• Login
    View Item 
    •   UNZA Repository Home
    • Theses and Dissertations
    • Natural Sciences
    • View Item
    •   UNZA Repository Home
    • Theses and Dissertations
    • Natural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Asymptotic consistency of the James-stein shrinkage estimator

    Thumbnail
    View/Open
    Main Document (2.441Mb)
    Date
    2019
    Author
    Mungo, Alex Samuel
    Type
    Thesis
    Language
    en
    Metadata
    Show full item record

    Abstract
    This study establishes the asymptotic consistency of the James-Stein shrinkage estimator (JSSE) ˆ!⇤ n of some parameter ✓, which is obtained by shrinking a maximum likelihood estimator (MLE) ˆ✓n. Our shrinking strategy involves creating a subspace to shrink to by partitioning the parameter space ⌦ into two components. From this partition, our interest is in the whole parameter space ⌦ and one of the partitioned components which we refer to as the sub-parameter space ⌦o. Due to this partition, we have another maximum likelihood estimator for the parameter in the sub-parameter space ⌦o and we call it the restricted maximum likelihood estimator (RMLE) ˜✓ o n which is the shrinkage target. Therefore in this framework we consider three estimators, the JSSE ˆ!⇤ n , RMLE ˜✓ o n and MLE ˆ✓n. We use Hansen’s approach to derive the asymptotic distribution of the James-Stein shrinkage estimator (JSSE). With regularity conditions for the MLE considered, we obtain the asymptotic distribution as a multivariate normal distribution with some shrinkage e↵ect values. We use the Taylor’s theorem and limit theorems on this distribution to show that the James-Stein shrinkage estimator is asymptotically consistent as long as the initial (MLE) estimator is consistent. The asymptotic distributional bias (ADB) is evaluated for each of the three estimators. Results show that the JSSE ˆ!⇤ n and RMLE ˜✓ o n are asymptotically biased while the unrestricted MLE ˆ✓n is asymptotically unbiased. Furthermore we show that the JSSE ˆ!⇤ n is also asymptotically efficient. Lastly, simulation plots are done in R for the mean squared error (MSE) for sample size values of 30, 2000, 8000, 50000 and 100000 using the R multivariate model to compare the unbiased estimator (MLE) and the James-Stein shrinkage estimator in order to show lower MSE of the latter. Results also show that the James-Stein shrinkage estimator converges faster compared to the MLE. We conclude from the study that the James-Stein shrinkage estimator (JSSE) obtained by shrinking a maximum likelihood estimator (MLE) is asymptotically consistent and efficient. Keywords: Convergence, Efficiency, Maximum likelihood estimator, Mean squared error, Shrinkage.
    URI
    http://dspace.unza.zm/handle/123456789/6270
    Publisher
    University of Zambia
    Subject
    Llikelihood estimator
    James-Stein shrinkage estimator
    Restricted Maximum Likelihood Estimator
    Collections
    • Natural Sciences [273]

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNZA RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV