• Login
    View Item 
    •   UNZA Repository Home
    • Theses and Dissertations
    • Agricultural Sciences
    • View Item
    •   UNZA Repository Home
    • Theses and Dissertations
    • Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic analysis in tropical maize for phosphorus utilization in phosphorus-limited soil

    Thumbnail
    View/Open
    Main Document.pdf (1.225Mb)
    Main Document.pdf (1.225Mb)
    Date
    2020
    Author
    Mutale, Chibesa Edward
    Type
    Thesis
    Language
    en
    Metadata
    Show full item record

    Abstract
    Maize is one of the most important economic crops on the African continent. However, its production is constrained by both abiotic and biotic factors. Phosphorus (P) deficiency is one of the major abiotic constraints in maize production. It was for this reason the study was undertaken whose objectives were to: 1) evaluate genotypes which are efficient at utilizing phosphorus in P-limited soil, 2) investigate the type of the of gene action associated with traits linked to utilization of phosphorus in P-limited soils and 3) map quantitative trait loci (QTL) associated with phosphorus utilization in P-limited soil. Thirteen inbred lines (8 females and 5 males) previously screened for phosphorus utilization were obtained from CIMMYT, Zimbabwe through the maize team at Golden Valley Research Trust (GART) in Chisamba District, Zambia. To evaluate genotypes efficiency to phosphorus utilization and determining the type of gene action, eight (8) females and five (5) with varying reactions to P utilization were mated in an 8 x 5 North Carolina Design (NCD II). Forty (40) progenies were evaluated in the screen house using Completely Randomized Design (CRD) with three replications and two treatments (0 kg P and 60 kg P). The shoot biomass, root biomass, plant biomass and plant height were determined after the plants were harvested and dried at 80 oC for 72 hrs. Five crosses were observed to be highly efficient at utilizing phosphorus in P limited soils. Specific combining ability (SCA) effects were found to be highly significant different from zero (P = 0.001) for all measured parameters. Analysis of general combining ability (GCA) effects revealed that only the root biomass was significantly different from zero (P = 0.05). The Baker‘s ratio for Plant height, Shoot biomass, Root biomass and Plant biomass was found to be 0.12, 0.15, 0.49 and 0.28 respectively. This implied that non additive gene action conditioned plant height, shoot biomass and plant biomass responses in P-limiting soils. On the other hand, Baker‘s ratio for shoot biomass was 0.49 implying that additive and non-additive gene action conditioned this trait response in P-limited soils. Inclusive composite interval mapping (ICIM) analysis identified seven QTLs related to phosphorus utilization on chromosome 5. All the mapped QTLs were more than 5 cM from the nearest molecular marker utilized in the study. Therefore, there is need to utilize the maize genomic map to identify and test several markers near the mapped QTL, in order to locate more reliable molecular markers for marker assisted selection (MAS).
    URI
    http://dspace.unza.zm/handle/123456789/6848
    Publisher
    The University of Zambia
    Subject
    Maize production--Zambia
    Description
    Thesis
    Collections
    • Agricultural Sciences [223]

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNZA RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV