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ABSTRACT

Saeed [11] has considered Schur multipliers of some
of the finite abelian groups.The study of the schur

multipliers of abelian groups is the first step in the
studying of the projective representations  of such

groups. Our objective here is to determine the
Inequivalent Irreducible projective representations of
these groups which correspond to certain classes of
factor sets. ‘

Let leln) denote the direct product of n cyclic
groups Cm of order m. Then in [9] and [10] the
o-regular classes have been determined; these being the
classes at which non tivial projective representations
with factor set o take on non zero character values.
Here we review these results, and determine the
Inequivalent Irreducible characters corresponding to
these o-regular classes. In particular, a complete set
of  irreducible inequivalent  projective characters is
obtained for these classes.

The following is a brief description of how the
work in the sequel has been organised. Chapter one
gives the basic facts about factor sets and projective
representations  of finite groups together with some of
their properties. The concepts of schur multipliers and

twisted group algebras are also considered. The central



and stem extensions of finite groups are discussed in
chapter two; while chapter three is concerned with
projective  character theory. Here the interest is in
reviewing those  properties of  projective characters
which are analogous to those of ordinary characters.
Finally the work in the previous chapters is applied in
chapter ~ four to  obtain the irreducible  projective
characters of certain finite abelian groups; and the
results follow the works of Morris and Saeed (c.f [8],

[9], [10] and [11].)

(viis)



CHAPTER ONE

1 PROJECTIVE REPRESENTATIONS OF FINITE GROUPS.

In this chapter we give the required basic facts on
factor sets and projective representations, and review
the essential results. This work is more completely
treated in Morris [8] and Karpilovsky [7].

1.1 Factor Sets

In - what follows K denotes an algebraically closed
%

field and K a field of non zero elements.

1.1.1 Definition

Let G be a finite group. The mapping o defined by
o : GXG > K* such that for all g,hkeG
o(g,hyo(ghk) = a(g,hk)a(hk)
and o(ge) = ofe,g) = 1, where e is the identity element in

G, is known as a factor set of G.

1.1.2 Definition

The set of all the factor sets of G forms a group

denoted by Z*(G,K*) known as the group of 2 cocycles.

1.1.3 Remark

Factor sets are also known as 2-cocycles.

1.1.4 Definition
Let o and B be two factor sets of G, then o and P
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are said to be equivalent if there exists a function
0 : G - K* such that for all gheG,
d(gh)a(g,h) = 8(g)d(h)B(g.h)
Equivalent factor sets are also known as cohomologous

factor sets.
It is an easy matter to show that equivalence of

factor sets is an equivalence relation on ZZ(G,K*).

1.1.5 Definition

A factor set a of a group G is said to be
normalized in G if

‘a(h,h") = 1 for all heG
Infact, for any factor set o, there exists a factor set

B of G equivalent to o which can be normalized.(c.f.[8])

1.1.6 Lemma

Let o be a normalized factor set of G where o
denotes the inverse of o, then

o’'(gh) = ah™,g?) for all gheG

Proof

a(g,h)oghh™) = a(ghhHa(h,h?)
(by definition 1.1.1)
o(g.e)alh,h™)

lL.oh,h™)
(by definition 1.1.1)

= 1 (by definition 1.1.5)
Therefore a(g,h)a(gh,h'l) = 1 for all gheG



a(ghh™) = (agh))’ o
Also by definition (1.1.5),
a(gh,h™ )= o(gh,h Ha(gg ")

= a( (gh),(gh) Hath',gh
= athlg™h (i)
From (i) and (ii) it follows that

a(ghh™) = (agh)’ = ath’gh
so that of'(g,h) = ah’,g?)

1.1.7 Definition

Let o be a factor set of a group G. An eclement geG

is said to be an a-regular element of G if

o(gh) = achg) for all h in CG(g), the centralizer
of g in G.

1.1.8 Theorem.

If g is an o-regular element of a group G, then all
the elements conjugate to g are also o-regular.

Proof

Since f,(kh) = a(kh)e (khk k) for all k € Gthen
if k € CG(h), fa(k,h) = 1 (see theorem 1.1.10)
Given h conjugate to g,it implies that x'hx = g for
some x € G Therefore fa(a,x'lhx)=a(a,x'lhx)a'l(a(x'lhx)a'l,a)
=a(a,x "hx)er' (x'hx,a)

= 1if all a € Cyx'hx)
Therefore oc(a,x'lhx)a'l(x'lhx,a) =1 for all ae %()ilhx)
1.1.9 Remark

It is now a consequence of theorem 1.1.8 that being



o-regular is a class function. From now on a conjugacy
class containing an o-regular element g shall be
referred to as an Q-regular class.

If for every factor set o and every o-regular
element heG, we define

f (kh) = o(kh)a ' (khk™ k) for all keG
then we can prove the following

1.1.10 Theorem

@) If k is an element in the cetralizer C G(h)
of h in G then fa(k,h) =1

(i) If o is a normalized factor set, then
f (h) = olchyokhk™)

Proof

(i) We note that since f (kh) = a(kha ' (khk ' k)
and that if keC (h), then khk” = h.
Hence,
f (kh) = adkhyo (khk ™ k)
= ak,h)o (hk)

adk,hok h™)
1 for all keG

(ii) this follows from definition 1.1.5 and
theorem 1.1.10 (i)
The following result is useful.

1.1.11 Lemma

For any factor set o, define a map
o : GXG » c* by

a'(x,y) = a(x,y)a(y,x)'l. Then we have



o(xyz) = dxya(xz) for all xeG and
y,zeC G(x).
Proof

o'(x,yz) = (x(x,yz)a(yz,x)’l)

_ ox,yz)
~ alyz,x)

o(x,y)o(xy,z)
a(y,z)
a(y,zx)o(z,x)
o(y,z)

- o(x,y)o (Xxy,z)
o(y,zx ) o(z,Xx)

= QX y)o(yx,z)
o(z,x)o(y,xz)

o(x,y)oy,xz)oux,z)
o(y,x)
a(z,x)o(y,xz)

ax,y)e(y,x) " ax,z)
o(z,x)

o' (x,y)o'(x,2)

1.1.12 Lemma

If oo is a normalized factor set of G and an element
heG is o-regular, then
f (b = f '(h™) for all keG
Proof
f (e h)f (ch™) = ak,hya(kh,k Houk,h Hokh™ k)
= a(k,hyakhk ak,h 'k Hanh k™)

= a(k,h)o (k,h)okh,k o (khk ™)
= 1 for all keG
. _ S TS B PO |
ie f (kh) = (£, (™)’ = £ "(h™)
for all keG

1.1.13 Theorem

Let o be a normalized factor set and let h be an



o-regular element of G. Then h' is also a-regular

Proof

Since C h) = C G(h'l) and by the earlier
. _ _ -1
observation, f a(k’h) = 1 for ksCG(h) = C G(h )
Hence fa(k,h'l) = akh Ho''(kh 'k x)
ak,h™) o'(hlk)
1 for all keC G(h")

ie adkhDolth’k) = 1 for all keC,_
ak,h™) = a(h'k) for all keCG(h'l)

showing that n' s a-regular by definition.

We prove the following result which is due to

conlon (c.f. Haggarty and Humphreys [5]):

1.1.14 Theorem

If o is any factor set of G, then there exists a
factor set B equivalent to o such that
@) Bh,h') = 1 for all heG
(i) fB(k’h) = 1 for all [B-regular elements h,
in G
Proof

We define 8(h) = (a(h,h™)™* for all heG
set B(hk) = 3(h)d(k)(S(hk)) a(h,k)
ie o and P are equivalent
Then Bh,h™) = (ouh,h ™)) P(ouh ny Paue.e)ah,h ™)
=1
That is B is a normalized factor set.

To prove (i), first we let [al,az,....,an} to be an



arbitrary B-regular class and let
a = kialk;‘, i=1,2,....,n
Then G = Y CG(gi)Ki.
Now define S(ai) = fB(ki,al); i = 1,2,..,n and let &(a)

be similarly constructed, where ’a’ is an aribitrary

B-regular element of G. If ’a’ is not P-regular, then
set o(a) = 1.
Let y(a,a’) = 8()3(a, )(&(e)) 'Bla,a)

= fg(ka)fak,a’)

=1

That is the factor set 1y satisfies condition (i)
implying that y is normalized. ‘
Further more,
fatka) = B(ka)B ' (kak™ k)
= 8(a)Bkak ) (ka) ¥'(kak™ k)

= Yk yy(kk k™)
=1 w‘ﬂw&)proves the theorem.
3 &
o o
> x
% N

Ly
1.1.15 Definition Y3

Factor sets which satisfy theorem ( 1.1.13) are said

to be simple factor sets.

1.2 Projective Representations and Twisted Group Algebras

In what follows, we let G be a finite group, K an
algebraically closed field, V a finite dimensional
vector space of the field K and let GL(V) be the general

linear group of V over K.
},’d‘fdg/)&



P(g)ueU for all ueU.

If P is not reducible, then it’s said to be irreducible

1.2.4 Definition

Let oo be a factor set of G. A twisted group

algebra, denoted by (KG)a is the formal sum

KG),, = { e &Y e €K},
where addition and scalar multiplication are defined in
the usual way; and multiplication is defined by

(FcE, TN Fs &Y = . &g (alghyeh)
and the relation oa(gh)a(ghk) = a(ghk)a(hk) implies
now that as an algebra, (KG) o is associative with Y(e)

as the identity element.

1.2.5 Definition

Let M and M’ be (KG) a-modules. Then M and M’ are
said to be isomorphic as modules if there exists a
vector space isomorphism T of M onto M’ such that

Y(@t™m = 1(y(g)m) for all geG, meM
The following underlines the importance of twisted group

algebras in projective representation theory.

1.2.6 Lemma.

There is a one to one correspondence between the
projective representations of G with factor set o and the

representations of (KG) o



- 10 -

Proof

Let T be a representation of (KG) o 2 an algebra,
then a projective representation of G can be obtained by

setting

P(g) = T(y(g)) for all geG.

Therefore
P(@)P(h) = T(Y(g)T(y(h)) for all g,heG
= T(W(g)iv(h))
= T(a(g,hyy(g,h)
= a(g,h)T(¥(gh))
= a(g,h)P(gh)

so that P as defined is a projective representation of G

with factor set o.

1.2.7 Remark

Classfying  projective  representations of G  with
factor set o is equivalent to the problem of classfying

(KG) a-modules which are finite dimensional.

1.2.8 Definition

Let V be a (KG)a-module. Then V is said to be

completely reducible if for every submodule N of V,

there exists a proper submodule u such that

V=N&U
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otherwise V is said to be indecomposable .

We now prove the following result:

1.2.9 Theorem

Every (kG) a-module is completely reducible.

Proof

Let V be a (KG) a-module and let N1 be its non
trivial submodule.  Hence N1 is a subspace of V as a
K-space, and there exists a subspace u of v such that

v=N . @ u
We can now find a homomophism ¢ € Hom(V,Nl) such that
if V= n +u vev, n18N1’ ueU then ¢(v) = n

Let P:V  V be defined by
1

Pv = 'la EEG y(g)q)'y(g'l)v; vevV
since for all veV we have
PYOY = ToT B TOME Y :
1

21, -1 -1 -1
- —— ) ah’ly ! y)e (b )ymeyh™Hv
N ¥ G Om D)ty )

But a(h”'y y)ah L h) = oty yhay " h)

Thus Py(y)v = Y(y)Pv for all yeG, veV. Furthermore,

Pv N1 since

TOT o T € 15T B YO € N,

Also, for each nleNl, then
1 -
Pn = TGT PR 1)n1 e N,
1.e Pv = Nl, veV
Now let N2 = {v-PviveV}. Then N2 is a submodule of V

and V= N, @ N2 so that V is completely reducible.
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We can now count the number of inequivalent irreducible
projective representations of G with factor set o and to
do this, we require the following (-cf. Curtis and
Reiner [3]).

1.2 10 Remark

(KG) o is a semi-simple algebra and if we let

MI1 (K) (=1,2,..n) be a full matrix algebra of nxn
i

matrices over K, then

(KG)a x M& (K) + Mn K) + ... + Mnn(K)

1.2.11 Lemma.

Let Z((KG) oc) denote the <centre of (KG) o
and let yeZ((KG),) That is y = g)éc ég’y(g)

where §ge K. If §g # O then g is an o-regular element in
G.
Proof

We need only show that f a(h,g) = 1 for all elements
h in the centralizer of g in G. Suppose a is a simple
factor set of G. Since yeZ((KG) a)’ then

¥h)'yyh) = y for all heG

Hence, &g’y(h)'l’Y(g)’Y(h) + X gg'Y(g')Y(h)
g *#g&G

=&¥e) + X EAE)
g ¥g ’
This implies that
Ef (e + I &£ (hg)yh'gh)
g O g/ 2geG g O

=y + I &)
& g'zgeG &

since §g is finite and 2 0, we have f (hg) = 1 by
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comparing coefficients on both sides.
Now h'g’h = g would contradict the fact that g = g
Therefore, g is an o-regular element in G as o is

assumed to be simple

1.2.12 Theorem

Let C ey S be a complete set of o-regular

classes in G and define

C = § Ec YX) i = 12,...,8

i i
i 1

Then- {Cl,CZ,....,Cs} forms a K-basis for Z((KG)a)
Proof

For heG
YhY'Cyh) = [ T yh) y(x)y(h)
] XE CJ-
= Z ¥ xh)
J
= C
i
Thus, Cj e Z(KG) 0‘) and hence each Ci lies in Z((KG) 0‘).
Furthermore, {C1’C 2,...,Cs} is a set of linearly
independent elements since the elements are sums of
elements from distinct classes in G.
Let y = ¥ 5Y® € Z(KG)y)
where §g € K.
If &gas 0 then g is an o-regular element in G by
lemma 1.2.11.
That is, y has precisely the a-regular elements in G.
Hence the elements y = g)é o §gy(g) in the centre

Z((KG) oc) are precisely those sums of elements which are
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1.2.12)

1.2.14 Corollary.

The number of inequivalent irreducible projective
representations of a group G with factor set o is equal

to the number of o-regular classes in G.

Proof

Inequivalent irreducible projective representations
of G are in a one-one correspondence with the finite
dimensional (KG) a-modules by lemma 1.2.6.

Also, the number of non isomorphic ineduciblt?
(KG) &-modules is the same as the number of o-regular
classes of G by theorem 1.2.13.

1.2.15 Lemma

Let oo and B be equivalent factor sets of G. Then the
number of inequivalent irreducible projective
representations of G with factor set o is the same as
the number of inequivalent irreducible projective
representations of G with factor set B.

Proof

Let {TI,TZ,...,TH} be a complete set of
inequivalent  irreducible  projective representations of G
with factor set . For each i=1,2,...,n define

S. G » GL(V) by

Si(g) = 8(g)Ti(g) where 8 : G > K*

as o and P are equivalent.

Therefore,

S(@S(h) = @)dhyt(gr(h)
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= 8(2)8(h)ou(g,hy (gh)
= 3(gh)B(g.h)t(gh)
by equivalence of o and B
= BlgW)d(gh)t (gh)
= B(g)S (gh)
from definition above.
Hence Si is a projective representation with factor set
B.
Also, {Si,Sz,...,Sn} is a set of inequivalent
representations of G, since if suppose that Si is
equivalent to SJ_ for some i # j, then there exists a non
singular matrix T such that for all geG;
T'S(@T = S(g)
ie T'3@r@T = 8@ (e)
(from definition)
Hence T is equivalent ot tj for 1 # j which is a
contradiction since {t.,7.,...,T} is a set of

1’2" "n

inequivalent representations.

As a direct consequence of lemma 1.2.15, we now

have

1.2.16 Corollary

Let o and B be equivalent factor sets of G. Then
the number of a-regular classes in G is the same as the
number of [B-regular classes of G. Furthermore, the
number of indecomposable non isomorphic (KG) a-modulcs
equals the number of indecomposable non isomorphic

(KG) B-modules.
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1.3 SCHUR MULTIPLIERS OF FINITE GROUPS.

Let o be a factor set of G and let [0t] denote
the equivalence class containing o via the equivalence
relation in 1.1.4. Define the inverse of [a] by [oc'l]
and multiplication by [a] [B] = [af]

Let & = {[o] : [a] is an equivalence class in ZX(G,H*)}
be the collection of all the distinct equivalence
- classes arising in this way.
@) For any [o] and [B] in &,
[@]lB] = [oB] = [y]le§ where vy = ap.
That is multiplication is closed.
(ii) [oBlly] = ([odIBDIY]
= [a][BIlY]
= [o]([BIIYD)
= [a][By]
That is associativity law holds.
(iii) Every element in & has its own inverse
defined by [0 = [a™]
(iv) [@io]” = [’ = [eo] = [1]e&
The identity element lies in &.
Thus & forms a group.
Further, for every [a], [B] in & [al[B] = [af] = [B o ]=[B][al.

Hence € forms an abelian group under this composition.

1.3.1 Definition

The group of distinct equivalence classes [ot]

considered earlier is known as the Schur multiplier of

G, denoted by H*(GK*) or simply M(G).
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We now consider an alternative way in which schur
multipliers arise. Let o and B be equivalent factor
sets of G. Then there exists a function 8:G - K* such
that for all gheG, we have

agh)= 3(@d(h)(3(gh) 'Big.h)
Now define u(d) : GXG » K* by w(d)(g,h) = 8(g)d(h)d(gh)
U is a factor set and a homomorphism and impu is a
subgroup of yA (G,K*)
1.3.2 Definition

Imy is called the group of 2-coboundaries dentoed

by B%(G,K*).
.We now have the following

1.3.3 Definition

Z*(G.K*)
B*(G,K*)
second cohomology group of G denoted by H*(G,K*) also

The quotient group is known as the

known as the Schur multiplier of G.

1.3.4 Lemma

Let P be a projective representation of G with
factor set «. The projective representations of G
equivalent to P are those representations whose factor
sets belong to the coset aBZ(G,K*). In particular,
representations  with trivial factor sets are those whose
factor sets lie in the coset BZ(G,K*).

Proof

Let P be equivalent to P and o be its associated
factor set. Then there exists a non singular matrix T

and a map @:G > K* such that for all geG,
P(®) = ¢()T PT



For all heG, o'(g,h)P’(gh) = P'(g)P'(h)

= P T 'P(gP()T

= 9(®)oh)a(g,h)e(gh) 'P'(gh)
Hence o(g,h) = @(g)p(h)oig,h)(@(gh))”

= o’ lies in a B*(G,K*)

1.3.5 Remark

By the above Ilemma, it's clear that equivalent
factor sets of G, give rise to the same coset (XBZ(G,K*)
of BXG,K*) in Z%(G,K*).

1.3.6 Lemma

Let B be the factor set of G. Then every class
[B] in H%G,K*) of order q contains a representative [’
whose values are qth roots of unity.  Further, B’ is a
normalized factor set of G.

Proof

Let K be a field of char.m > 0. We can write
q= m%n where d > 0 and ™ n as [B] is of order q.

