presenting to the University Teaching Hospital in Lusaka had. Records of patients presenting to the University Teaching hospital from June 1994 to December 2002 were looked at and the data noted. Then a prospective study was carried out over a period of 10 months starting in August 2003 to June 2004. The details of how this was undertaken are described below. A total of fifty (50) patients were seen from August 2003 to June 2004. There were twenty-eight (28) females and twenty-two (22) males. Of these, thirty-six (36) had myelomeningoceles, and encephaloceles and meningoceles were seven patients each respectively. Their socioeconomic status was predominantly low (86.1%). Folic acid intake by their mothers was 51.4%. The maternal age ranged was from 15 to 40 years. The average gestational month at the first ANC attendance was 4 (four) months. The educational standard of these mothers was mostly primary school education (45.7%). The maternal ethnic pattern for myelomeningoceles was highest in the Bembas (20.0%) and seconded by the Tonga’s (17.1%) whereas the Tonga tribe led overall for all the neural tube defects noted. Most patients with myelomeningoceles were
from within Lusaka (38.9%). The sacral area was the most commonly affected site for myelomeningocele (36.1%).
OBJECTIVES

a) To study the prevalence of myelomeningoceles at UTH

b) To study the disease distribution of myelomeningoceles at UTH

c) To determine the ethnic pattern of myelomeningoceles.

d) To determine the most prevalent anatomical site
RATIONALE

Myelomeningocele is one of the serious neural tube birth defects. Most children with myelomeningoceles are referred to the University Teaching Hospital, Peadiatric Unit (D-Block) for specialist attention from all around Zambia. This condition presents a challenging problem with regard to clinical management. Considering the limited capacity, for example, manpower trained to deal with this condition, it is worth trying to take preventive measures in reducing the occurrence of these defects. Preventive measures can only be started once the characteristics of the problem are identified. The rates of myelomeningoceles vary widely among countries and by geographical regions within countries (3,18). To reduce the occurrence of the birth defects (Neural Tube Defects), the Food and Drug Administration of USA authorized the fortification of all enriched cereal grain products with folic acid in March 1996, with compliance mandatory by January 1998 (6). During 1996 to 2001 a 23% decline occurred in neural tube defects (spina bifida and anencephaly combined) (6). Spina bifida declined by 24% during this period, and anencephaly declined by 21%. The United States has experienced declines in spina bifida and anencephaly cases since folic acid fortification of all enriched cereal grain products (6). The observed declines have translated into approximately 920 infants being born without these serious defects each year (6).
LITERATURE REVIEW

Myelomeningocele is the most common physically disabling birth defect in humans. It is caused by the failure of the neural tube to close and is most common in the lumbosacral area (75%) (1,2).

Myelomeningocele often occurs with multiple system congenital anomalies. Commonly associated anomalies are facial clefts, heart malformations and genitourinary tract anomalies (3,19).

Pathophysiology

Myelomeningocele is the result of a teratogenic process causing failed closure and abnormal differentiation of the embryonic neural tube during the first 4 weeks of gestation. Abnormal development of the posterior caudal neural tube produces spinal cord damage or myelodysplasia. The anatomic level of the spinal cord lesion roughly correlates with the patient's neurologic, motor, and sensory deficits (3). Abnormal development of the cephalic anterior tube gives rise to central nervous system anomalies. The Arnold Chiari Type 2 malformation impedes the flow and absorption of cerebrospinal
fluid and causes hydrocephalus, which occurs in more than 90% of infants with myelomeningocele (3).

Aetiology

In most cases the aetiology is multifactorial, involving genetic, racial, and environmental factors.

- Other offspring in a family with one affected child are at increased risk of a neural tube defect than children without affected siblings.
- The risk is 1 in 20 - 30 for subsequent pregnancies, and if 2 children are affected, the risk becomes 1 in 2.
- Most infants born with myelomeningocele are born to mothers with no previous affected children.
- A small number of cases are linked to specific aetiological factors.

Up to 10% of fetuses with a neural tube defect detected in early gestation have an associated chromosome abnormality.

Maternal risk factors include insulin dependant diabetes mellitus and hypothermia (3).

Intrauterine drug exposures to valproate, carbamezpine, and drugs to induce ovulation are identified risk factors (3,19).
• Prior to 1991, most neural tube defects occurred without identification of a specific cause.

• Research in the 1980s showed correction of folic acid deficiency as an effective means of primary and recurrent prevention.

After 1991, 50% of cases of neural tube defects are related to a nutritional deficiency of folic acid and thus, are preventable.

In September 1992, the US Public health Service (USPHS) recommended intake of folic acid at a dosage of 0.4mg/d for all women anticipating pregnancy.

In February 1996, the USPHS announced mandatory folic acid fortification of enriched cereal grain, a measure expected to increase the daily intake of folic acid in women of reproductive age by approximately 100mcg/d (3).

Frequency

In the USA, myelomeningocele is the most common major birth defect. Birth prevalence of the disease was reported to be 4.4 - 4.6 cases per 10 000 live births from 1983 - 1990. The highest estimated rates of myelomeningocele in the USA are found in Appalachia.
Internationally, the rates of myelomeningoceles vary widely among countries and by geographic regions within countries. In the last 50 years epidemics of myelomeningoceles have occurred in Boston, MA; Rochester, NY; Dublin, Ireland; the Peoples Republic of China and Jamaica. Lower social economic status is associated with higher risk in many populations (3,18,19).

Mortality rates reported for infants who are untreated for myelomeningocele range from 90 to 100% based on several series of studies dating from the turn of the century through recent years (3). Here in Zambia there is no documentation, except for a survey done by Dr L. Chikoya and the study on encephaloceles by Professor L Munkonge. (14,15). Dr Chikoya noted that a large number of admissions are shared between two provinces in Zambia namely Southern and Northern. This data is unpublished (14). Another study on the management of encephalocoeles over a period of 5 (five) years (1985 - 1989) was conducted at the University Teaching Hospital Lusaka, Zambia. A total of 31 children with encephaloceles were seen and of these 15 patients (48.4%) came from the maternity wing of the same hospital while 16 (51.6%) were referrals from central and district hospitals of the country. There was a high mortality rate of 81%. (15). In the retrospective study done from June 1994 to December 2002, a total of approximately 244 (Two hundred and forty-four) cases of neural tube defects were recorded in the admission books. Only sixty (60) files of these were
traced and looked at. Of these, 40 (66.66%) were myelomeningoceles. Southern province had 24.3% of the referrals of myelomeningocele. And the Tonga women had the most 8 (40.0%) of myelomeningoceles. The commonest affected site for myelomeningoceles was lumbosacral. The sex ratio was 1.10:1 females to males.

Sex

Birth prevalence rate of myelomeningocele was slightly higher in females than males (1.2:1), based on data from both state and national surveillance systems from 1983 – 1990 (3). A higher proportion of females than males exhibit thoracic-level malformations (3).

Physical

At birth a midline defect in the posterior elements of the vertebrae is noted with protrusion of the meninges and neural elements through an external dural sac.

The obvious physical manifestation of myelomeningocele is paraplegia caused from spinal cord malformation (3).

A randomized double blind prevention trial with a factorial design was conducted at 33 centers in seven countries to determine whether supplementation with folic acid or a mixture of seven other vitamins (A, D,
B1, B2, B6, C and nicotinamide) around the time of conception can prevent neural tube defects (anencephaly, spina bifida, encephalocele). A total of 1817 women at high risk of having a pregnancy were allocated at random to one of four groups- namely, folic acid, other vitamins, both or neither. The study showed a 72% protective effect in the group taking folic acid. The other vitamins showed no significant protective effect (4).

Another study was designed to determine whether folic acid also reduces the risk of first occurent neural tube defects. It was a case control study involving tertiary and birth hospitals in Boston, Massachusetts, Philadelphia, Pa, and Toronto, Ontario. The study concluded that daily periconceptional intake of 0.4mg folic acid reduced the risk of occurent neural tube defects by 60% (5).

The decrease generally has been greater for spina bifida than for other neural tube defects (6) The above study was quoted in MMWR (Morb Mortal wkly Rep 1991), which looked at the use of folic acid for the prevention of spina bifida and other neural tube defects between 1983 - 1991 and recommends that daily oral supplementation with folic acid before conception and during early pregnancy substantially reduces the recurrence of neural tube defects (7).

In September 1992 the U.S. Public Health Service recommended that all women capable of becoming pregnant should consume 400mcg of folic
acid/day on an ongoing basis to reduce their risk of having a pregnancy affected by spina bifida and anencephaly. This recommendation was preceded a year earlier by a CDC recommendation for women at high risk (i.e., those women who have had an earlier pregnancy affected by a neural tube defect (6).

The American Academy of Paediatrics endorsed the U.S. Public Health Service recommendation that all women capable of becoming pregnant consumed 400mcg of folic acid daily to prevent neural tube defects (8).

A study conducted by the Births Defects and Genetic Diseases Branch, Centers for Disease Control, Atlanta, Ga. 30333, highlighted the changing epidemiology of neural tube defects in the United States between 1968-1989. They concluded that the declining rates of neural tube defects could be partially explained in particular by the use of multivitamins and folic acid (9).

The National Center on Birth defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA, also conducted a study to see what impact these public health policies had on the prevalence of neural tube defects. Twenty-four population–based surveillance systems were used to identify 5,630 cases of spina bifida and anencephaly from 1995-1999. Cases were divided into three temporal categories depending
on whether neural tube development occurred before folic acid fortification (January 1995 to December 1996), during optional fortification (January 1997-September 1998), or during mandatory fortification (October 1998 to December 1999). Prevalences for each birth defect were calculated for each time period. Data were also stratified by programs that did and did not ascertain prenatally diagnosed cases. The results showed that the prevalence of spina bifida decreased 31% from the pre- to the mandatory fortification period (10).

Decline in prevalence of neural tube defects in a high-risk region of the United States was noted in a study conducted over a six-year period (October 1992-September 1998). Active and passive methods were used for surveillance of NTD-affected pregnancies and births during this period. Individual genetic counseling was used to prevent NTD occurrences and a public awareness campaign was used to reduce NTD occurrences. The prevalence for NTDs decreased from 1.89 to 0.95 cases per 1000 live births. The prevalence decrease was explained primarily by decrease in cases of spina bifida. The rate of periconceptional folic acid use among women of childbearing age increased from 8% to 35% during the 6-year project period (11).
The extent to which the decline of spina bifida and other neural tube defects varies by maternal sociodemographic characteristics was undertaken in a study done from data taken from the North Carolina Birth Defects Monitoring Program. This report covered data from 1995 through 1999. The overall prevalence of spina bifida decreased by 27.2%. The magnitude of the decline varied considerably by sociodemographic characteristics of the mother. The decline was greatest among mothers who were aged more or equal to 30 years, who had more than a high school education, whose prenatal care was not paid by Medicaid, and who were non-Hispanic white. Geographically the decrease in the western and Piedmont regions of the state was almost threefold that occurring in the eastern region. The decline in spina bifida after fortification varied considerably by sociodemographic patterns. They concluded that more effort was needed to target folic acid education programs at disadvantaged populations (6).

The association of socioeconomic status, neighborhood social condition and neural tube defects was evaluated. The results showed that both lower socioeconomic status and residence in socioeconomic status – lower neighborhood increased the risk of a neural tube defect affected pregnancy (12). A study of the association of low maternal education with neural tube
defects was studied. It revealed that the single strongest predictor of having a child with a neural tube defect was low maternal education. They suggested that to further reduce the incidence of neural tube defects, interventions should target women of low educational status (13). Another study eliciting patterns by type of defect and maternal race/ethnicity was undertaken from 1990-1994 in California. The study used race/ethnicity-specific prevalence estimates of neural tube defects (NTD'S) in California using 5 years of population based data. They found that Hispanic women had the highest overall rates, followed by whites, Blacks and Asians. Hispanic women were 45% more likely than White women to have a pregnancy affected with anencephaly, while Asian women were over two times less likely to have a pregnancy affected with spina bifida. Considerable variation existed in prevalence of NTD'S by race/ethnicity and by type of NTD, with Hispanic women exhibiting the highest overall NTD rate (16).

