• Login
    View Item 
    •   UNZA Repository Home
    • Theses and Dissertations
    • Engineering
    • View Item
    •   UNZA Repository Home
    • Theses and Dissertations
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of die design, manufacturing and process parameters on chevron and surface cracking of copper wire during wire drawing

    Thumbnail
    View/Open
    Main Document.pdf (7.078Mb)
    Date
    2018
    Author
    Banda, Floyd
    Type
    Thesis
    Language
    en
    Metadata
    Show full item record

    Abstract
    The practice of copper wire drawing has faced problems regarding process, quality and manufacturing cost and satisfying world market demand of drawn wires. Of great importance to the practitioner are problems due to the interaction of process parameters during wire drawing. The present research study on the “Effects of Die Design, Manufacturing and Process Parameters on Chevron and Surface Cracking of Copper Wire during Wire Drawing” is based on multi-pass copper wire drawing studies from the industry and the application of a scientific approach using the finite element method (FEM). A 2-dimensional axisymmetric model of multi-pass copper wire drawing was developed using ABAQUS 6.14 to model and simulate the major factors contributing to and influencing the development of both internal (chevron) and surface cracks during copper wire drawing, with an emphasis on die bearing length variation. Drawn wire scanning electron micrographs were used to validate the effects of bearing length variation during copper wire drawing. Studies showed that a good selection and application of die geometrical and process parameters participating as an integral unit in copper wire drawing leads to the production of a defect-free copper wire. Models showed that, except the exit angle, all other die geometrical parameters influenced ductile damage. Studies from the simulations and drawn wire micrographs showed that the Cockroft and Latham damage criterion was not met in all the multi-pass stages for the internal centerline nodes, whereas the criterion was met during the second and third multi-pass stages for the surface nodes. The models showed that internal centreline damage is minimised when using bearing length values between 30% and 40% while surface damage is lower when using bearing lengths of 30%.
    URI
    http://dspace.unza.zm/handle/123456789/6849
    Publisher
    The University of Zambia
    Subject
    Die geometry
    Copper wire--manufacturing--Zambia
    Description
    PhD Thesis
    Collections
    • Engineering [147]

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNZA RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    UNZA homepage | UNZA Library | Contact Us | Send Feedback
    Theme by 
    Atmire NV