There exists a function u:G » K* such that
hy? = R@uh)
Peh” = Sitam
d d
1/m 1/m
Thus, B(g,h)" = k(e K(h) which implies

d
uigh)' '™
that B(gh)" is a coboundary contradicting the fact

that [B] is of order q, unless m®= 1. Hence ™n

From B(gh)? = ﬁ( g)p.(h), we can find v(g) & K*
such that v(g) = u(g)". Define B'(g,h) = %(Th‘) B(gh)

-1 -1
Then B'(gh)? = ”_(LPIL_(I’)_ B(g,h) = 1
H(gh)
Hence P'(gh) are qth roots of unity.
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To show that ' is normalized, set

V® = Beg N
Then B'(gg’) = 1 for all geG

1.3.7 Theorem

The schur multiplier is a finite abelian group and
the order of every element in it is a factor of the
order of G

Proof

The schur multiplier is an abelian group as earlier
shown. Let [a] be an arbitrary element in HZ(G,K*) of
order e, = o° = 1. For each geG, define u(g) =y];:lc; o(g,h)
Then for fixed gheG and taking products over geG, we

have,

pEum _ o BN Hg ) )

f(gh) = T Oeh,y)
From o(g,h) o] = fﬂ(%%%—(ﬁ, we conclude that the order
of a divides the order of G. Furthermore, since for
each [B] € H2(G,K*) there exists a representative [

which is a qth root of unity (where q is the order or
[B) and q divides |G|. Then there are atmost a finite

number of classes in HZ(G,K*).That is, it is finite.



CHAPTER TWO

REPRESENTATION GROUPS.

2.1 Central Extensions.

‘We first define the following:
2.1.1 Definition

A central extension(H,9) of a group G is a group H

together with a homomorphism ¢ such that ker¢ < Z(H)
and H/ker¢ = G where Z(H) denotes the centre of H.

Let (H,0) be a central extension of G with N=ker¢.
Let {¥(g):geG} be a set of coset representatives of N in
H, and suppose that H = gke'.:'GN‘y(g). Define elements
n(g,n)eN by ¥gyh) = n(gh)ygh) for all gheG, so that
n(gh) = yEyhEgh ) It now easily follows
from associativity law in H that for all g,hkeG

n(g,h)n(gh,k) = n(g,hk)n(h.k) 2.1
Consider y to be an ordinary linear character of N and
let o(g,h) = y n(g,h) for all gh € G

Then it follows from (2.1) that oo is a factor set of G

The following is due to Haggarty and Humphreys [5].
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2.1.2 Definition

The factor set o arising from an ordinary linear
character y as described above is known as a special

factor set.
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Let T be an ordinary representation of H. Since
(H,9) is a central extension of G, then N=Ker¢ cZ(H).

Define a map P:G - GL(V) by
P(g) = T(y(g)) for all geG
Then since T is a homomorphism on H and Yg)yth) =
n(g,h)y(gh), we have
T(y(g)T(y(h)) = T((n(g,h))(¥(gh)))
that is
T((g)T(x(h)) = og,h)T(y(gh))
and P(g)P(h) = o(g,h)P(gh) for all g,heG. That
is P is a projective representation of G with special

factor set o.

2.1.3 Definition

The projective representation P of G obtained above
via the ordinary representation T of H is said to be a
projeective  representation of G  linearized by  the
representation T of H.

We prove the following result.

2.1.4 Theorem

Let G be a finite group and H an arbitrary group
with an abelian normal subgroup N such that H/N = G
Let y & Hom(N,K*) and let a" be a special factor set of
G given by a’ (g,h) = y(n(g,h)) where n(gh)eN is as
defined above. Then the map

§ : Hom (NK*) » H*GK¥* defined by &(y) =
a’BZ(G,K*) is a homomorphism with Kernel (NmH’)l,where
H" is the derived group of H.  Furthermore, & is an

isomorphism if and only if N ¢ H’
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Proof

Let H = gk‘ZJGN'Y(g) and  define
Tg)yh) = nghygh™. Suposse that o 'eB*(G,K*).
Then o’(gk) = n(@mu(hp(gh) ! for some

neB*(G,K*) with p(e) = 1. Let :H » K* be defined by
n(Y(g)) = y(n)u(g).

Then
T(g))t(y(h)) = u(g)p(ch)
= o’(g,h)u(gh)
= y(n(g,h))u(gh)
= t(n(g,h))Y(gh)
and

©(ye)) = ) = 1, so that T is a homomorphism. Since
't(g'lh"gh) = 1, the restriction of T to H is 1/H =1
Also

1 = 1yeyre)) = yin(ee ()

= Ye)u(e).

Therefore 'r(ny(e)y(e)'l) = 1(n) = Y(n) and

TN = wy(n), neN. Thus, if n € N n H’, then 1(n)

= 1=y(n).
Now, let (NnH’)J' be defined as follows:

(NAH')" = {Ae Hom(N,K*)/A(n)=1, neNAH'}.
Then y e(NNH’)

Conversely, suppose that y & N n H’)J'.

Let tNH" » K*
be defined by i(ng) = w(n). Then 1 is a homomorphism
which can be extended to a homomorphism ¢:H-—sK* defined
by
o(v(@)o(y(h)) = o(v(g)y(h))
= 0(n(g,h)y(gh))
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= y(n(g,h))¢(v(gh)).

Now if we let u(g) = ¢(y(g)), then
o(v(@N9(v(h) = w(n(g,h)y(¥(gh))

= o/(g,h)u(gh)
or  uuh = a(ghueh) so that  oeBAGKH).
Therefore, given a linear character y of N, the special
factor set o determined by Wy lies in B2(G,K*) if and
.

only if y &N N H)". Now defining &:Hom(N,K*) » HXG,K*)

by &(y) = o’B%(G,K*), then & will be a homorphism with
Ker & = {y € Hom(N,K*):y(n)=1} = (N n H)"
In particular, & is an isomorphism if and only if

N cH/, that is
N = Ker€ is trivial.

2.1.5 Definition (See Haggarty and Humphreys [5])

Let £ be as above, and for a linear character w of
N, let T be such that 1(gh) = w(n(gh)). Then
E:Hom(N,K*) » H*GXK*) defined by &w) = t BAGK*) is
known as the standard map.

The following gives a necessary and sufficient
condition for projective representations of G to be

linearized.

2.1.6 Theorem

Let (H,p) be the central extension of a group G
with N = Ker ¢ and let € be the associated standard map.
Then the projective representation of G are linearized

in H if and only if «B*G,K*) < im E.
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Proof

Consider {Y(g):geG} to be the right transversal of
N in H and ¢(y(g)) = g in G. For A & Hom(N,K*), set
EA) = [a]eHAG,K*). Then the factor set defined by
o’(g,h)=Mn(g,h)) lies in [o] since by theorem, there
exists a representative o'e[a] which implies that o and
oo are equivalent.  Thus there exists a function N:G-K*

such that

o’(g,h) = ﬁ—z(i—?%)@ a(g,h)
Define T:H » GL(V) by

T(ay(g) = Ma)P(g)u(g); aeN, geG
Clearly, T is' a representation of H linearizing P.
Conversely, let P be linearized in H by T. Then
T((g)= P(g)u(¥(g))

P(1) = u(1)'T(1) and for any a € N,
P(u(@) = p@u(1) ' T(1)
implying that A(a) w@u(1)' is a linear character of
N. Define n(g) = u(n(g)
Then o'(g,m)T(y(gh))= T(¥(g))T(y(h))

= P(@P(n(gm(h)

o’(g.mn(gh)P(gh) = a(g,hm(g)n(h)P(gh)

Thus o'(g,h) = n(@nn(gh)” og,h)

so that o lies in [a] € HA(G,K*)

T(a)

That is Q) € [a]

It is important to characterise N = Ker ¢ given a

central extension (H,$). More specifically, we have
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2.1.7 Lemma (c.f Haggarty and Humphreys [S])

Let (H,¢) be a central extension of a group G with
N = Ker ¢, and let n(g,h) € N be as defined above. Then
N = gp{n(g,h):g,heG}

The following result is due to Haggarty and
Humphrey [6].

2.1.8 Lemma

Let (H,9) be a central extension of G, with N =
Ker¢. Then a transversal {3(g):geG} for N may always be
chosen to be cojugacy preserving.

That is 8(-g1) will be conjugate to 8(g2) whenever g,

is conjugate to g, in G.

2.2 STEM EXTENSIONS AND REPRESENTATION GROURS

2.2.1 Definition

A stem extension of a group G is a pair (H,$) such

that 1 > Ker ¢ = N 3 H %G 5 1 is a short exact

sequence and N ¢ Z(H) n H'.

2.2.2 Definition

A representation group H of a group G is a finite

group of lowest possible order which is a central
extension of G such that every projective representation
of G is linearizable in H.

2.2.3 Corollary

Let (H,9) be a finite central extension of G with
Ker¢ = N, and let € be the associated standard map.

Then () If N ¢ H', then N is isomorphic to a subgroup

£ IT2( s
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(i) Assume [N| = |H'(G,K*)|. Then N ¢ H’ if and
only if every  projective  representation

of G is linearized by a representation of H.

Proof

Let &Hom(N,K*) » HXGK*) be the standard map
defined by EA) = af’(G,K*) where A & Hom(N,K*). By

Theorem 2.1.4, Ker & = (N ~ H)" and Im & ¢ HAGK*).
Hom ( N,K¥*)
(NAH’")"

Since HZ(G,K*) is a finite group, so is Hom(NNH’ ,K*).

Thus Hom (N N H’K*) = Im & = H*G,K*)

R

But Hom(NNH’K*) = N N H’. Therefore N N H’ is finite and
isomorphic to a sﬁbgroup of HAG,K*)

If NN H = {e} then Im § = {e} which corresponds to
a trivial factor set in HXG,K¥). This yields ordinary
representations of G. Suppose NNH" z {e}, then o is a non
trivial factor set, giving rise to non trivial
projective representations of G. In particular,
projective representations of G are linearizable in H if

and only if N ¢ H’. In this case N = HXG,K*).