Prevalence of spina bifida at birth in the United States, between 1983-1990 was studied by using a comparison of two surveillance systems. Data from birth defects surveillance systems in sixteen states from 1983 –1990 was compared with CDC's Birth Defects Monitoring Program for the same period. From 1983 through 1990, the birth prevalence rate for spina bifida in the 16 states was 4.6 per 10,000 births; the Birth Defects Monitoring Program rate was nearly identical (4.4 cases). State specific rates varied substantially,
ranging from 3.0 (Washington) to 7.8 (Arkansas). Both state based and Birth Defects Monitoring Program rates varied among racial/ethnic groups. In both systems, the rates were highest for Hispanics and lowest for Asians/Pacific Islanders (17). Prevalence of neural tube defects in Cape Town, South Africa, was studied. The effects of race, gender, maternal age, parity and season of conception on the prevalence was determined. Multiple sources of ascertainment were used, including all maternity hospital records, neurosurgical and spinal defects clinic data, as well as those from the Human Genetics Department and Fetal Abnormality Group. Prevalence rates were highest for the white population group of 2.56 per 1,000 births compared to 0.95 per 1,000 for blacks and 1.05 per 1,000 for those of mixed ancestry. They reported that higher rates in the whites, who were of British and European extraction and belonged to the more affluent section of the community, would suggest that the possible effects of nutrition and infection were overshadowed by genetic factors. There was a female preponderance for both spinal bifida (M: F ratio 0.89) and anencephaly (M: F ratio 0.67). The highest NTD rates were found at both ends of the maternal age range (< 20 years and > 35 years of age). The prevalence was highest at the extremes of birth order (1.65 and 1.58 for birth order 1 and > 7, respectively, and 0.56 and 0.45 for birth order 5 and 6, respectively) (20).
Another study was done in the middle belt of Nigeria to study neural tube defects. Forty-two babies were found to have neural tube defects during a 3-year prospective study in a large cosmopolitan West African city. The commonest defect was meningomyelocele, in 45 per cent of cases. Other defects comprised anencephaly (5 per cent), Arnold-Chiari malformation (7 per cent), encephalocele (19 per cent), occipital meningocele (14 per cent) and spina bifida occulta (10 per cent). More defects were found among females and low birth weight infants among those whose mothers were aged between 20 and 30 years, and in mothers with parity of four and above. Developmental assessments (neurological follow-up status) done at the age of 18 months on five surviving cases of meningomyelocele showed very poor development (21).

Management of spina bifida cystica in Zaria, Nigeria was studied. Over a period of 11 years, 77 children with this defect, 54 meningoceles and 23 myelomeningoceles, 66 (86%) situated in the lumbosacral region, were treated operatively. Forty-two (55%) had surgery in the neonatal period and 91% within 6 months of birth. Postoperative complications occurred in 19 of 68 patients (28%), including mild hydrocephalus, which resolved spontaneously (six, 9%), wound infection (six, 9%), leakage of cerebrospinal fluid (four, 6%) and meningitis (three, 4%). Mortality was 3% from both meningitis and cardiac arrest. Of 32 patients followed up for 3-5 years, 20 with
meningocele were normal. Of 12 with myelomeningocele, four had varying
degrees of lower limb weakness, three double incontinence, two faecal
incontinence, two had progressive hydrocephalus plus paralysis and double
incontinence, and one had urinary incontinence. Therefore, 38% were
functionally disabled and could not be adequately rehabilitated owing to poor
facilities. The reported that while management of spina bifida cystica is more
aggressive now in most developed countries, theirs remained selective due to
difficulty with multidisciplinary care and rehabilitation. Even with their
selective management, the care of patients with functional handicap remained
a challenge (22).

As part of a public health campaign conducted from 1993 to 1995 in an area of
China with high rates of neural-tube defects (the northern region) and one with
low rates (the southern region), the outcomes of pregnancy in women who
were asked to take a pill containing 400 microg of folic acid alone daily from
the time of their premarital examination until the end of their first trimester of
pregnancy was evaluated. The greatest reduction in risk occurred among the
fetuses or infants of a subgroup of women in the northern region with
periconceptional use who took folic acid pills more than 80 percent of the time
(reduction in risk, 85 percent as compared with the fetuses or infants of
women who registered before their last menstrual period and who took no folic
acid; 95 percent confidence interval, 62 to 94 percent) [corrected]. In the
southern region the reduction in risk among the fetuses or infants of women with periconceptional use of folic acid was also significant. They concluded that periconceptional intake of 400 microg of folic acid daily can reduce the risk of neural-tube defects in areas with high rates of these defects and in areas with low rates (23).

