A Study to Determine the Prevalence of Trauma Cases and Adoption of the Kampala Trauma Score at the University Teaching Hospital, Lusaka

by

Rae Oranmore-Brown

A Dissertation submitted in partial Fulfilment of the Requirement for the award of the degree of Master of Medicine (Surgery) of the University of Zambia

LUSAKA

2013
Copyright © Rae Oranmore-Brown, 2013

All rights reserved
Declaration

I hereby declare that this dissertation is my own work. This has not been submitted for a degree, diploma or other qualification at this or any other university.

Signed: ..

R Oranmore-Brown
Certificate of Approval

This dissertation of Rae Oranmore-Brown has been approved as partial fulfilment of the requirements for the award of Masters in Medicine Degree in General Surgery by the University of Zambia

Signatures of Examiners:

1.
2.
3.
4.

Date:
ABSTRACT: Trauma in Lusaka, Zambia by Rae Oranmore-Brown

Background: Trauma is a global problem and the leading cause of death in low and middle-income countries (LMICs). The trauma registry is considered to be a vital component of a trauma system; there is good evidence that organised trauma care systems decrease deaths. No trauma registry exists in Zambia. Trauma scoring systems are routinely used in conjunction with trauma registries, as a measure of injury severity and as a predictor of mortality. The revised Kampala Trauma Score (KTS II) has been piloted as an appropriate alternative trauma scoring system in various LMICs; it has not been used in Zambia before this study.

Method: A prospective, cross-sectional observational study was conducted from September to February 2012 of patients presenting with injuries to the University Teaching Hospital (UTH). The aim of the study was to develop a template for a trauma registry, define the epidemiology of trauma and define clinically measurable risk factors for mortality (using the KTS II) at UTH. Data was collected on injured patients 24 hours/day including: circumstances of trauma, transport method and time, injury type and location, vital signs on arrival and disposition. A KTS II score was calculated for each patient. Basic demographic data, time of injury to presentation and alcohol use were recorded. Length of stay, operations, use of blood products, radiological services and primary diagnosis were also noted. Data was analysed using descriptive statistics and the KTS II validated by calculating area under the receiver operating characteristic curves.

Results: 3425 patients were captured in the study: 72% were male, 28% female. The top three causes of trauma were found to be falls, road traffic accidents and assault. The highest number of trauma victims were children (0-11years) [27%], followed by the 31-50 year old group (26%), followed by the 21-30 year old group (25%). Alcohol abuse was linked to assault and pedestrian traffic accidents. Less than 25% of patients arrived within an hour of injury; the most common form of transport to the hospital was private car (53%), followed by public transport (38%), followed by public ambulance (6%). 54% of road traffic victims were pedestrians, with 85% non-drivers. Nearly half of presenting trauma patients were admitted; the most common injury requiring admission was fracture, followed by lacerations and then burns. The mortality rate for the admitted data set was 4.1%. The highest mortality was sustained by the burns patients (43%); followed by road traffic victims (36.5%), then assault patients (24%). The KTS II was found to be a reliable predictor of mortality (P value <0.0001), but a poor predictor of length of hospital stay.

Conclusions: The epidemiology of trauma for injured patients presenting to UTH was defined. A surprise finding was the high number of falls. Public health education priorities and the need for a trauma care system, including pre-hospital care and a re-organisation of trauma care within the hospital were identified. The hospital would benefit from a trauma registry system with an embedded scoring method such as the KTS II to define injury severity and predict mortality.

Keywords: Trauma registry; KTS II; Trauma system; Developing country; LMICs; Africa
Acknowledgements

The study would not have been possible without the collaboration and assistance of the following people:

- **University Teaching Hospital Surgical Department in conjunction with the University of Zambia.** Y Mulla (supervisor), P Tembo, E T Odimba, J Munthali

- **Boston University.** [Center for Global Health and Development (CGHD) Zambia Center for Applied Health Research and Development (ZCAHRD)]
 P Seidenberg (co-supervisor), H Mowafi, K L Cerwensky, J Lungu, E Hammond

- **Trauma Research @UTH Team.** Y Mofu, C Mwaba, L Mapala, C Banda, Data collector team

- **Mercy Flyers.** C Oranmore-Brown, L Menenberg, M Lam. *Sponsored by* Zambian Governance Foundation
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Copyright</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Declaration of own work</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Certificate of approval</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>List of figures</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>Statement of supervisors</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Background information</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Statement of the Problem</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Research questions</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Research objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Delineation and limitations</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Assumptions</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Definition of terms</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Chapter overviews</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Literature review</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>The scope of the problem: trauma</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Epidemiology of trauma</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Human Immunodeficiency Virus (HIV) and trauma</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Trauma care systems</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Emergency surgery in Africa</td>
<td>20</td>
</tr>
</tbody>
</table>
Chapter 5: Research findings 2: Transport to hospital
 Introduction 53
 Time from injury to arrival in hospital 53
 Method of transport to UTH 53
 Analysis 55
 Subconclusions 56

Chapter 6: Research findings 3: road traffic trauma
 Introduction 58
 Road Trauma Statistics 58
 The vulnerable road user 59
 Motor vehicle versus motor vehicle 60
 Passenger restraints 60
 Hospital utilisation 60
 Mortality 61
 Analysis 61
 Subconclusions 62

Chapter 7: Research findings 4: hospital utilisation
 Introduction 65
 Hospital utilisation and admission type 65
 Primary diagnosis 66
 Radiology 67
 HIV testing 67
 Blood products 68
 Surgical procedures, chest tube insertion 68
 Mortality 68
 Analysis 69
 Subconclusions 71

Chapter 8: Research findings 5: the Kampala Trauma Score II
 Introduction 74
 The KTS II and mortality 74
 The KTS II and time of presentation 76
List of Tables

Table 2.1: Revised trauma score 26
Table 2.2: Abbreviated injury scale (AIS) 26
Table 2.3: The KTS I & II 28
Table 4.1: Top four causes of trauma in each age category 49
Table 5.1: Most common modes of transport and transport time 55
Table 6.1: Age group related to traffic injury 59
Table 8.1: KTS II scores and number of fatalities 76
Table 8.2: KTS II for patients arriving within 6 hours of injury 77
Table 8.3: KTS II and the road traffic accident 79
Table 9.1: Non-trauma related deaths 82
Table 9.2: Trauma deaths 83
Table 10.1: International co-ordination/strengthening global architecture for road safety 89
List of Figures

Figure 2.1: Injury severity score (ISS) 27
Figure 3.1: Minimal sample size calculation 40
Figure 4.1: Causes of injury 47
Figure 4.2: Trauma within various age groups 48
Figure 5.1: Time from injury to arrival in hospital 53
Figure 7.1: Admissions related to trauma type (top five) 66
Figure 7.2: Top five primary diagnosis 67
Figure 8.1: ROC curve for the KTS II & mortality 75
Dedication

First: to God, Creator and Jesus, Saviour

Second: to Craig, best friend, love of my life and my family

Third: to the trauma patients. May this be a tiny step towards alleviating suffering and disability