2.2.4 Theorem

Let K* be a complex field. Then a finite group G

has at least one representation group H of order
|H2(G,K*)| |G|.  Furthermore, the Kernel, Ker¢p of the

homomorphism ¢:H » G is isomorphic to H*(G.K*).



30 -

Proof

As a finite and abelian group, we can express

H%(G,K*) as a finite product of cyclic groups <o’ ’]> where each

generator [a(i)] is of order di. Since the oc(i)(x,y)

have the property that
oux,y)ouxy,z) = o(x,yz)o(y,z), we have

a® 4+ 2 = a® 4 a;ii (mod d) (2.2)

Xy Xy.z X,yz

If [0] € HY(G,K*), then o is equivalent to B where

i i 1
B,y)=(o"(x,y)) 'x(@®P(x,y)) *x..x(@Px,y) |

SN GV I @ N ()
=€) %y x@D* Y xx(@ Dy

0< li < di-l 2.3)
Now let Ker ¢ = A, and let aa.., a be generators of
A corresponding to the generators [a(i)] of HZ(G,K*).
For each x,yeG, let a(x,y)eA be defined by

a(x,y) = a aii; . Then

n

i=1
a(x,yz)a(y,z) = a(x,y)a(xy,z) 24)

By (2.2) above.

If for x¢ Hom(A,K*), we define

¥, (%) = &(a(x,y)), then
n a(i)
‘l’x = igl X(ai) Xy
That is \vx e HYGK*); that is as X runs through all the
linear characters of A, wxruns through the elements of
HXGK*. Now, set H = {(xa : xeG, agA} with a
composition on H being defined as follows: for x,yeG and
a,beA,

(x,a)(y,b) = (xy,a(x,y)ab).
Then H is a group with {(l,a): acA} = A contained in
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Z(H), the centre of H. Furthermore, if we let v(x) =
(x,1), for all x & G, 1leA, then ({v(x):xeG} is a set of
G and

iR

coset representatives of H mod A. Therefore H/A
H is a central extension of G.

Now, to show that every projective representation
of G can be linearized by a linear representation of H,
let P:G > GL(V) be a projective representation of G
with factor set «. Then as ecarlier seen, there exists a
linear character y of A such that vy (ax,y)) = o(x,y),
for all x,y € G. Now, let T:H » GL(V) be defined by

T(v(x)a) = PX)y(a).
Then

P(x)P(y) = T(v(x)T(v(y)) = T(v(x)v(y))
T(ax,y)v(xy)) = w(a(x,y))P(xy)

1l

ox,y)P(xy)

so that P is a projective representation of G with
factor set o, which is linearized by T.

That [H| = |HXG,K*)||G| follows from the fact that
HA = G and that A = HYGK¥). Thus, H is a

representation group of G.

2.2.5 Theorem

Let ¢ be an irreducible projective representation
of G with factor set o.  Then there exists a projective
representation ¢’  equivalent to ¢ which can be

linearized in a stem extension of G.



Proof

Let (H,8) be a stem extension of G. Then we can
find y € Hom(N,K*¥) where N = Ker o, which is such that
E(y) = o B(GK*) and & is the standard map. Also, there

exists a special factor set o with a’(gh) = w n(gh).
Then o is equivalent to o via E&. Let ¢ be a
projective representation corresponding to o’ Then ¢
is  projectively equivalent to . Further, ¢ is

irreducible since @ is.

’

¢
representation D as ¢(g) = D(yg)) VgeG. Hence ¢ is

can be linearized in H by an ordinary

equivalent to the one that can be linearized in H.

The following result can be proved.(see e.g [8])

2.2.6 Lemma

Let G be a finite group with arbitrary factor set
o. Then there exists a stem extension of G which
linearizes  projective  representations of G  with factor

set O.

We now prove

2.2.7 Lemma

A finite group G has atmost a finite number of
inequivalent  irreducible projective representations over
an algebraically closed field K.

Proof

Since G is finite, by the above lemma 2.2.5, There
exists a stem extension which linearizes P. Let (H,9)
be a stem extension which linearizes a projective

represenation P of G. ie there exists an ordinary
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representation T of H such that T(ug)) = P(g) for all
geG. If P’ is a projective representation of G equivalent
to P and T is the ordinary representation of H
linearizing P° then T is equivalent to T Hence the
number of inequivalent irreducible projective
representations is less or equal to the number of
inequivalent  irreducible  ordinary representations of H,

which is known to be finite

2.2.8 Remark

Recall that the number of inequivalent irreducible
projective representations of G with factor set a is
equal to the number of o-regular classes in G. In
addition, for finite G, HZ(G,K*) is a finite group and
can be expressed as a product of cyclic groups. Hence
the number of inequivalent irreducible projective
representations of a finite group corresponding to an

arbitrary factor set a is necessarily finite.

2.2.9 Theorem

The degrees of the irreducible projective
representations of a finite group G divides the order of
G.

Proof

By 2.2.5 lemma, since G is finite, there exists a
stem extension (H,9) linearizing the projective
representation P of G. Let P be an arbitrary
irreducible  projective representation of G and T an

ordinary representation of H which linearizes P. Then
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deg P = deg T. Furthermore, by Huppert,
deg T divides [H:Z(H)].
Since (H,$) is a stem extension of G,
N ¢ Z(H) and H/N = G where N = Ker ¢
Hence deg T divides |H/N| = |G|
so that deg P = deg T divides |G|

Given the importance of representation groups, It
is instructive to provide the following characterization
of representation groups. The characterization is due

to I. Schur.

2.2.10 Theorem

Let G be a finite group. Then over the complex

field c, there exists a representation group H of G such

that
N ¢ Z(H) with
® Nc #H)
(ii) HN = G

(iii) IN| = |[H(G,K")|



CHAPTER THREE

CHARACTER THEORY

In this chapter the main aim 1is to review those
propertics of  projective characters of G that are
analogous of those of linear characters. We do this by
considering  projective  characters of G as  linear
characters of its corresponding representation group H,
via the linearization process discussed earlier.

3.1 Projective Characters

3.1.1 Definition

Let (H,¢) be a central extension of G which
linearizes the representations of G. Let P be a
projective  representation with a special factor set .
Let D be an ordinary representation of H  which
linearizes P. Then the projective character of P
denoted by % shall be defined to be

x(g) = Trace(D(Y(g))

Note that the definition makes use of the fact that P
has a special factor set. If oo is an arbitrary factor
set, then it 1is possible to choose a factor set o
equivalent to o which is a special rfactor set.  Thus, if
P’ is a projective representation corresponding to o

and D’ linearizes P’ then the character of P shall be
defined to be that of P’.

That is, x(g) = Trace(D'(Y(g)))

385)



3.1.2 Remark

By lemma (2.1.8), since the transversal {0(g):geG}
has been <chosen to be conjugacy preserving, the
character of a  projective representation as  defined

above is a class function on G.

3.1.3 Theorem

Let P1 and P2 be projective representations of G
with special factor set B and respective characters X,

and x,. Then P1 is projectively equivalent to P2 if
and only if there exists a one dimensional linear
character A of G such that x,(8) = k(g)xz(g)

Proof

Pl equivalent P2 implies that both are linearly
equivalent to a direct sum of irreducible projective
representations with factor set a. Hence there exists
ordinary representations D1 and D2 of H which linearizes

P1 and P2 respectively.

That is Dl(y(g)) = Pl(g) and Dz(y(g)) = P2(g)where
Dl(y(g)) and Dz(y(g)) have the same meaning as before.

Since o is a special factor set, there exists a
one-dimensional character y of N such that
P(9P(h) = y(n(gh)P(gh) i=12
But D(y(g))D(y(h) = D (Y(g)(h)
D,(n(g.h)y(gh)
D (n(g.h))D (¥(gh)
Which implies that D (n(g.h)) = y(n(g,h))

N = gp{n(g,h):g,heG} by Haggarty and Humphrey
so that Di(a) = y(a)l VaeN.
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P1 and P2 are projectively equivalent and therefore,
there exists an invertible matrix R and a map c:G - K*
such that
R'P (@R = c(@)P(g) VeeG.
setting R"'D (¥(g)R = D/(X(g) we get,
D! ((ng) = c(g)D,(v(g)
Hence; c(g)D,(v(g))c(h)D (y(h)) = D! (M(@)D; (y(h)
D (g)h)
D’ (n(g,h)y(gh)
y(n(g.h))D; (1(gh))
y(n(g,h))c(gh)D,(Y(gh))
c(gh)D, (v(g)y(h))
Hence  c(g)c(mD (v(@)D,(v(h)) =  c(gh)D (v(g)y(h))  so
that ¢:G -K* is a representation of G. By D;(y(g)

=c(g)D ) (Y(g)) and the definition of character, it
follows that
x,(8 = c(@x,(g)
Conversely, assume ¥, = sz and let L:H » K* be defined
by L(ang)) = Mg) VaeN, geG
Then A is a one dimensional character of H. Let 4)1 and
0, be the characters of D1 and D2 respectively. Then
since VaeN, geG we have
D (ax(g)) = w(a)D (¥(8)
Then ¢ (av(g)) = W(2)¢ (V(g))
= y(@)9 (1))
= ¢,(ay(g)L(¥(g))
That is T'D (aY(g)T = L(Y(g))D,(a¥(g))
where T is an invertible matrix which is allowed to be

the identity.
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Therefore D1 is equivalent to L @ D2

implying that P1 is projectively equivalent to Pz.