The reproductive history of 100 women with at least 1 child with a neural tube defect (NTD) was studied in Mexico. A total of 204 pregnancies resulted in 205 outcomes. Of the 100 sibships, 14 (14%) had more than 1 affected member. The pregnancy was shorter than 28 weeks in 56/205 (27%) of the total outcomes. Of 104 evaluable previous outcomes, 34 corresponded to short pregnancies, positioned before an affected (23/60, 38%), a healthy (2/18, 11%), or an undiagnosed product (9/26, 35%). Short pregnancies subsequent to affected outcomes were also increased. An increased number of abortions adjacent to affected offspring and a changing fertility pattern, depending on the product diagnosis, pointed to an environmental etiological component in this high-risk NTD group of mothers (24).

Records of almost 174,000 consecutive births at six Brooklyn hospitals during the years 1968-1976 were reviewed for congenital neural tube defects. Prevalence of anencephaly, myelomeningocele and occipital encephalocele combined was significantly higher in infants delivered to mothers born in Puerto Rico than in offspring of non-Puerto Rican whites or blacks. The
association of prevalence rates with ethnicity remained significant after adjustment for several variables. No significant differences in prevalence rates between whites and blacks were observed. Sex ratios of affected infants were close to unity in each ethnic group. Statistically significant associations were found between the prevalence of neural tube defects and parity, gravidity and economic status. The patterns of these associations varied among the ethnic groups. A declining trend in the prevalence of myelomeningocele was observed for all ethnic groups (25).

Results of a study of families in the Eastern Ontario/Western Quebec region who had a child born with a neural tube defect during the years 1969-1981 was reported. Socioeconomic and ethnic influences were noted, but there was no evidence of seasonal variation or any correlation with maternal age or parity. There was support for a causative role of maternal fever in some cases. They concluded that knowledge of rates of occurrence in relatives is useful for counseling (26).
PATIENTS AND METHODS

This was a descriptive case – control study.

Patients

Retrospective Phase: The study was conducted from records collected from admission books of the University Teaching Hospital Pediatric Surgery D block. All records of infants with a neural tube defect were looked at. The data dated from June 1994 to December 2002. In all there were 244 children recorded with a diagnosis of myelomeningocele, encephalocele or meningocele, but only sixty (60) files were located.

Prospective phase: All infants diagnosed with NTDs from August 2003 to June 2004 were included. These patients were the ones directly referred to the Neurosurgeons and admitted on the paediatric surgical unit ward. The mothers of these affected infants were interviewed using a unified questionnaire (Appendix 2) after informed consent (Appendix 1) was obtained. Counselling on the current issue of folic acid prevention was done and options and advice on physiotherapy services from the Cheshire support system was given to mothers who needed the support.

Criteria of inclusion: All infants with a diagnosis of myelomeningocele, meningocele or encephalocele were considered. Out of these, the patients with myelomeningocele were then included in the study.
Criteria of exclusion:

- Conditions like dermoid cysts and lipomas were excluded
- All those who did not give consent to the study.

Ethical issues

The Ethics and Research Committee of the University of Zambia approved the research. Consent for inclusion into the study was obtained from all parents.
RESULTS

Retrospective Phase

The results of this have been included in the literature review.

The Prevalence of myelomeningoceles between 1994 and 2002 is shown in figure 1 below.

![Graph showing prevalence of myelomeningoceles from 1994 to 2002.]

Figure 1: Prevalence of Myelomeningoceles between 1994 and 2002.
Prospective Phase

The total number of patients included in this phase was 50 (fifty).

Encephaloceles and meningocoeles were 14 (fourteen)

Myelomeningocoeles were 36 (thirty-six)
The patients with myelomeningoceles were 36 (thirty-six) and there were 21 (twenty-one) females and 15 males with a sex ratio of 1.4:1 females to males. This is seen in Figure 2.

Figure 2: Sex ratio of myelomeningoceles
The socioeconomic pattern was determined. Their status was low if their place of residence was found to be in the village / shanty compounds / if they were staying in a / servants quarter. Their status was high if they lived in a modern house and had a full time job or were earning more than K500 000. They were medium if they were civil servants employed in a government institution or were earning a salary of between K250 000 – K 500 000. The socioeconomic status was mostly in the low group status with 86.1%. This is shown in Figure 3.

Figure 3: Socioeconomic status of myelomeningocele patients
On evaluation of the maternal education it was found that 45.7% had had a primary school education. This is shown in Figure 4.

Figure 4: Educational status of mothers
<table>
<thead>
<tr>
<th>Maternal tribe</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemba</td>
<td>7</td>
<td>20%</td>
</tr>
<tr>
<td>Chewa</td>
<td>2</td>
<td>5.5%</td>
</tr>
<tr>
<td>Indian</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Kalubale</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Kalunda</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Kaonde – ila</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Lala</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Lamba – lala</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Lenje</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Lozi</td>
<td>3</td>
<td>8.6%</td>
</tr>
<tr>
<td>Mambwe</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Namwanga</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Ngoni</td>
<td>3</td>
<td>8.6%</td>
</tr>
<tr>
<td>Nsenga</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Soli</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Swahili</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Tonga</td>
<td>6</td>
<td>17.0%</td>
</tr>
<tr>
<td>Tumbuka</td>
<td>2</td>
<td>5.5%</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 5: Comparison of maternal tribe and myelomeningocele.
Affected site most commonly seen in myelomeningocele was sacral (36.1%), seconded by lumbosacral (25%) and Lumbar (25%) equally. This is shown in Table 6.

<table>
<thead>
<tr>
<th>Site</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>2</td>
<td>5.6%</td>
</tr>
<tr>
<td>Lumbar</td>
<td>9</td>
<td>25%</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>9</td>
<td>25%</td>
</tr>
<tr>
<td>Sacral</td>
<td>13</td>
<td>36.1%</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>3</td>
<td>8.3%</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 6: Sites of occurrence of myelomeningocele
Province of origin was assessed. This is seen in the Table 7 below. Most referrals were from within Lusaka (38.9%). Central had 19.4% and southern province had 8.3%.

<table>
<thead>
<tr>
<th>Province</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>7</td>
<td>19.4%</td>
</tr>
<tr>
<td>Copperbelt</td>
<td>1</td>
<td>2.8%</td>
</tr>
<tr>
<td>Eastern</td>
<td>4</td>
<td>11.1%</td>
</tr>
<tr>
<td>Luapula</td>
<td>1</td>
<td>2.8%</td>
</tr>
<tr>
<td>Lusaka</td>
<td>14</td>
<td>38.9%</td>
</tr>
<tr>
<td>North Western</td>
<td>1</td>
<td>2.8%</td>
</tr>
<tr>
<td>Northern</td>
<td>4</td>
<td>11.1%</td>
</tr>
<tr>
<td>Southern</td>
<td>3</td>
<td>8.3%</td>
</tr>
<tr>
<td>Western</td>
<td>1</td>
<td>2.8%</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 7: Provinces of origin
Folic acid usage by the mothers was assessed. The results are shown in the pie chart in Figure 8.

Figure 8: Folic acid consumption by mothers
Antenatal visits were assessed. This was to record the gestational age when mothers first started attending antenatal clinic. Table 9 shows this.

<table>
<thead>
<tr>
<th>First Antenatal Visit (Gestation)</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>2 months</td>
<td>2</td>
<td>5.7%</td>
</tr>
<tr>
<td>3 months</td>
<td>3</td>
<td>8.6%</td>
</tr>
<tr>
<td>4 months</td>
<td>11</td>
<td>31.4%</td>
</tr>
<tr>
<td>5 months</td>
<td>9</td>
<td>25.7%</td>
</tr>
<tr>
<td>6 months</td>
<td>2</td>
<td>5.7%</td>
</tr>
<tr>
<td>7 months</td>
<td>6</td>
<td>17.1%</td>
</tr>
<tr>
<td>9 months</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 9: First antenatal visit by gestational age in the mothers.
Figure 10 showing the maternal age distribution

Maternal age range was between 15 and 43 years of age. Most mothers were between the ages of 19 and 31.
The study showed that the fathers of these children with myelomeningocele were mostly self-employed. They earned a living doing odd jobs trying to make ends meet. A good number were peasant farmers who lived of their small plots of land. Those that were employed were those that had a full time paying job, that is, were working for an institution or company.
DISCUSSION

Myelomeningocele is an important birth defect that is seen in significant numbers at UTH as seen by the prevalence figures in Table 1. On average about 20 (twenty) to 30 (thirty) patients were seen per year between 1994 and 1998 and the numbers declined relatively between 1999 and 2002. It is known that there is a wide variation in prevalence in different parts of the world (18). Between 1994 and 2002 approximately 244 patients with neural tube defects were seen in UTH and over 80% of them were myelomeningoceles. Unfortunately only 60 (sixty) files were found. Of these 66.6% were myelomeningoceles. Most of these were referrals from southern province (24.3%) and Lusaka followed closely with 21.6%. The maternal tribe leading in having children with myelomeningocele was the Tonga women leading in majority 40.0% and followed closely by Bemba mothers with 35.0%. The drawback was that the records were not detailed. Judging by the numbers seen in the prevalence figures, it is important to say that these birth defects contribute significantly to the morbidity in the neurosurgical unit of the Paediatric D block.
Sex

In studies done elsewhere (3), (16), the sex ratio of myelomeningocele is slightly higher in females than males. The ratio varies considerably among racial/ethnic groups (18). In this study the sex ratio of females to male children was slightly higher in the females though it was not ascertained by ethnic type.