From the above, we have the following:

3.1.4 Corollary
Let P1 and P2 be projective representations of G

with respective characters §1 and &2 together with the
factor set o.  Then P1 and P2 are linearly equivalent if
and only if

& =5
In such a case, L = ¢(g) = 1

3.2 Inner Products of Projective Characters

3.2.1 Definition

Let X1 and X2 be class functions in G, we define an

inner product for X1 and X2 on G with values in C by
_ 1 X
<X1’X2>G ~ TG] g{’G Xl(g) 28

where X2 is the complex conjugate of Xz.

3.2.2 Remark

Let T, and T, be irreducible projective characters
of G and §1 and §2 be irreducible linear characters of H

such that 1(g) = éi(g) for all geG i=1,2.Suppose
that §i

determines the character v, of N and Di are ordinary
representations of H.Then since each of T is a class

1

function and
D((¥®)" = D(n(g" 1)
= y,(n(g",2)D (g™

where §i = trace of D,
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Then, 7,(8) = v,(n(g" 8)1,(g")
Thus for the projective characters T i =1,2 the inner

product is as follows:

_ 1 -1 -1
T = TGT gEG x,(n(g,g))t (2)7,(g")
We now prove

3.2.3 Corollary

Let P1 and P2 be irreducible projective

representations of G with factor set o(gh) = wy(n(gh)).

Then if §i is the character of Pi(i=1,2.),
1 if P1 and P2 are linearly equivalent
<§1’£-'2>G =1 0 otherwise

Proof

If P and P, arc linearly equivalent, then § =

and the result follows, since in this case X1 = X2 SO
that

<X . X>, = <§1,§2>G =1
That is, by the orthogonality relations in H.

If Pl and P2 are inequivalent, then from the

orthogonality relations in H, we have <E,1,§2>G = 0.

3.2.4 Corollary

A projective representation P of G with character &
is irreducible if and only if <§,§>G= 1

Proof

If P is irreducible, then P is linearly equivalent

to itself and hence, by corollary (3.2.3)

<€.6> o =1
Conversely, suppose that <§,§>G = 1, where & is the
character of P. P is linearly equivalent to the

following projective representation
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ZERO

ZERO P®]
Rclp
where Pi(i=1 ,2,...1) are irreducible projective
representations. Consider E,i to be the character of Pi,
then

@ = I, ak(®
Hence <€.5>_ = T(lﬂ' gEG E@EE ™)

1 . -1
=g§fc 1GT ( ‘1‘:' aiai(g))( 21: ajgj(g )

n n

Y ¥ aa ]’CI}T g@G §i(g)§j(g_l)

- i=1j=1 ij

—-M =

a? for i=j

1 n 2

since the a_ are positive integers, i§1 a = 1 for some 1 <i<n
That is P has only one irreducible

andaj=0f0risj.

constituent and hence it is irreducible.

3.3 First Orthogonality Relations

Recall that for the set of n orthogonal idempotents

€ =

: ed and let
12 n ij iij

e = |G|" T x(x(&hs

We now prove

3.3.1 Theorem

Let ) XpweeerX, be all the irreducible projective

characters of G corresponding to a factor set o which we
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assume to be normalized and let g G = 12....n)

be a complete set of representatives for o regular
classes of G,then

T xex@E) = |GI3,
g(-_'-GJ Y
Proof

Since ee, = eiSij and e = |G| X xi(l)xi(g'l)

then
(6] T xWxeEH(GI"'E  xOxEHR)
= |GI"T 2 (&g,

TR XD ee = oy T 1OrE s 8y

% WM 3 y@re Y= xOrD 5
IGI° L
Then by comparing the coefficients of the

identity element,we have

T oxeneE) = IGI3

3.4 Second Orthogonality Relations

With hk= |ck|, the order of the conjugacy class €

we may write the first orthogonality relations as;
IGI"S hx e = 3 (1)
k=1
Also, since |[C(g)||C, | = |G| then

ICge)lh, = 1G]

That is hk B -
L = |CG(gk)[ and (1) can now
|G |
be written as X, xi(gk)xj(g;‘) jk__ = e
G Y

This implies that

T xE@)ICqE) e = 3, 2)

1
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from where the second orthogonality relations follow
by letting A be an rxr matrix whose (i,k)-entry aikis

xi(gk) and B an rxr matrix whose (k,j)-entry bkj
is ICaE D M eh
G ok oy

That is,for all i,j

r

k=12 bjkaki - 8ij
which can also be written as
r
1, o0 -
k>:=1 1Cc (8) | "%, (8 (8) 5,
Thus we have the following lemma

3.4.1 lemma
Let x (i=1.2,..,n) be the projective characters of G
with 'the assumed normalized factor set o and let

c.( i=1,2,...,n) be theoa-regular classes of G with
g, as the representative element of < then
-1 _
e e = 1)1,

i=

We now show the following important result which will be

used later.

3.4.2 Lemma

Let o(gh) = wy(n(gh)) be a special factor set of G
and let g be any o-regular element of G. Then,
(o™ ) 'ah ghya(g,h) = 1 for all h € G

Proof

Let 8 (gh) = (ah’,h) o’ ghoagh). As g is
o-regular, there exists an irreducible projective
character y of G with factor set o such that y(g) = 0.

Let P be the projective representation of G with
character ¥ and D an ordinary representation linearizing
P.

That is, P(g) = D(y(g)) for allgeG.
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Then for heG,
D(y(h™ )y(g)y(h))
= D((n(h™\h)'n(h" " ,gh)n(g,hyy(h'gh))
w(n(h™h) Yoih™ gh)o(g,h)P(h ' gh)

8, (&WP(h"'gh)
That is x(g) = 8 (&hx(h'gh) = 8 (ehx(2)
That is 3 (g) = 3 ,(g.h)x(g)

since y(g) is finite and Y(g) # 0 then
8 (&h) = 1
That is (auh™ b)) auth ™ ,ghya(g,h) = 1

3.4.3 Corollary

An element geG is o-regular if and only if there
exists an irreducible projective character ) of G with
factor set oo such that y(g) = 0

Proof

If g is o-regular, then x(g = O for some ¥
conversely, suppose x(g) = O where ) is the irreducible
character corresponding to a special factor set . Then
by lemma 3. 4.2. Sa(g,h) = 1 for allheG.

In particular, choose heCG(g) so that

Sa(g,h) = 1 for allheC (&)

That is (ah™,h) 'ah™ ,gho(g,h) = a(gh)(oahg) ™’ = 1
That is o(g,h)(ah,g)"' =1 for all h € C G(g)
That is o(g,h) = a(h,g) for allh € C G(g).

3.5 Induced Characters and Representations

Consider a subgroup M of G. Then a left
(KG) a-module V can be regarded as a left (KM) a-module by
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restriction.  Let VM denote the left (KM) a-module of V
when restricted to M. Let V afford a representations P
and VM afford a representation PM. If P corresponds to
a factor set o, then o determines a factor set o of PM
by restriction. Let x and Xy be the respective
characters of P and PM. If x is irreducible, then Xt is
in general reducible and elements which are a, regular
in M are not in general a-regular in G.

We now describe a construction which associates

with each (KM) a-module W, a left (KG) a-module wE.

3.5.1 Definition

An induced left (KG)a -module W° from M is one

which is such that W° = (KG)a @(KM) W where M is a
o

subgroup of G and W is a left (KM) a-module.
The representation afforded by WY is said to be an

induced representation of G.

When given a projective representation P(g) =
(Sij(g)) afforded by W, we can obtain an induced
representation of G.  We now briefly explain how to get
this
Let (WKK) = r and {wl,wz,...,wr} be a K-basis for W and
let G = ik;'l)lgiM be a coset decomposition of G modulo M.
Then every element of G can be uniquely expressed in the
form gm (I<i <n) and meM. Hence every element of
(KG) o is uniquely expressed in the form i)::}y(gi)bi,
bie(KM) o

Thus we have,
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(KG) =1 JKM), ® Y(g)KM) &... 1 )KM)
That is (KG) o iIs a free right (KM)a-module with basis

{v(g)¥E).... ¥g) }.  Therefore,

W %= (g KM), ®

an, W) © AEIKM), @) W)

KM) o

o ®(v(g \KM), ® W)

(kv
Since y(gi)bi ® w = Y(g) ® bw Vbs(KM)a weW, we may
write

G = y(gl)®W @ y(g2)® w @....@y(gn)® w
From the isomorphism, y(gi)b > b between 'y(gi)(KM) p and

(KM, we get Y(g)KM), ® W = (KM), WeW

(KM, ®(KM)a
Thus 'y(gi)(KM)a ®(KM& W=z W

so that (WK) = [G:M}(W:K)

Thus the elements of W have a unique expression of the

form Zy(gi) ® u where the u are uniquely determined

in W. Hence a K-basis for wé s

{y(gi) ® wj/i=1,2,...,n. j=1,2,....,r}.  Express ’y(g)('y(gi)@wj)

as a K -linear combination of basis elements. Rearranging

the basis elements in order, we get

'y(gl)®w1,.. ., 'y(gl ) ®wr,...,y ( gz)®w1, ..... ,y(gz) ® wr,....,'y(gn)®w1
,....,'y(gn) @ w
Then the above implies that V geG,
N (i, 1) (1,r) * (kzl)
PO = | 7| o) g 'ee)P se) )

* * |kr)

Where P is extended to the whole group by setting P(g) = 0.

for all o ¢ M Infact as obtained PG 1c the induced
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projective representation. Also let X be the character
of P°. Then, .
%) = T algs)o (5,8, 'ee)e(s 8g)
n
= I (o(g ) (g g8 )oug.8)e(e, gg)

Which gives the formula for the induced character for

which the Fr obeni us recipr ocity theorem holds.



CHAPTER FOUR

PROJECTIVE REPRESENTATIONS OF FINITE

ABELIAN GROUPS.

4.1 ABELIAN GROUPS

We start the chapter by discussing the structure of
arbitary finite abelian groups. Abelian groups merit
attention because they are fundamental in all of group
theory as well as in many other branches of mathematics.

The following result is useful.

4.1.1 Theorem [2]

Any abelian group whose order is not a power of a
prime number is a direct product of all its sylow
subgroups.

We now prove

4.1.2 Theorem

Every finite abelian group is a direct product of
cyclic groups.

Proof

We assume that the abelian group G is not a cyclic
group and that S is an element of highest order P* in G _
where P is a prime. Consider the quotient group ?(5}'5 Let
H<S> be an element of highest order P* in this quotient
group for the same prime P. Then H” - S t <a, where
n is not divisible by P. In the coset H<S> it is possible

to select an element of order P since the order of H is

not higher than the order of S, r < t.

(47)
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t-r
If H"2 1, take the element HS™ instead of H and
obtain
tr r
(HS™ Y =1
Assume that H has been properly selected so that the
groups <S> and <H> are relatively prime and their direct
product <S>x<H> is contained in G. If G is not exhausted
by this product, then let us again take an element F<S>x<H>

of highest order PB in the quotient group —S—G—H— . Then

<S>x<H>
B_ »* mp°
FF S H
[3 < OL,B <O
If FP[3 # 1 then instead of F it would be possible to

. of . o-P 8
select FS™ H™ | which would be of order PP,

Selecting F in such a manner, we get the direct product
<S> x <H> x <F>
If this does not exhaust G, we continue in the same way
until we get a direct product
<S> x <H> x <F> x..x <K>

which is equal to the group G.

4.1.3 Definition

Let G be an arbitrary finite abelian group and r an
integer, then

G@a) = {xeG : X' = e
clearly, G(r) is a subgroup of G as G is an abelian group.

The following can now be proved.
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4.1.4 Lemma

If G and G’ are isomorphic abelian groups, then for
every integer S, G(S) and G'(S) are isomorphic.
Proof

Since G and G’ are isomorphic then there exists an
isomorphism @:G > G’. If xeG(s) then x° = e and @(x°) =
¢(e) =e’. Hence (p(x)s = eand so @(x) lies in G'(s).
Thus @(G(s)) < G'(s). Again, if v €& G'(s) then W) =
e’. But since ¢ is onto, u = @(y) for some yeG.
Therefore ¢ = W)’ = o)’ = oF). ¢ : G(s) - G(s)
is injective since for x,yeG(s) if (p(xs) = (p(ys) then

‘@¢(e) = @(e) implying that ¢’ = ¢’

ie ¢ =¢ =e. Hence

e=e=>x =y
Thus we have y° = ¢ and so y € G(s). Thus showing that

G(s) and G'(s) are isomorphic.

4.1.5 Remark

It now follows from (4.1.1) and (4.1.2) that two
abelian groups are isomorphic when and only when their
sylow subgroups are isomorphic in some order and therefore
the problem of determining all possible abstract abelian
groups is readily reduced to that of determining all prime‘
power abelian groups.

From now on we shail assume that G is a prime power

abelian group.



- 50 -

4.1.6 Definition

Let G be an abelian group of order P, P a prime,
that it is a direct product of K cyclic groups each of
n

order P' (i=1,2,...k) with n >n  >.> n. Then

the integers n ,n,....n are known as the invariants of G.

4.1.7 Definition

If G is an abelian group of order P”, P a prime and
the orders of its direct summands are p"1, P2, ...,pmk
(m=m +m + .. + mk), then the group G is said to be

)

of type (ml,mz,...,mk

The following result is due to Heisteins.

4.1.8 Lemma [6]

Let G be an abelian group fo order P°, p a prime.
Suppose that G = A1 X Azx... X Ak, where each Ai=(ai) is

cyclic of order p“, and n>n > n>0. If meZ such

that n > m > n then GP™ = B x..xBxA L1RXA
n, -m

where Bi is cyclic of order P", generated by alIi)l , for

i <t The order of G(P") is p
k

where u=mt + X n

i=t+l

Furthermore, the order 0(G(p)) of G(p) is pk.
We now prove

4.1.9 Theorem

Two abelian groups of order p' are isomorphic if and

only if they have the same invariants.

SO
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Proof

Suppose G and G’ are abelian groups of order P"
with same invariants n.n,..n, then

G = A xA x..xA and G'=B’ x B’ x..xB’
17 % k 1 2 k

where A = (a) and Bi’ = (bi') are cyclic groups of order
. o, (X.k
P" If we define a mapping ©:G » G’ by (p(aif.. a ) =
o o

= (b; ) 1"'(b1’() " then ¢ is a homomorphism. ¢ as defined
is both injective and surjective. Hence @G 5 G is a
bijective homomorphism and therefore, G is isomorphic to G’.
Conversely, let G = Ax.xA, G = B; X B;x o X B;;
Ai, ,Bi' are cyclic groups of orders pm, phi
respectively, where n >.>n > 0 and h1 ?...?hs>0.
If G and G’ are isomorphic, we only need to show that k=s
for G and G’ to have the same invariants Since G and G’
are isomorphic then by lemma 4.1.4 G(p™) must be
isomorphic for any integer m>0, hence must have the same
order. When m=1, O(G{P)) = OG'(P)). But from Lemma
4.1.8, O(G(P) = P* and O(G'(P)) = P°. Hence P* = P* and
therefore,

k =s

and G and G’ have same invarinats.

4.1.10 Remark

Theorem 4.1.9 has two immediate consequences, those
being;
n

(i) that an abelian group of order p <can be

decomposed in only one way, as a direct
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product of cyclic subgroups and the

invariants of G completely determine G.

(ii) that two different partitions of n give rise

to non isomorphic abelian groups of order p".

4.1.11 Corollary [7]

The number of non isomorphic abelian groups of

(0 o
order P L. P 'where the P are distinct primes and

each o > 0, is P(ocl)P(ocZ)...P((xr), where P(u) denotes the

number of partitions of u.

4.2 SCHUR MULTIPLIERS OF FINITE

ABELIAN GROUPS.

In this section, we consider the schur multipliers
of some of the finite abelian groups. It follows
trivially from the definition of a projective
representation  that all  the  representations of  cyclic
groups are ordinary representations. Their schur

multipliers are therefore, ¢ orphic to {1}.
p %&mg}& Ip {1}

R a
e s} [

NOTATION < <
Yo 2

v
The following‘-’-‘%%tation shal be wused throughout.

Let k and k be any positive integers. Then C(k X )'
12

shall denote a cyclic group of order (k1’k2) where (k1’k2)
is the greatest common divisor of K1 and kz'

We first consider the abelian groups which can be
written as a direct product of two cyclic groups. Let

Ck ) denote the direct product of two cyclic groups of

\\¥lag,
& s
o) -



orders k1 and k2 respectively, so that
C = {S S:S'=82=¢SS =
k.2 2" 1 2 > T2 271
then we prove the following

4.2.1 Theorem [13]

Keeping the above notation, we have

2 € o
H (Ckz,C ) =C &)

Proof

For any factor set o of Ck2 it is possible to

choose a cohomologous factor set u which is such that

Y Ys Vi 2
S .S, )=0oS 5,9
for all w € {O,...k]-l} and w, € {O,...,kz-l} 1)
Consider P to be the projective representation of Ck )

with the factor set satisfying (i) and put Pi=P(Si);
i=1,2. From the definition of a projective
representation, it follows that

.l P)

P1 = al, P2 = bl; P1P2 = kPZPl
where a,b,A € C*
We may obtain a projective representation Q of Ck ) by
letting

w w
w w 1 2

”(811 , SZZ) =a /kl b /kz where

wle{O,....,kl-l}, wze{O,...,kz-l}
and defining Q by
Q(s) = W()P(S) for all SeCk y If we now set Qi = Q(Si)

i=1.2. then we have
k

1

k
Q'=1=0Q%QQ, =MQ (ii)



- 54 -

Thus our new representation Q is such that

wl W2 wl w2
Qs,'s,)=0,'Q

Therefore the class [0] depends entirely on A.  The proof

to show that HZ(Ck 2,tI:*) is isomorphic to a subgroup of

C is now completed by multiplying (ii) through by

k ok,)
Q': from the right and raising to the power k2 ie
k k
(QleQl'l)kz = (XQZQIQII) 2 thereby getting 1 = A 2.Also
multiplying Q;l throughout (i) from the left and raising

to the power k1

k k k
That is (Q;QIQZ)I =(Q;17»Q2Ql)l gives 1 = A so
(k k) 4
that A ' 2 = 1.
2 % 13 . .
H (Ck,Z’C) is infact equal to C“‘H‘z) for if we

construct a pair of non singular matrices Q and as
p 4 1

follows
010 0---- 0 0OAO--- 1
o< 20100 |00 N0
1 ,Qz-— Cu A
0 0 0 0 -—--- 60 0T
1 0 0 0--0-} 10 0-- o
Then,

010 0-0) {0t 0 0.0} fOQ1 0--
001 0-0f [00 1 0.0 |0 00 £-0}.