The rates of myelomeningocele vary widely among countries and by geographical regions within countries (3), (18,19). Prevalence rates have a wide variation in different ethnic and social groups within countries (18,19).

Socioeconomic status

On evaluation of the socioeconomic status of the patients, it was noted that most were from the low socioeconomic group (86%). This is as noted in studies done elsewhere, that neural tube defects are least common among the more prosperous, better educated, professional families and most common in the families of unskilled manual workers (18).

Maternal tribe

The Bemba women had the highest number of babies with myelomeningoceles (20%), and Tonga mothers followed closely with 17.1%.
In the retrospective phase, it was the Tonga mothers that were in the majority with babies that had myelomeningocele.

Affected sites

The sacral region was the most common site of occurrence (36.1%), followed equally by lumbosacral with 25% and lumbar 25%. In the literature review Botto, Lorenzo, notes that the site most often affected is lumbosacral (1).

Province of Origin

Most referrals were from within Lusaka province (38.9%) followed by, Central province with 19.4% and Northern and Eastern province with 11.1% each.

Maternal education

Most mothers had a primary school education (55.1%). This is seen in the literature reviews quoted. (6), (13) and (18), that neural tube defects like myelomeningocele are more common in the less educated.
Folic acid consumption

Most mothers of the affected infants with myelomeningocele did not take folic acid (51.4%) compared to those who said they had (48.6%). The difference though is not marked but is significant for those that did not take any folic acid. Most mothers talked to have no idea why they are given folic acid and what its importance is. It could not be ascertained as to whether the clinics were deficient in the supplies or not.

Antenatal Visitation

It is noted that most mothers started antenatal clinic at about 4 (four) to 5(five) months gestation (31.4% and 25.7%). Most mothers when asked why they went this late said that either the clinic was too far from where they stayed or that they had no idea that it was necessary to start early.

Parental Occupation

Most mothers when asked what their husbands did for a living said that their husbands were unemployed and did odd jobs to make ends meet. Others were peasant farmers who lived off what they grew on small plots of land in the village. This reflects what is noted in literature that the children are born from families of unskilled manual workers (18).
CONCLUSION AND RECOMMENDATION

Of the epidemiological characteristics of patients presenting to the University Teaching Hospital, Lusaka, it is noted in this short small study that our patients mainly come from a low socioeconomic background. The mothers are mostly minimally educated, that is, they have a primary school education at the most. As to the ethnic status of our patients, the Tonga and Bemba mothers featured strongly in both aspects of the study. Most patients seen are from within Lusaka province in this study, and most reside in the highly populated and mainly low-income residential areas of the city. Myelomeningocelees presented more in the sacral region, but lumbosacral also featured significantly.

In literature it has been quoted that neural tube defects, of which myelomeningocele is one, are least common among the more prosperous, better educated, professional families and most common in the families of the unskilled manual workers (18).

The study may not be a true representation of the country’s true picture, but it is a starting point. I would recommend another larger study of longer duration, and preferably one that would look into each province.
These babies affected were noted not to be receiving any physiotherapy while on the ward. So I would also recommend that physiotherapy be started whilst on the ward. There is a need to educate these mothers on the importance of physiotherapy in these children. The mothers would also have an opportunity to find out which physiotherapy centers they can access when at home.

A separate special outpatient clinic should be started to assist these children who need specialist attention. This clinic would be able to educate mothers on their children's condition. The mothers can also be educated on the importance of folic acid supplementation within the clinic. The clinic can also be a starting point of another larger study, where all information concerning these children is gathered. Information concerning the dietary practices of these mothers could also be looked into, including their beliefs.

To ensure all reproductive mothers get the needed requirements of folic acid, I would recommend that the issue of folic acid fortification of staple foods like mealie meal and sugar be looked into.