2 PRS- SUNINUPRIPIPSR— E
Q ={0707070=1| g9 0-ouv1} [1000-—0f
1000-—-0) |100-—— 0/ {0100--0
0 0 -0 1)
k-1
o that Q' = |10 2D
() J— 100
O 0--—---0.1 0
Hence, 01 00 ----—Ci 00— ——mm- ©1
k-1 0010 - o}l [ 1 0-—mme- 00
Y P ] 1 T S
000 -—m 1l {0 0-mee 100
100 - 0) (00 —nm 010




010 -—-—--- 0
“looo 10
000 —-- 01
=1
k, k -1
That is Q1 = QIQ =1
A0 1
Q= (00 A -~ 0
00 0 -00=2g
100 -—memeees 0
In a similar manner
k
Q=1
Hence‘ Q1 and Q2 satisfy the equation in (ii)) for all
(k.k)
values of A such that A = 1 and generate a

projective represenation of Ck ,
We now consider the general finite abelian group G.
That is G is a direct product of r cyclic groups. The

following shall be required in the sequel:

4,2.2 Definition

Let P(GHK*) = {f:GxH > K*:f(glgz,h)
= f(gl,h)f(gz,h) and f(g,hlhz) = f(g,hl)f(g.hz)
for all g,gl,gsz; h,hl,hzaH}

The set P(G,H,K*) is known as a set of pairings.

The following result is due to Yamazaki [13].

42.3 Lemma

Let G = G1 X G2 X .. xGr, then

H(GK*) = 1 H(GK" x [ P(G,G;K"

i=1 1<j,i<r
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We prove

4.2.4 Corollary [13]

P(C, x C; K¥ = C(m,m)

Proof

Since Hz(Cm,K*) = 1 for each i=1,2,...r then
i
; K*) = P(Cm X Cm ; K¥) by Lemma 4.2.3.

HX(C x C
mi mj i i
Also, H(C_ x C_:K*) = C(m,m) by theorem 4.2.1
i s '
so that P(C x C ;K*) = C(m,m)
m i m.i i ]
As a consequence of the above, we have the following:

4.2.5 | Remark

Let ka denote the direct product of k cyclic
groups c ..C of orders m..,m respectively. Then
m, m K 1 k

H2(Cm i c+) is equal to the direct product of the cyclic

groups C(mi,mj) of order (mi,mj), 1 < igj< k.

4.3 o-REGULAR CLASSES OF FINITE ABELIAN GROUPS

As earlier seen, the number of irreducible
projective representations of a group G with factor set «
is the same as the number of «-regular classes. Since for
abelian  groups, conjugacy classes consist of  single
elements, it will suffice to consider o-regular elements
in the sequel.

Let us consider an abelian group Cm(“)= me...me

n

(n-times) which is such that |C ™| = m" and it is

generated by 8 18yrensS each of order m.

2
We may now obtain o-regular elements of C;"),
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and our work follows that of Morris and Saeed [10].

4.3.1 Theorem

Let Ci“)have the same meaning as before and let «
be the factor set of Ci“) satisfying the property that
o ( si,sj)= ¢ (I<i<j<n) where ¢ is a promitive k"  root
of unity, where k divides m. If m=kd then

(1) If n is even, then CXEI“) has d" o-regular elements.

(ii) If n is odd, then Crfl“) has kd" o-regular elements.

Proof
Since for any seCi“), s can be expressed in the
form s=sj11 s:“, ag{0,...m-1} for all i=12,..n.
Then oc'(si,s) = 1 for all i=1,2,...n if s has to be
o-regular. But a’(si,slal..., suarl )
n a

=1 oc’(si,sj 9
j=1

It

(m oc'(si,s?i)] | oc’(si,s?i)[ noc’(si,s?j))]

i.j j>i

H
S
-
-
o
T
hA
=

= 1 if and only if
a+.t+a -a .. a = 0 (mod k) i=1,2,...,n

and this system of congruences is equivalent to

AX = O(mod k) where A is an nxn matrix given by
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(11 1 0
11 i, 0 -1
RO 5 G |
10 1 -1
[0 -1 1 -1

l—
and x = (al,...,an)
Thus, the determinant of A will give 1 or -1 whenever n

is an even positive integer and zero otherwise.

(-1)?

M if n is even
i.e det A =
0, if n is odd.

case (i)

If n is even, the only solution to the system

+.t - . -a = i = = .. =
a a 2, a 0 (mod k) is a a,

a = 0 (mod k) which is equivalent to a € (0,k,2k,...,(d-1)k}
i=1.2,..,n

Therefore s is o-regular only if

ke, kt
$=S  ..S8 (1)

1 n
where t € {0,1,..., d-1}
Also for h = 0,..., m-1; i=1,...,n

we have Ot’(s:l ) = (X'(Si,s)h

o h
[n a'(S.,S.k‘)]
=1

ki Kkt .. &
C Gy ek ke kD)
=0
hkt ..kt - kt .. -kt
ke, + i T Mg )
=@
hk(t, + ..t -t o
_ ¢ i1 e Y
=@
h(t +... t -1 e = 1
A b7 »

= (¢



h(t + ..1 L SR §
184 i1 N W

= 1 showing that all such  elements in

a 2
(1) are o-regular. Therefore, for any s’ = s L. s in C;“).

o(s,s) = oc’(s?l ) ... Ot(s:n )
= 1.1.1...1
=1
Hence the number of elements as in (1) above is d", confirming
case (i)
Case (i1)
Now suppose n is odd, then the above system reduces to
a=-2=a=-2=-2=...=an(modk) ifai

satisfies the above system and o' has the same meaning as above,

then
(al-)~..,+ail - ai+1 -an)
, _ X
a(si,S) - (P

for all i=1,2,...,n

ll t n 1.
Then OL’(s1 sn",s) = oc’(si1 ,S)

i-1

n ti
=7 « (s 9)
i=1
- 1 for all seC™®
m
so that s is o-regular.
We now note that by fixing a = h, 0< h<m-1 a,
and a, may be allowed to take any value from
{-h + Sk:S = 0,.,(d-1)} and a,a,.. may be allowed
to take values from {h + §k : 0 = 0,., (d-1)} and the

number of o-regular elements equaling md” = kd"

consequently completing the proof.
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4.3.2 Corollary

When m is a prime integer and n is odd, then the
number of o-regular elements in C;")is equal to m, the

order of the generators s(i=1,2,...,n) of Crfl“).

Proof

Since Cr;")= Cm X Cm X .. X Cm and

n-times

any ser:l")has the form s = S 8 each of order m,
then if m is a prime integer, in 4.3.1 above, we have

m = m.l and the rest now follows from theorem 4.3.2 (ii).

44 THE NUMBER AND DEGREES OF THE

IRRED1

PROJECTIVE REPRESENTATIONS OF FINITE ABELIAN GI

Here we consider the number and degrees of the
irreducible inequivalent projective representations of
finite abelian  groups. In particular, we obtain the
number and degrees of irreducible representations of
abelian groups Crfln)of type (a,,....a).

The  following  result  follows  directly from

theorem 4.3.1

4.4.1 Theorem

Let oo be a factor set of C;")and o’ have the same
meaning as before. Let m=kd then
(i) If n is even, Cn(n“)has d® number of inequivalent

irreducible  projective  representations each  of

degree K"
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() If n is odd, c has kd" number of inequivalent

irreducible projective  representations each  of

degree k™2,
Following from the work of Morris [9] we can determine
the number of  inequivalent irreducible projective
representations with  factor set o over € in the

following two cases,

(a) when B(i,j) = w, where w is a primitive m”® root
of unity and
(b) when m is even and B(i,j) = -1 (1< i<j<n)

When o satisfies condition (a) or (b) then a particular

case of 4.4.1 gives the following

4.4.2 Theorem

We keep the above notation. Let G be an abelian
group of order m" generated by 8y - & and let a be
a factor set of G such that pudi) = 1 (G = 1,2,..,n) and
B (ij) = w (I<i < j n) where w is a primitive m ™ root
of unity. Then if n = 24 is even, G has only one
irreducible inequivalent projective representation of
degree mM  and if n=2)t + 1 is odd, G has m inequivalent

irreducible projective representations of degree mH,

Proof
Let T be a projective  representation of G with
factor set o and let T(gi) = ei(i=1,2,...,n). We can
(11 o
now determine the number of elements a = e . - ekr where
r r

15k1<k2<...<k< n 0 <o <m-l

r - - i -
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such that e? ae. = a (i=1,2,...,n). In particular, we

have e;] ae = a (i=1,2,...,n)
i 1
(a1+...ai_l-ai+1...-a )

.a sin
elae = o v.a ce

(al+...ai_1-ai+l...-ocr)

W = 1 from which we get AX = O(mod m)

where A is the rxr matrix given in the proof of theorem

4.3.2 and
l ——
X = (ocl,...,ocr)
0 ifr is odd
Hence det A =

(-1)?‘if r= 2\ is even
If r is even, the only solution is a trivial one i.e

oa=0 =..=0 =0,
1 2 r
Also if r = 2A + 1 is odd, the above linear system

reduces to a =-o = QU = .. =-0,= gy (mod m).

o o
Thus if g _"... g

k
1 r

is an o-regular element it can

only take the form

gkl gk2 . 8 gkr i=0,1,..,m-1)

r-1
Also when K = K, e: ae =a Ifk=zk (i=12..0

and put k = 1, k =n then k > k and k < k for
(o] ] j+1

+1
some 0<j < r + 1 and
+.. 40 - -
(o o- o o)

1 r ¥
A=W a

-1
e ac =W
k k

for som 0 < i < m-1
i.e if r<m, i=0. Thus if n=2u is even, 1 is the only
o-regular element and if n=2p+1 is odd, the o-regular

elements are given by
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g8, g2u+1 @i = 0,1,..m-1)
Hence when n=2u is even, G has only one inequivalent
irreducible  projective  representation whose degree s
mM When n=2u+1 is odd, the m inequivalent projective

representations have same degree mt.

case (b)
Let G = <g> X <g>Xx .. X <g > as before, n=2u
(even) and o satisfies
u@ia = 1 for all ie{1,2,...,,m}
and BGi,j) = -1 (1<i<j<m)

. _[1 0]1.o_TO 17. . _T0 -i].
cons1derA—[0 1],B—[1 O]’e—[-i O]’

D = [ 5 (1’] and for i = 1,2,...t, let

M, =D®D®.®D®B®A®.QA
M =D®D®.®DR®C®A®R.QA
M =-=D®D®.8D®&..®D
be tensor products, where B and C are in the ith
position and each product has t factors.
If m=2t and w is a primitive 2k-th root of 1 for
i=1,2,...m and O< 2i<k, define
P ) @) = m)'iMi
In  Morris [9], the projective representations are
given by the following result
(i) If m = 2t is even, then G has k" inequivalent
irreducible projective representations with
factor set o

(i) If m = 2t + 1 is odd, then G has 2k™ inequivalent

irreducible projective representations with
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factor set o

The following fundamental result is due to Yamazaki.

4.4.3 Lemma

All the irreducible projective representations of
an abelian group have the same degrees.
This follows easily from Theorem 4.4.1
We now prove the following result,

444 Lemma [13]

The sum of the squares of the degrees of the
irreducible  projective representations of a group with

a fixed factor set is equal to the order of G.

Proof

Let {Ti} be a complete set of projective
representations of the group G  with  character
{xi:i=l,2,...,S} with degrees fi respectively then

|G| = rG(e) where I, is the regular

character of G

-3 £x()

i=1

4.5 SOME IRREDUCIBLE PROJECTIVE REPRESENTATI(

OF FINITE ABELIAN GROUPS.

Here we determine some irreducible

projective representations of abelian groups
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corresponding to certain types of factor sets.

Let G be an abelian group of order m" generated
by n-elements gi(i=1,2,..,n) each of order m. That
is,

G 2 c¢c X ¢X .. X ¢ (n-copies) where ¢ is a

m m m m
cyclic group of order m. Furthermore, let
m

-1 )
wi = og .g) (< i< n)

j=1
and B(ij) = a(g,g)o" (g,g) (1 <i<m
(1<j<ml)
Then the factor set oo can be chosen such that
ui) =1 (=1,2,..,n) and BG,j) (1 <i < m-1) .
1<j< m—1;S
an mth root of unity then the factor set o considered

earlier on, may be chosen, upto equivalence, such that

oc’(si ,sj) = (pij satisfy the relations:

0p'=10 =1,¢ =0 (1)

ij ii ji ij
1 <ij <m, i#
a,

and | ofshs)=1 l<i<m 2

j=1
We shall call ((pij) the matrix associated with o and

write oze((pij). Now we determine irreducible
projective  representations  corresponding to the factor -
sets oce((pij) belonging to the following  special
classes such that each ?, is a primitive a;hroot of
unity, for a fixed pair of indices (s,t), s<t and

(pij = 1 for (i,j) = (s,t).

Consider a set of indices 1§s2 < .« <8, <m with
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ag(@) where (pf . is a primitive as;h root of unity
1 1+1
for i=1,3,5,..., 2r-1 and (pij = 1 otherwise. Let

oce((pij) such that (pij is a primitive a:h root of unity
and let T:G - GL(nC) be a projective representation
of G with the factor set satisfying (1) and (2). If

Ti = T(si) i=1,2,...m then

T1"“’ Tm satisfy the following relations

T'=1i=12 ..m )
TT TT, ij = 1,2 J @
i j - (Pu J i, laJ - sdeyeee, I

Let us now consider an abelian group
a,
G = <sj,j = 1,2..m : sil= ;1 <i<m,

ala 1< i< m-1>

il i+l - -
that is an abelian group of type (al,...,am). Let W,
be a primitive a™ root of unity for i=1,2,...m.
Then a complete set of inequivalent irreducible
ordinary representations of G is given by (see eg [10]

{X(xl,...,xm) : xia(O,l,...,ai_ hi = 1,2,...,m}

1

al am
where 7»(x1,...,xm)(s1 SN )

for all g {Ol... a_ ) i = 12..m. Let ¢ be

the non zero eclements of the complex field and let o
have the same meaning as in lemma 4.3.1,

Also, suppose T1""’ Tm are non singular nxn
matrices satisfying equations (3) and ((pij) is an nxn
matrix whose entries satisfy (1) then these matrices

define a projective representation T of G with factor

set as((pij) defined by
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since G is a finite abelian group then this number of
inequivalent irreducible projective representations is
the same as the number of a-regular elements of a group.

Let a(G) denote the set of a-regular elements of G,
na(G) the number of «-regular elements in o(G) and d &G)
the degree of the irreducible projective representation
of G. In view of lemma 4.4.3 we have

n(G)d (G’ = |G].

For 1< i<j< m let

N th .
W . a primitive a; root of unity
i

Y 1, otherwise

then with the above notation we prove

4.5.1 Theorem

The number of inequivalent irreducible, projecitve
representations of a finite abelian group G with factor

|G|

2
a.
i

set as((pij) is

where da(G) =a

Proof

We only require to find the number of o-regular
elements of G with th factor set c.
s€G is o-regular if and only if

oc’(si,s) = a’(sj,s) =1 1<i<j<m
o o

1 m

But s€G has the form s = S| e S
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Therefore seG is o-regular if and only if

o o L
oc(si,s1 w8 ) = oz(sj,s1 S ) =1
o
since a’(s p,smm) = 1 for all p = i,j then s is
o, o
o-regular if oc’(si,sj’) = 1 and oc’(sj,si’) = 1 which

implies that

Thus, aj = 0 (mod ai) implying that
o = 0 and aj = bai, b = 0,1,..., (aj /ai) -1

Therefore, the total number of o-regular elements of G

- |G|
aa ..a.a. . (aj /ai)aj+1... a = .

a.

(A

For any fixed pair of indices (s,t), let

AGS,T) = {(xl,...xm) PX o= 0, as/xt, 0< x < ak;1§ k< m]}

and  Mx,.x) be an imeducible ordinary
representation of G assoiciated with the sequence
(x

before. Then we prove the following result.

1,...xm) € A(s,t), with le = ((pij) being defined as

4.5.2 Theorem [6]

Let G be a finite abelian group of type(al,...,am).

peX ‘21

complete set of  inequivalent irreducible  projective

Then {l(x ® Tst : (xl,...,xm) e A (s0)} is a

representations of G with factor set o € Bst.

Proof

To give an  explicit  construction of  the

inequivalent  irreducible  projective  representations = we

is
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construct a set of non singular kxk matrices. Let w, be

a primitive k™ root of unit and Si = W Then, if k is

T
odd, let Pk and Qk(wk) be the non singular kxk matrices

defined by
0 tomo o o]
00 1...0 OOWk.....O
P = 000 ... 1 QW) = e e
1 00 ... 0 00 0.w
10 0..0

as in [6]. If k is even, let Pk be defined as above and
Q,(w) as

0 0 O... .812(“'3
ai““ 0 0....0

In the same way as in the proof of theorem 4.2.1, we obtain

k
P: = Ik and (Qk(wk)) = Ik

Furthermore,
010..0) (9 W00
001...0 0 O W 0
PQW) =] civreireeninenn.
k7K 000...1 0 0 0. W
1 0 0...0 ™
1 0 0...0

I
£
=
=)
o
iN
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(0 w 0...0) o1 0...0)
=w 0 0 w .0l oo 1... 0
k k
00 0 Wk-l 00 O0.... 1
........ .
(10 0. o) !0 0.0
= kak(wk)Pk
Hence Pt: (Qk(wk))k = I; PQW) = WQ(W)P, where I

k
is the kxk identity matrix. If we let Ts = Pas, T =

t

Qa (wa )} and Ti= Ia for all i = st then Ti(i = 1,2,...m)

S s S
a
satisfies Ti'= I and TiTj = (pijTjTi ij = 12,..m. Thus
the T i = 1,..m generate a projective representation

1

T, Of G with factor set oeB = (¢ ). Since T is of
S st j st
degree da(G) = a, it is irreducible by theorem 4.5.1. Now
let k(xl,...,xm) be as above. Then

)»(xl,...,xm) z X(x;,...,xn’l) on o(G)
If and only if (xl,...,xm) 3 (xl,...,xm) for (xl,...,xm)
and (xl’,...,x;,...,xl;) in A (S,t)

If Tst is the irreducible projective representation of
G with factor set og Bst as defined above and S@®T denotes

the tensor products of representations S and T, then

A ) ® T is also an irreducible projective

x ,...,x
1 m

representation of G with factor set ou-:BSt since

A and T are irreducible. Infact the set
(X 40X ) st

1 m
{}”(x v X 2]

set ~of inequivalent irredicible  Projective  representations

@ ’Tst:(xl,...,xm) € A(s,t)} is a complete

of G with factor set o (see e.g [10, p200])
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Define an irreducible projective representation Tsisi+1 of

G with factor set lying in the class Bss for 1 =
iirl

1,3,...,2r-1 and let

Ts = T(sl...sz) = Tsls2 @ Ts3s4 .. @ TsZI_1 s, -

Then TS is an irreducible projective representation of G
with the needed factor set as it is a direct product of

irreducible  representations. Furthermore,  if XS = 0,

i

asi/xsm, 1=13,., 2r-1 and 1 < k < m, then

@ T is an irreducible

F = }"(xm,...,x) .

(x ,...,x ) .

1 th
projective representation of G with factor set o and

{F(x x ) : X =0; a /XS ;1= 1,3,...,2r-1
1 * 5 S S

PRI

and 1 < x< a for 1 <k <m} gives a complete set of
inequivalent  irreducible  projective  representations of G

with factor set o because X(x and the projective

,1...,xm)

character of F are distinct when restricted to

(x ye e e X )m

o(G) and the number of sequences (X1’X2’"‘"xm) is equal
to the number of irreducible projective representations of

G with the determined factor set o.
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