If the above recommendations were implemented, both clinical care and prevention of these neural tube defects will have been taken care of and reduction in mortality and morbidity will be achieved.
REFERENCES

Literature Review

3. Kat Kolaski, MD - *Myelomeningocele: eMedicine.com*

Photograph of Myelomeningocele
RESEARCH CONSENT FORM

EPIDEMIOLOGICAL CHARACTERISTICS OF PATIENTS WITH MYELOMENINGOCOELES PRESENTING TO THE UNIVERSITY TEACHING HOSPITAL – LUSAKA

1. Why are we asking for information from you concerning your child and yourself?

We are conducting a study of patients born with the above condition and those affected in a similar way. We are asking these questions to help us know about the type of people affected and how they are affected.

2. Background information.

You are going to be asked questions concerning your child and yourself because your child has a condition that is now known to be preventable. We are getting characteristics of patients with this and similar conditions so that we can use the information gathered to find ways of helping and educating the population at large about the importance of early folic acid supplementation. We hope this study will give us distinct information.

3. Who is carrying out this study?

Dr. M. Lungu is the principal investigator in this study. Mr T.K. Lambart the Head of the Department of Neurosurgery at the University Teaching Hospital is supervising her and Professor Odimba, a Consultant General surgeon will help monitor the progress. The study being done is based in the Paediatric surgery department D01.

The official name of the study is “Epidemiological characteristics of patients with myelomeningocoeles presenting to the University Teaching Hospital Lusaka.

4. What happens in this research?

- A protocol form will be used to enter your child’s and your personal details
- You will be reviewed as the need arises.

5. Possible problems.

We may inconvenience you by asking to see you often.
6. Benefits

You will gain more understanding about your child’s condition and what you are able
to do in future to reduce chances of you having another child with this condition. You
will also gain more information about support groups and community-based
organisations like the Cheshire Homes Society that assist disadvantaged children.

7. Your rights to participate, not to participate, or to withdraw from the study.

- Taking part in this study is optional. You need not take part in this study.
 You may later change your mind and withdraw from the study. You will
 still be counselled about this condition.
- You will suffer no penalty if you do not participate in the study and you
 will not loose any benefits to which you are entitled to as a patient. Your
 present and future medical care at the UTH; Lusaka will be the same
 whether or not you take part in this study.
- If there are any new findings in this study that may affect you, you will be
 told about them as soon as possible.

8. Confidentiality

Your name will never be made public by the investigators. The medical record of,
your care will be treated the same as all medical records at the University Teaching
Hospital, Lusaka.

Information from this study and from you or your child’s medical record may be
reviewed and copied by the study investigators and examiners that may be appointed
by the University of Zambia. A code number that makes it very difficult for anyone to
identify you will identify the research information gathered by the study. All
information will be stored in a secure place. Information from this study and from
you or your child’s medical record may be used for research purposes and may be
published; however your name will not be made public by the investigators. It is
possible that after the study is over, we may want to look again at you and your
child’s medical data collected during the study to help us answer another question. If
this happens, your name will not be made public.

I .. Hereby agree to provide and allow personal
information regarding my child’s disease and some of my personal details to be used
in this study.
I have been reliably informed by the researcher Dr M Lungu who is asking these
questions that the information I shall give will be used in the strictest confidence. A
copy of this form signed by me and the investigator is being given to me.

Signature; Thumb print..................

Date;
I have explained this research study to the subject. I am available to answer any questions now or in the future regarding the study and the subject’s rights.

The principal investigator Dr Martha Mwewa Lungu and her supervisors can be reached at the Department of Surgery, University Teaching Hospital, Lusaka, Zambia.

Signature of Investigator and Printed Name
QUESTIONNAIRE

Date: File No:

Name ..

Age........... Sex D.O.B..............

Residential Address:

Province of Origin

Place of Birth Parity..........

Mothers' tribe Maternal age

Maternal Education: (none) (Primary) (Secondary) (Tertiary)

Fathers' occupation

Antenatal clinic card yes/no

1st antenatal visit-gestational age

Supplements taken Folic acid y/n others y/n

Pregnancy multiple/single Term/premature

Birth weight.............

Type of defect Site of defect

Complications neurological 1. Hydrocephalus y/n 2. orthopaedic
3. urologic 4. GIT

Socio-economic Status Low Medium High